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Abstract

In this paper, we present a new clock routing algorithm which minimizes total wirelength under any given path-length skew

bound. The algorithm constructs a bounded-skew tree (BST) in two steps: (i) a bottom-up phase to construct a binary tree

of shortest-distance feasible regions which represent the loci of possible placements of clock entry points, and (ii) a top-down

phase to determine the exact locations of clock entry points. Experimental results show that our clock routing algorithm, named

BST/DME, can produce a set of routing solutions with skew and wirelength trade-off.

1 Introduction

Clock skew minimization is an important issue in the design of high performance circuits. Over the past few years, a number

of clock routing algorithms have been proposed, including the H-tree construction for regular systolic arrays [1], the method of

means and medians (MMM) by [10], the recursive geometric matching method by [6], and exact zero skew routing under the

Elmore delay model by [17]. Recently, the problem of embedding a given topology on a Manhattan plane with zero path-length

skew is solved optimally by [2, 7] using theDeferred-Merge Embedding (DME) algorithm. The algorithm can be either applied to

a given clock topology [2] or combined with a clock topology generation algorithm to achieve zero skew with smaller wirelength

[7]. Currently, research on clock routing is moving along a few directions. Zero-skew planar routing was first proposed by [18]

using Max-Min operations, followed up by [12, 13] using single-phase DME algorithm. Other work includes buffer insertion

[9, 3], process-variation-tolerant skew minimization [15, 4, 14], and a clock router that accomplished specified pin-to-pin delay

[16].

The emphasis of most of the current clock routing algorithms is on achieving zero-skew at the expense of longer wirelength,

resulting in high power dissipation. In practice, circuits still operate correctly within a tolerable skew bound. To reduce clock net

power dissipation, we believe that the clock routing algorithm should consider bounded-skew trees (BST) instead of zero-skew

trees (ZST). In this paper, we propose an algorithm to construct BST based on the DME approach. Our BST/DME algorithm first

computes shortest-distance feasible regions (as opposed to the merging segment in the original DME algorithm) for the roots of
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grant from Intel Corporation and a Tan Kah Kee Foundation Postgraduate Scholarship.
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recursively merged subtrees in a bottom-up fashion, followed by a top-down phase to determine the exact embedding of the clock

entry points. Experimental results show that as the skew bound increases, we generally see a decrease in total wirelength.

The rest of the paper is organized as follows: In Section 2, we formulate the minimum-cost bounded-skew clock routing

problem. In Section 3, we present the BST/DME algorithm under the path-length delay model. Section 4 shows the experimental

results obtained by our DME-BST algorithm. Section 5 concludes the paper.

2 Problem Formulation

Assume that we are given a set of synchronizing components or sinks 1 2 and their locations, denoted

1 2 , on a Manhattan plane. The location of the clock source 0 may be given. A routing

topology, , is a rooted binary tree with leaves, each corresponding to a sink. Consider any two nodes, say and , with

a common parent node , then corresponds to the clock entry point that the clock signal from the source has

to pass through before reaching and (and their descendants).

A clock tree is an embedding of the routing topology in the Manhattan plane, i.e. it maps each internal node

to a location, denoted , on the Manhattan plane. Since each node has a unique parent, we denote the edge from

any node, say to its parent uniquely by . The cost of edge is its wirelength, denoted . Note that is at least as

large as the Manhattan distance between and . The cost of the tree is the total wirelength of the edges in

.

Given a routing tree , let denote the unique path from to where is a ancestor of in . For a

node in , we use to denote the subtree rooted at . Under the linear delay model, the signal propagation time

from to is the sum of the wirelengths of the edges in the path , i.e. . Let denote the signal

propagation delay time (more precisely, path-length) from to . The skew of , denoted , is defined

to be the maximum value of 0 0 over all . Given the above definitions, we can formally

define the Minimum-Cost Bounded-Skew Clock Routing problem as follows:

Minimum-Cost Bounded Skew Clock Routing Problem (MCBS Problem): Given a set of sinks with locations and a

skew bound , find a routing topology such that a bounded skew tree can be constructed with minimum total

wirelength and .

3 The BST/DME Algorithm

Our BST/DME algorithm computes a routing tree in two steps. The bottom-up process constructs a tree of shortest-distance

feasible regions (SDFR) which contain possible locations of the internal nodes in the BST. The top-down process then determines

the exact locations of all internal nodes (similar to the DME algorithm). First, we define the following terminology.
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Figure 1: SDRs between regions 1 and 3, 1 and 4, and 2 and 3.

3.1 Definition of SDFR

The distance between two points and , denoted , is the Manhattan distance between the points. We define the distance

between two regions and , denoted , to be min . The shortest distance region (SDR) between two

regions and , denoted , is defined to be the set of points . Figure 1 shows

some SDRs between regions. We refer to the segments and as

the shortest distance segments (SDS) that define (see Figure 1).

Given a routing topology , a SDFR of each clock entry point , denoted is defined recursively as follows:

(i) For each sink , .

(ii) For an internal node in in with children and , is the region of possible placement of within

such that the path-length difference from to any pair of sinks in is within the skew

bound and the merging cost is minimized, under the condition that a point can merge with a point

only if .

The above definition is based on the observation that the merging cost of and is at least as large as .

Therefore, the merging cost is minimized if we can find suitable placement of in such that

.

Each location in a SDFR is associated with two delays (or path-lengths), namely and which correspond

to the shortest path-length and longest path-length from to the set of sinks rooted under , respectively. We define

. These numbers are used for computing SDFR of its parent node.

3.2 Overview of the BST/DME Algorithm

Bottom-Up Phase: Topology Construction

Given a set of unconnected sink locations , the original topology corresponds to a forest of single-node trees. The
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Topology Construction Algorithm

for each sink do

Create node

end for

while 1 do

Construct the nearest-neighbor graph of

For each edge in the first 1 1

edges of in non-decreasing order do

if and are unmatched nodes then

Mark as matched

Create new node

(children)

Compute

end if

end for

end while

Figure 2: The bottom up phase to construct a tree of feasible regions.

SDFR of each sink corresponds to its given location, and 0 for 1 . The bottom-up phase

constructs the topology and the tree of SDFRs by repeatedly merging pairs of trees until contains only a single rooted binary

tree, which is the routing topology . The approach is similar to the clustering-based algorithm in [8].

During each merging step, a nearest neighbor graph [8] is constructed. The nodes in the nearest neighbor graph correspond

to the roots of trees in the forest. Two nodes and are connected in the graph if is nearest to or is nearest to . The

weight of the edge connecting and is the distance between and . A matching is then obtained by

inspecting the first 1 1 edges in the nearest neighbor graph in non-decreasing order, where is a parameter 1

and the function , with , is defined by [8]

;

;

;

For each pair of matched nodes, say and , a new clock entry point which corresponds to the parent node of and

in the routing topology is introduced. The function computes the FDSR of the parent node .

The details of the function is given in Section 3.4. The outline of the bottom-up phase is given in Figure 2.

Top-Down Phase: Topology Embedding

The details of the top-down phase is given in Figure 3. Let 0 be the root of the routing topology. If the physical location
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Topology Embedding Algorithm

0 root of

if 0 is given then

Choose 0 such that

0 min 0 0

else

Choose any 0

end if

0

for each internal node 0 in (top-down order) do

Let be the parent node of

Choose s.t.

min

end for

Figure 3: The top-down phase to determine the exact locations of clock entry points.

of the clock source 0 is given, we place 0 at the nearest location in 0 from 0 . Otherwise, we assign 0 with an

arbitrary location (or a location with best skew) in 0 . We process the rest of the internal nodes of the routing topology

in a top-down order. Consider an internal node 0. Let be the parent of . Select a point such

that the distance is minimized. Note that may not be equal to .

3.3 Properties of BST/DME Algorithm

We can show the following results for our BST/DME algorithm. We define an octilinear line segment to be either a Manhattan

arc (line segment with slope 1 [2]) or a horizontal line segment or a vertical line segment. The following properties of feasible

region will be proved after we present the merging of two feasible region.

Theorem 1 Each feasible region exhibits the following two properties:

1. Octilinear Property: Each feasible region is an octilinear convex polygon, i.e. the boundary of the region is defined by

octilinear line segments.

2. Path-Length Property: Consider any two points and on the same line segment on the boundary of a SDFR,

(a) If the line segment is a Manhattan arc, and .

(b) If the line segment is horizontal or vertical, the changes of skew (due to interaction of different s and s)

along the segment divide the line segment into three contiguous intervals (one or two intervals may be empty): skew

decreases, skew remains equal and skew increases. Along each interval, the s or s are strictly increasing

or strictly decreasing. The difference between the s (or s) between two points on the same interval is equal

to the distance between the points.
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Graphically, the path-length property states that along a vertical or horizontal line segment of the boundary, the SPL and LPL

behave as in Figure 4.

LPL

SPL

skew
decreases

skew 
constant

skew 
increases

skew

Figure 4: Path-length Property

Theorem 2 Non-overlapping Property: In each iteration, the SDFRs of the roots of the trees are non-overlapping, and only

the boundaries of the SDFRs may touch each other.

Proof: This is trivially true at the beginning of the algorithm when the roots of the trees are the pins. Consider merging of

two roots and to yield the new root at the -th iteration. Let denote the collection of SDFRs of roots at the end of

the -th iteration. We assume that is the nearest neighbor of . Note that does not overlap with any SDFR in

1 . Otherwise, cannot be the nearest neighbor of . Since lies completely within

, does not overlap with SDFRs in 1 . We only have to show that

does not overlap with SDFRs of other new roots created at the -th iteration.

Consider and that define . Let and be any two points on and , respectively,

such that the . Let be the smallest bounding box containing and . Clearly, is within

. Since and cannot merge with other vertices, any new SDFRs that may overlap with are due to merging

of other roots, say and . Similarly, let and be any two points on and such that .

Clearly, the smallest bounding box cannot contain or . Otherwise, cannot be an edge in the nearest

neighbor graph. Without loss of generality, there are only three possible cases as shown in Figure 5(a)–(c) for the new SDFRs to

overlap, assuming that 0 0 and with 0 . Since is the nearest neighbor of , and

can only be on or outside the rectilinear circles (dash-line squares rotated 90 ), each with radius , centered

at and , respectively.

6



p’=(x  ,y  )p’ p’

p=(0,0)

q’=(x  ,y  )q’q’

q=(x  ,y  )q q

p’=(x  ,y  )p’ p’

p=(0,0)

q’=(x  ,y  )q’q’

q=(x  ,y  )q q

(a) (b)

p’=(x  ,y  )p’ p’

p=(0,0)

q’=(x  ,y  )q’q’

q=(x  ,y  )q q

p=(0,0)

q=(x  ,y  )q q

q’=(x  ,y  )q’q’

p’=(x  ,y  )p’ p’

(c) (d)

Figure 5: Overlapping of two new SDFR’s

In Figure 5(a), . Similarly, . Therefore, cannot

be an edge in the nearest neighbor graph, contradicting the fact that they are merged.

In Figure 5(b), if 0 or , the non-overlappingproperty is satisfied since the SDRs only touch each other. Consider

0 and . Since contains the point 0 , . Since ,

However, since ,
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Similarly, since ,

However, since ,

Again, is not a nearest neighbor edge.

Consider the configuration in Figure 5(c). We have

0 2

2

min 0 0 2

min 2

Therefore, 0 which is strictly greater than and , unless

0 and as shown in Figure 5(d).

Hence, except for the case in Figure 5(d) (a special case of Figure 5(c)), is not a nearest neighbor edge if and

overlap (not just touch). In the special case of Figure 5(d), the intersection of the SDRs (a vertical line segment

with a horizontal line segment ) is a single point and it happens only if , , and are single-point SDSs, i.e. ,

, and . Therefore, the boundaries of the SDFRs may only touch each other.

Suppose we modify the BST/DME algorithm slightly such that the roots are merged according to a given routing topology,

i.e. selection of roots to merge is fixed instead of determined during execution of the algorithm. Hence, it is possible that for the

SDFRs to overlap. We first observe the followings:

1. The SDFRs are rectangular: This can be proved easily by induction. The SDFR of two pins, say and , is the smallest

rectilinear bounding box of the two points. Consider merging at a higher level involving SDFRs which are

rectangular in shape. If the two SDFRs and overlap (Figure 6(a)), the new SDFR is

formed by intersecting and which is rectangular. Otherwise, the which

is again rectangular (Figures 6(b) and (c)).
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Figure 7: (a) lies within , (b) lies outside , (b)

2. Given , the minimum merging cost for ( where and are children of )

is always achievable for any placement by applying the embedding rule such that and

are minimal with the condition that and .

Lemma 1 Given a set of sinks with locations , let be the given routing topology. Let be the minimum-cost BST

defined by the given topology. Let be an internal node with children and and is the placement of in . Suppose the

subtrees and can be generated optimally by the DME/BST algorithm. Then another tree such that

can be constructed without incurring extra cost.

Proof: Without loss of generality, there are three possible configurations of and as shown in Figure

6. The smallest bounding box containing and are depicted as bold dash-line. It can be verified that if

lies within the smallest bounding box , then we can move to another

location such that min (Figure 7(a)) without incurring extra cost.

Effectively, we have constructed a new tree with without incurring extra cost.

If lies outside (Figure 7(b)), then we can move to the nearest point on the

boundary of and reduce the cost by the distance we move (Figure 7(b)). Therefore,
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q (13, 9)
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(22, 18)
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Figure 8: (a) The signed regions defined by and . (b) and . (c) and

. Each pair of co-ordinates represents .

is not an optimal tree.

By induction and using Lemma 1, we can now state the following result:

Theorem 3 Optimality Property: The BST/DME algorithm is optimal for unbounded path-length skew for a given routing

topology.

3.4 Merging of SDFRs

The SDR between two SDFRs can be defined by the corresponding pair of SDSs (defined in Section 3.1). Due to the octilinear

property of the SDFRs, the pair of SDSs are either a pair of parallel Manhattan arcs, or horizontal line segments or vertical line

segments. For simplicity and clarity, we will first illustrate merging of two points. Moreover, we introduce the notion of signed

distance between two points.

Consider any two points and . The pair of points defines three signed regions: , and ,

collectively referred to as (see Figure 8(a)). Now, consider a third point . We denote the signed distance of from

and by and , respectively. If is in the region, then is of positive distance from both and ,
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(b)

(d)(c)

(a)

(17, 9)

Discarded

(19, 9)

p (22, 20)
q (13, 9)

p

q

Balance SPL’s
(16, 12)

Balance LPL’s
(15, 11)

p (10, 8)

q (13, 9)
After Expanding

(16, 10)

(17 , 11) 
p

q

Figure 9: Finding FR of two points and : (a) Compute by balancing the s and s. (b) Expand for

a skew bound of 6 units. (c) Expand for a skew bound of 10 units. (d) FR between and for a skew bound of 4 units

lies outside of the SDR. Each pair of co-ordinates represents .

i.e. and (Figure 8(b)). If is in the , then is of negative distance from and

positive distance from , i.e. and (Figure 8(c)).

Suppose is the clock entry point to and . Then the signed (or ) from to any sinks of is

(or ). We say that signed , denoted , is max and

signed , denoted , is min . The feasible region (FR) of under the

signed distance metric is defined to be . The core of the FR (or CFR),

denoted , is defined to be max .

is computed in two steps:

(i) Compute which is bounded by two line segments within such that the two equalities

and hold.

(ii) Define max . Expand by 2 units towards both and .

For example, Figure 9(a) shows after merging and . If max , then .

In Figure 9(b), the skew bound is 6 units and 2. We can therefore expand by one unit towards both

and . It is possible to have part or all of the FR outside of the SDR (Figure 9(c) and (d)).
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We shall now present the computation of the FR due to merging of two SDFRs (or effectively, SDSs). Note that we place

a restriction on the merging operation such that a point on the first SDS, say , can only be merged with another

on the second SDS, say , if . Since points along a Manhattan arc have the same and

(path-length property), computation of for a pair of parallel Manhattan arcs is almost identical to that for a pair of

points. Therefore, we shall focus on the merging of a pair of horizontal line segments (since merging of vertical line segments is

symmetrical to that for horizontal line segments).

Due to the presence of intervals in a line segment (path-length property), we compute the FR (using the 2-step computation)

between an end-point of an interval and the point directly opposite it on the other segment for all interval end-points on both

segments. For example, Figure 10(a) shows the 5 FRs due to the end-points of the two horizontal line segments. Subsequently,

we perform a walk to join the vertices of these FRs to produce the FR of the two horizontal line segments (Figure 10(b)). This is

possible due to the path-length property along an interval.

(d)(c)

(a)

(11,3) (8,6) (7,5) (10,2)

(9,9)

(11,7) (14,4)
(b)

(11,3) (8,6) (7,5) (10,2)

(9,9)

(11,7) (14,4)

SDFR

Figure 10: Finding FR of two horizontal line segments: (a) FR of all interval end-points. (b) A walk to produce the resultant FR.

(c) FR strictly within the SDR. (d) FR lies outside of the SDR. Note that each pair of co-ordinates represents .
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SLPL(u) + sd(u,w)

SLPL(v) + sd(v,w)

Max

Figure 11: LPL of a horizontal line segment in the signed regions obeys the path-length property.

It is possible that the FR may (i) overlap with the SDR (Figure 9(a)–(c) and 10(b)–(c)), or (ii) lie outside of the SDR (Figure

9(d) and 10(d)). In case (i), we take the intersection of the FR and the SDR as the new SDFR. In case (ii), we take the segment of

SDSs that is closest to the FR as the new SDFR. For example, in Figure 9(d) is chosen to be the SDFR, and the bold horizontal

line segment in Figure 10(d) is the new SDFR.

We shall now present the proof of Theorem 1. First, assuming that the FRs (and therefore, SDFRs) satisfy the pathlength

properties. We want to show the following lemmas hold. Therefore, by induction, Theorem 1 holds.

Lemma 2 Consider merging of two SDSs and . All horizontal and vertical segments within the signed regions defined by the

SDSs satisfy the path-length property.

Proof: Suppose we are merging two parallel diagonal line segments, say and . Let be a horizonal line segment in a signed

region. Clearly, and . Without loss of generality, let be closer to

than (or equivalently, is closer to than ). Consider any point on , if , then the signed shortest delay from

to a sink in the subtree rooted at is . Similarly, the signed longest delay from to a sink in the subtree

rooted at is . Therefore, the signed longest and shortest delays from to a sink in the subtree rooted

at is increasing at a constant rate along the direction of . In other words, if we plot the as the horizontal axis, then the

signed delays are of slope 1. Similarly, the delays due to sinks in are of slope 1. Taking the maximum of the two signed

longest delay gives which is, in general, -shaped. Similarly, is of -shape. Therefore, they satisfy the

path-length property as shown in Figure 4.

Now, consider merging two horizontal (or vertical) line segments. Let be the lower line segment and be the upper line

segment. We have pointed out that a point in one SDS will only merge with points in the other SDS if their distance is equal

to the distance between the two SDSs. Therefore, a point on will only merge with the point on which is directly above it.

Consider such a pair of points; if we draw a vertical line through the pair of points, it is obvious that the vertical line satisfies the

path-length property since it is the same as merging two parallel Manhattan arcs. Now consider any horizonal line segment within

the range of and . Let this line segment be . Therefore, max

which still remains as (Figure 11). Similarly, remains as . Therefore, the horizontal line segment also satisfies

the path-length property.
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We recall the notation ofmerging segment which was introduced in [2] for zero-skew routing. We define the merging segment

of node recursively as follows:

(i) If is a pin, then .

(ii) If is an internal node, then is the set of all placements within the signed region which allow minimum

merging cost (in term of signed distance metric).

Since we are concerned with merging of SDS only, we only have to consider merging of two parallel Manhattan arcs, two

horizontal line segments, or two vertical line segments. It is therefore sufficient to prove only the first two cases since merging of

vertical line segments is identical to merging of horizontal line segments.

Lemma 3 The construction of the FR for merging of two parallel Manhattan arcs is correct. The resultant FR satisfies the

octilinear and path-length properties.

Proof: Let the and be two parallel Manhattan arcs to be merged. Clearly, the skew of , the parent of

and after merging, is at least the maximum of and . We first show that the core is computed correctly. Let

be the merging segment such that holds. For the

equality to holds, any point on must satisfy the following equation:

2
(1)

Similarly, is the merging segment such that holds.

Note that to construct the locus of points, say , of signed distance away from is to take the intersection of the boundary

of the tilted rectangle of radius with either the signed region if 0 or the signed region

if 0. Note that is a Manhattan arc and it is parallel to both and . Also note that it is

away from . Therefore, both and are Manhattan arcs parallel to each other.

Without loss of generality, we assume that (or equivalently,

). We want to show that for any point such that ,

max . Now,

min

max

Therefore, . Since max , max

. Therefore, the skew within the core is equal to the maximum skew of and .

Also, we know from Lemma 2 that decreases from to

uniformly as we slide along a vertical or horizontal line from to . Similarly, decreases from

to uniformly.
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Now, consider . Let .

Therefore, 2 . Hence, for , 2 .

Similarly, consider . Let .

Therefore, for , 2 .

Therefore, construction of new FR for merging a pair of Manhattan arcs is correct as outlined and the contructed FR satisfies

both path-length and octilinear properties.

Lemma 4 The construction of the FR for merging of two parallel horizontal line segments is correct. The resultant FR satisfies

the octilinear and path-length properties.

Proof: Consider merging of two horizontal line segments, say and , both of which start at -coordinate and end at

-coordinate . Let be a path length delay of the at and be a path length delay of at . If the path-length

delays along the horizontal line segments are monotone, i.e. strictly increasing or decreasing, then pathlength delay of at

-coordinate , denoted , is either or with . Let be the signed distance

from to balance and , i.e. 2 at . Now, consider balancing the two

montone path length delays at , we have the four possible scenarios for the balancing signed distance at , denoted

:

(2)

Now suppose both two horizontal lines have monotone SPLs and LPLs. Then some possible configurations of FR are given
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in Figure 12. The remaining configurations can be obtained by reflecting the appropriate configuration in Figure 12 along the

vertical axis. We will show the reasoning for the construction of Figure 12(c) in Figure 13. The rest of the configurations can be

obtained in a similar fashion.

(a) (b) (c)

(d) (e) (f)

v

u

v

u

v

u

v

u

v

u

v

u

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL

LPL

SPL LPL
SPL

Figure 12: Merging of two horizontal segments and with monotone LPLs and SPLs.

We will “abuse” the notation of “CFR” in the rest of the proof. Let the “CFR” of two horizontal segments be the union of all

the actual CFRs formed by merging points on with the corresponding points on . As before, the CFR of two points is formed

by balancing the SPLs and LPLs of the two points. From Eqn. (2), the horizontal bound of the “CFR” is due to balancing of

LPLs and the 1 slope of the “CFR” is due to balancing of SPLs. There are three possible cases:

(a) : is constant (Figure 13(a)).

(b) : Let be the point with -coordinate such that

. Since the delays are monotone, there is only one such point. From to , the

slack increases monotonically at half the rate that the skew of is decreasing. To the right of , the slack

remains constant.

(c) for 0 : This is the same situation as for the interval between

and in (b); the slack increases monotonically at half the rate that the skew of is decreasing.

16



(a)

v

u

"CFR"

(b)

v

u

"CFR"

(c)

v

u

"CFR"

q

LPLLPL

LPLLPL

SPL

SPLSPL

SPL

Figure 13: Merging of two horizontal segments and . Segment has increasing LPL and decreasing SPL and segment has

decreasing LPL and SPL.

In all cases, the LPL along the Manhattan arc of the boundary is due to the plus the signed distance of from the

Manhattan arc. Therefore, it is constant. Similarly, the SPL along the Manhattan arc of the boundary is due to plus the

signed distance of from the Manhattan arc. Again, it is constant.

Note that the merging operation breaks the horizontal line segments into segments where the delays are monotone. Therefore,

construction of new FR is correct.

Lemma 5 All FRs are convex.

not in FR not in FR
p

qr

s

Figure 14: Convexity of the SDFRs

Proof: Suppose it is not, the configurations shown in Figure 14 are possible. We show only the proof for the configuration in

Figure 14(a). The rest can be derived in a similar fashion. We can identify a rectangle formed by , , and as in Figure

14(a) with the property that . Assume that . Consider the line segment , it must satisfy the

path-length property. Since is in the FR, the LPL and SPL for points along must be increasing and decreasing monotonically,

respectively, along the direction , i.e. and . Also, has a skew
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which is equal to the bound .

Similarly, consider any point along the line segment except . Since all points to the left of except are not in FR, they

all have skew equals to . Based on the path-length property along a vertical line, the SPL and LPL at is either

and , respectively, or and , respectively. By similar argument,

also equals to . Therefore and , or

and .

Using the same arguments as before, the LPL and SPL for points along must be increasing and decreasing monotonically

along the direction , i.e. and . We therefore obtain two different

LPLs and SPLs for point . This is a contradiction since the LPL and SPL for is obtained by merging exactly one point in and

one point in (both points and lie on a vertical line).

4 Experimental Results

We have implemented the BST/DME algorithm in ANSI C for the Sun SPARC station environment. In our experiments, we tested

the BST/DME algorithm on benchmark data prim1–prim2 [10] and r1–r5 [17] for ranging from 1 5 to 4 0 in the bottom-up

phase of the algorithm. Table 1 compares the ZST routing costs by the NN (Nearest Neighbor) algorithm from [7] with the routing

costs of our BST/DME algorithm for different skew bounds. The reason that we only compare with [7] is because it outperforms

other clock routing algorithms including [2, 6, 17]. Note that the NN algorithm can be improved slightly using the MD and ME

algorithms in [7]. Moreover, [8] showed that wirelength can be further reduced by changing the topology after an initial topology

is obtained. We are currently incorporating these enhancements in our BST/DME algorithm.

Circuits

Skew Bound prim1 prim2 r1 r2 r3 r4 r5

cost / skew cost / skew cost / skew cost / skew cost / skew cost / skew cost / skew

0 ([7]) 131210 / 0 312430 / 0 1331867 / 0 2590670 / 0 3317598 / 0 6779690 / 0 9889688 / 0

0 (BST/DME) 129105 / 0 311350 / 0 1288715 / 0 2556887 / 0 3316250 / 0 6714451 / 0 9874719 / 0

100 125480 / 100 301380 / 100 1287908 / 100 2547415 / 100 3308659 / 100 6648148 / 100 9857184 / 100

200 123695 / 200 292550 / 200 1279592 / 200 2526300 / 200 3289013 / 200 6619472 / 200 9808148 / 200

500 117905 / 500 276970 / 500 1267831 / 500 2513952 / 500 3232975 / 500 6536240 / 500 9649783 / 500

1000 112185 / 1000 267020 / 1000 1264303 / 1000 2483180 / 1000 3213398 / 1000 6395835 / 1000 9498362 / 1000

2000 108225 / 2000 256380 / 2000 1242024 / 2000 2430848 / 2000 3143449 / 2000 6267746 / 2000 9307250 / 2000

5000 106990 / 4920 253350 / 5000 1186527 / 5000 2337273 / 5000 2963036 / 5000 5972735 / 5000 8801182 / 5000

105960 / 8050 249240 / 9980 1069802 / 61449 2096325 / 100260 2710362 / 122391 5382237 / 196276 8022978 / 162786

Table 1: Total wirelengths and skews of the clock routings generated by the BST/DME algorithm for benchmark circuits prim1-2

[10] and r1-5 [17].

In general, we see a decrease in total wirelengths as the skew increases. However, our results do not compare favorably with

[7] when it comes to large circuits with small skew. We believe this is due to the computation of new SDFRs when the FRs lie
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outside of the SDRs (case (ii)). It is also due to this limitation that the algorithm is sub-optimal (for a given topology) when this

algorithm is used for ZST routing. However, this approach is optimal (for a given topology) for unbounded skew.

5 Conclusion and Future Work

This paper presents a generalized DME algorithm, named BST/DME, which constructs BST by a bottom-up phase which creates

a tree of SDFRs, followed by a top-down phase which determines the exact location of the clock entry points. Our clock routing

algorithm can produce a set of routing solutions with skew and wirelength trade-off. We learned recently that an independent

study of the bounded-skew clock routing problem will be reported in [11].

Most of the current clock routing algorithms first compute the clock routing tree topology and then carry out buffer insertion

and wire sizing independently. Also, their emphasis is on achieving zero-skew at the expense of very high power dissipation. Our

future plan is to develop a practical clock routing algorithm which carries out simultaneous topology generation, buffer insertion,

and wiresizing for achieving bounded skew with minimum power dissipation.
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