
Minimum-Cost Coverage of Point Sets by Disks∗

Helmut Alt
Freie Universität Berlin

D-14195 Berlin, Germany

Esther M. Arkin
Stony Brook University

Stony Brook, NY 11794, USA

Hervé Brönnimann
Polytechnic University

Brooklyn, NY 11201, USA

Jeff Erickson
University of Illinois

Urbana, IL 61801, USA

Sándor P. Fekete
Braunschweig University
D-38106 Braunschweig,

Germany

Christian Knauer
Freie Universität Berlin

D-14195 Berlin, Germany

Jonathan Lenchner
IBM T. J. Watson Research

Yorktown Heights, NY 10598,
USA

Joseph S. B. Mitchell
Stony Brook University

Stony Brook, NY 11794, USA

Kim Whittlesey
University of Illinois

Urbana, IL 61801, USA

ABSTRACT
We consider a class of geometric facility location problems in which
the goal is to determine a set X of disks given by their centers (t j)
and radii (r j) that cover a given set of demand points Y ⊂ R2 at
the smallest possible cost. We consider cost functions of the form
∑ j f (r j), where f (r) = rα is the cost of transmission to radius r.
Special cases arise for α = 1 (sum of radii) and α = 2 (total area);
power consumption models in wireless network design often use an
exponent α > 2. Different scenarios arise according to possible re-
strictions on the transmission centers t j , which may be constrained
to belong to a given discrete set or to lie on a line, etc.

We obtain several new results, including (a) exact and approx-
imation algorithms for selecting transmission points t j on a given
line in order to cover demand points Y ⊂ R2; (b) approximation
algorithms (and an algebraic intractability result) for selecting an
optimal line on which to place transmission points to cover Y ; (c)
a proof of NP-hardness for a discrete set of transmission points in
R2 and any fixed α > 1; and (d) a polynomial-time approximation
scheme for the problem of computing a minimum cost covering
tour (MCCT), in which the total cost is a linear combination of the
transmission cost for the set of disks and the length of a tour/path
that connects the centers of the disks.

∗E. Arkin is partially supported by grants from the National Sci-
ence Foundation (CCR-0098172, CCF-0431030). H. Brönnimann
and J. Lenchner are partially supported by a grant from the National
Science Foundation (Career grant CCR-0133599). J. Mitchell is
partially supported by grants from the National Science Foundation
(CCR-0098172, ACI-0328930, CCF-0431030, CCF-0528209), the
U.S.-Israel Binational Science Foundation (2000160), Metron Avi-
ation, and NASA Ames (NAG2-1620).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical
problems and computations

General Terms
Algorithms, Theory.

Keywords
Covering problems, tour problems, geometric optimization, com-
plexity, approximation.

1. INTRODUCTION
The problem. We study a geometric optimization problem that
arises in wireless network design, as well as in robotics and vari-
ous facility location problems. The task is to select a number of
locations t j for the base station antennas (servers), and assign a
transmission range r j to each t j , in order that each pi ∈ Y for a
given set Y = {p1, . . . , pn} of n demand points (clients) is covered.
We say that client pi is covered if and only if pi is within range of
some transmission point t ji , i.e., d(t ji , pi) 6 r ji . The resulting cost
per server is some known function f , such as f (r) = rα. The goal is
to minimize the total cost, ∑ j f (r j), over all placements of at most
k servers that cover the set Y of clients.

In the context of modeling the energy required for wireless trans-
mission, it is common to assume a superlinear (α > 1) dependence
of the cost on the radius; in fact, physically accurate simulation
often requires superquadratic dependence (α > 2). A quadratic de-
pendence (α = 2) models the total area of the served region, an ob-
jective arising in some applications. A linear dependence (α = 1)
is sometimes assumed, as in Lev-Tov and Peleg [19], who study
the base station coverage problem, minimizing the sum of radii.
The linear case is important to study not only in order to simplify
the problem and gain insight into the general problem, but also
to address those settings in which the linear cost model naturally
arises [10, 21]. For example, the model may be appropriate for a
system with a narrow-angle beam whose direction can either ro-
tate continuously or adapt to the needs of the network. Another
motivation for us comes from robotics, in which a robot is to map
or scan an environment with a laser scanner [13, 14]: For a fixed

spatial resolution of the desired map, the time it takes to scan a cir-
cle corresponds to the number of points on the perimeter, i.e., is
proportional to the radius.

Our problem is a type of clustering problem, recently named
min-size k-clustering by Bilò et al. [7]. Clustering problems tend to
be NP-hard, so most efforts, including ours, are aimed at devising
an approximation algorithm or a polynomial-time approximation
scheme (PTAS).

We also introduce a new problem, which we call minimum cost
covering tour (MCCT), in which we combine the problem of find-
ing a short tour and placing covering disks centered along it. The
objective is to minimize a linear combination of the tour length
and the transmission/covering costs. The problem arises in the au-
tonomous robot scanning problem [13,14], where the covering cost
is linear in the radii of the disks, and the overall objective is to
minimize the total time of acquisition (a linear combination of dis-
tance travelled and sum of scan radii). Another motivation is the
distribution of a valuable or sensitive resource: There is a trade-
off between the cost of broadcasting from a central location (thus
wasting transmission or risking interception) and the cost of trav-
elling to broadcast more locally, thereby reducing broadcast costs
but incurring travel costs.

Location Constraints. In the absence of constraints on the server
locations, it may be optimal to place one server at each demand
point. Thus, we generally set an upper bound, k, on the number of
servers, or we restrict the possible locations of the servers. Here,
we consider two cases of location constraints:

(1) Servers are restricted to lie in a discrete set {t1, . . . , tm}; or
(2) Servers are constrained to lie on a line (which may be fully

specified, or may be selected by the optimization).

Our results. We provide a number of new results, some improv-
ing previous work, some giving the first results of their kind.

In the discrete case studied by Lev-Tov and Peleg [19], and Biló
et al. [7], we give improved results. For the discrete 1D problem
where Y ⊆ R, we improve their 4-approximation to a linear-time
3-approximation by using a “Closest Center with Growth” (CCG)
algorithm, and, as an alternative to the previous O((n+m)3) algo-
rithm [19], we give a near-linear-time 2-approximation that uses a
“Greedy Growth” (GG) algorithm. Unfortunately, we cannot ex-
tend our proofs to the 1 1

2 D problem. Intuitively, greedy growth
works as follows: start with a disk with center at each server, each
disk of radius zero; among all clients, find one that requires the
least radial disk growth to capture it; repeat until all clients are cov-
ered. Note that for α > 2 the 2D variants of the problem are already
proved to be NP-Hard and to have a PTAS [7].

In the general 2D case with clients Y ⊂ R2, we strengthen the
hardness result of Biló et al. [7] by showing that the discrete prob-
lem is already hard for any superlinear cost function, i.e., f (r) = rα

with α > 1. Furthermore, we generalize the min-size clustering
problem in two new directions. On the one hand, we consider less
restrictive server placement policies. For instance, if we only re-
strict the servers to lie on a given fixed line, we give a dynamic
programming algorithm that solves the problem exactly, in time
O(n2 logn) for any Lp metric in the linear cost case, and in time
O(n4 logn) in the case of superlinear non-decreasing cost functions.
For simple approximations, our algorithm “Square Greedy” (SG)
gives in time O(n logn) a 3-approximation to the square covering
problem with any linear or superlinear cost function. A small varia-
tion, “Square Greedy with Growth” (SGG), gives a 2-approximation
for a linear cost function, also in time O(n logn). The results are
also valid for covering by Lp disks for any p, but with correspond-
ingly coarser approximation factors.

A practical example in which servers are restricted to lie along a
line is that of a highway that cuts through a piece of land, and the
server locations are restricted to lie along the highway. The line lo-
cation problem arises when one not only needs to locate the servers,
but also needs to select an optimal corridor for the placement of the
highway. Other relevant examples may include devices powered by
a microwave or laser beam lining up along the beam.

If the servers are restricted to lie on a horizontal line, but the
location of this line may be chosen freely, then we show that the
exact optimal position (with α = 1) is not computable by radicals,
using an approach similar to that of Bajaj [5, 6] in addressing the
unsolvability of the Fermat-Weber problem. On the positive side,
we give a fully polynomial-time approximation scheme (FPTAS)
requiring time O((n3/ε) logn) if α = 1 and time O((n5/ε) logn) if
α > 1.

For servers on an unrestricted line, of any slope, and α = 1, we
give O(1)-approximations (4-approximation in O(n4 logn) time, or
8
√

2-approximation in O(n3 logn) time) and an FPTAS requiring
time O((n5/ε2) logn).

We give the first algorithmic results for the new problem, mini-
mum cost covering tour (MCCT), which we introduce. Given a set
Y ⊆R2 of n clients, our goal is to determine a polygonal tour T and
a set X of k disks of radii r j centered on T that cover Y while min-
imizing the cost length(T)+C ∑rα

i . Our results are for α = 1. The
ratio C represents the relative cost of touring versus transmitting.
We show that MCCT is NP-hard if C is part of the input. At one
extreme, if C is small then the optimum solution is a single server
placed at the circumcenter of Y (we can show this to be the case
for C 6 4). At the other extreme (if C very large), the optimum
solution is a TSP among the clients. For any fixed value of C > 4,
we present a PTAS for MCCT, based on a novel extension of the
m-guillotine methods of [20].

Related work. There is a vast family of clustering problems,
among which are the k-center problem in which one minimizes
max j r j , the k-median problem in which one minimizes ∑i d(pi, t ji),
and the k-clustering problem in which one minimizes the maximum
over all clusters of the sum of pairwise distances between points in
that cluster. For the geometric instances of these related clustering
problems, refer to the survey by Agarwal and Sharir [1]. When k is
fixed, the optimal solution can be found in time O(nk) using brute
force. In the plane, one of the only results for the min-size cluster-
ing problem is a small improvement for k = 2 by Hershberger [17],
in subquadratic time O(n2/ log logn). Approximation algorithms
and schemes have been proposed, particularly for geometric in-
stances of these problems (e.g., [4]). Clustering for minimizing the
sum of radii was studied for points in metric spaces by Charikar
and Panigrahy [9], who present an O(1)-approximation algorithm
using at most k clusters.

For the linear-cost model (α = 1), our problem has been consid-
ered recently by Lev-Tov and Peleg [19] who give an O((n+m)3)
algorithm when the clients and servers all lie on a given line (the
1D problem), and a linear-time 4-approximation in that case. They
also give a PTAS for the two-dimensional case when the clients and
servers can lie anywhere in the plane. Bilò et al. [7] show that the
problem is NP-hard in the plane for the case f (r) = rα, α > 2, either
when the sets X and Y are given and k is left unspecified (k = n),
or when k is fixed but then X = Y . They give a PTAS for the linear
cost case (α = 1) and a slightly more involved PTAS for a more
general problem in which the cost function is superlinear, there are
fixed additive costs associated with each transmission server and
there is a bound k on the number of servers.

There are many problems dealing with covering a set of clients
by disks of given radius. Hochbaum and Maass [18] give a PTAS

for covering with a minimum number of disks of fixed radius, where
the disk centers can be taken anywhere in the plane. They intro-
duce a “grid-shifting technique,” which is used and extended by
Erlebach et al. [12]. Lev-Tov and Peleg [19] and Bilò et al. [7]
extend the method further in obtaining their PTAS results for the
discrete version of our problem.

When a discrete set X of potential server locations is given, Gon-
zalez [16] addresses the problem of maximizing the number of
covered clients while minimizing the number of servers supply-
ing them, and he gives a PTAS for such problems with constraints
such as bounded distance between any two chosen servers. In [8],
a polynomial-time constant approximation is obtained for choosing
a subset of minimum size that covers a set of points among a set of
candidate disks (the radii can be different but the candidate disks
must be given).

The closest work to our combined tour/transmission cost (MCCT)
is the work on covering tours: the “lawn mower” problem [2], and
the TSP with neighborhoods [3,11], each of which has been shown
to be NP-hard and has been solved with various approximation al-
gorithms. In contrast to the MCCT we study, the radius of the
“mower” or the radius of the neighborhoods to be visited is speci-
fied in advance.

2. SCENARIO (1): SERVER LOCATIONS
RESTRICTED TO A DISCRETE SET

2.1 The one-dimensional discrete problem with
linear cost

Consider the case of m fixed server locations X = {t1, ..., tm}, n
client locations Y = {p1, ..., pn}, and a linear (α = 1) cost function,
with clients and servers all located along a fixed line. Without loss
of generality, we may assume that X and Y are sorted in the same
direction, at an extra cost of O((n + m) log(n + m)). Lev-Tov and
Peleg [19] give an O((n + m)3) dynamic programming algorithm
for finding an exact solution. Bilò et al. [7] show that the problem is
solvable in polynomial time for any value of α by reducing it to an
integer linear program with a totally unimodular constraint matrix.
The complexities of these algorithms, while polynomial, is high.
Lev-Tov and Peleg also give a simple “closest center” algorithm
(CC) that gives a linear-time 4-approximation. We improve to a
3-approximation in linear time, and a 2-approximation in O(m +
n logm) time.

We now describe an algorithm which also runs in linear time, but
achieves an approximation factor of 3.

Closest Center with Growth (CCG) Algorithm: Process the clients
{p1, ..., pn} from left to right keeping track of the rightmost ex-
tending disk. Let ωR denote the rightmost point of the rightmost
extending disk, and let R denote the radius of this disk. (In fact the
rightmost extending disk will always be the last disk placed.) If ωR
is equal to, or to the right of the next client processed, pi, then pi
is already covered so ignore it and proceed to the next client. If pi
is not yet covered, consider the distance of pi to ωR compared with
the distance of pi to its closest center t̂i. If the distance of pi to
ωR is less than or equal to the distance of pi to its closest center t̂i,
then grow the rightmost extending disk just enough to capture pi.
Otherwise use the disk centered at t̂i of radius |pi− t̂i| to cover pi.

LEMMA 1. For α = 1, CCG yields a 3-approximation to OPT
in O(n+m) time.

The proof is similar to that of the next lemma, and omitted in this
version.

If we consider a single disk D with clients pL and pR on the
left and right edges of D, associated centers x̂L, x̂R at distances
respectively radius(D)−ε to the left and radius(D)−ε to the right,
along with a dense set of clients in the left hand half of D we see
that 3 is the best possible constant for CCG.

Finally we offer an algorithm that achieves a 2-approximation
but runs in time O(m+n logm).

Greedy Growth (GG) Algorithm: Start with a disk with center
at each server all of radius zero. Now, amongst all clients, find
the one which requires the least radial disk growth to capture it.
Repeat until all clients are covered. An efficient implementation
uses a priority queue to determine the client that should be captured
next. One can set up the priority queue in O(m) time. Note that the
priority queue will never have more than 2m elements, and that
each pi eventually gets captured, either from the right or from the
left. Each capture can be done in time O(logm) for a total running
time of O(m+n logm).

LEMMA 2. For α = 1, GG yields a 2-approximation to OPT in
O(m+n logm) time.

Proof. Define intervals Ji as follows: when capturing a client pi
from a server t j whose current radius (prior to capture) is r j, let
Ji = (t j + r j, pi] if pi > t j , and Ji = [pi, t j− r j) otherwise. Our first
trivial yet crucial observation is that Ji ∩ Jk = /0 if i 6= k. Also note
that the sum of the lengths of the Ji is equal to the sum of the radii
in the GG cover.

Consider now a fixed disk D in OPT, centered at tD, and the list
of intervals Ji whose pi is inside D. As before, at most one such Ji
extends outward to the right from the right edge of D. If so, call it
JR, and define JL symmetrically. If JR exists, it cannot extend more
than radius(D) to the right of D. Let λ = length(JR). We argue that
there is an interval of length λ in D, to the right of tD, which is free
of Ji’s. It follows that there is at most radius(D) worth of segments
to the right of tD. Of course, this is also true if JR does not exist. By
symmetry, there is also radius(D) worth of segments to the left of
tD, whether JL exists or not, yielding the claimed 2-approximation.

Assume JR exists. Then the algorithm successively extends JR
by growth to the left up to some maximum point (possibly stop-
ping right at pR). Since the growth could have been induced by
clients to the right of JR, that maximum point is not necessarily
a client. There is, however, some client inside D that is captured
last in this process. This client pi (possibly pR) cannot be within
λ of tD, since otherwise it would have been captured prior to the
construction of JR.

If there is no client between tD and pi we are done, since then
there could be no interval Jk in between. Thus consider the client
pi−1 just to the left of pi. Suppose d(pi−1, pi) > λ. Then, if pi−1
is eventually captured from the left, we would have the region be-
tween pi−1 and pi free of Jk’s and be done. On the other hand, if
pi−1 is captured from the right, it must be captured by a server be-
tween pi−1 and pi, and that server is at least λ to the left of pi since
otherwise pi would be captured by that server prior to pR. This
leaves the distance from the server to pi free of Jk’s.

Hence the only case of concern is if d(pi−1, pi) < λ. Clearly
pi−1 must not have been captured at the time when pR is captured
since otherwise pi would have been captured before pR, contradict-
ing the assumption that pi is captured by growth leftward from pR.
Similarly, there cannot be a server between pi−1 and pi, since oth-
erwise both pi−1 and pi would be captured before pR. Together
with the definition of pi, this implies that pi−1 is captured from the
left. Therefore, to the left of pi−1, there must be one or more inter-
vals {Jli} whose length is at least λ that are constructed before pi−1
is captured. Similarly, to the right of pi, there must be some one or

more intervals {Jr j} whose length is at least λ, constructed before
pi is captured. However, either the last Jli is placed before the last
Jr j or vice versa. In the first case, there are no λ length obstructions
left in the left-hand subproblem, so pi−1 will be covered, and with
λ length obstructions remaining in the right subproblem, pi will be
captured by growth rightward. The second case is symmetrical to
the first. In either case we have a contradiction. 2

To see that the factor 2 is tight, just consider servers at −2+ ε,0
and 2− ε and clients at −1 and 1.

2.2 Hardness of the two-dimensional discrete
problem with superlinear cost

In 2D, we sketch an NP-hardness proof, for any α > 1. This
strengthens the NP-hardness proof of [7], which only works in the
case α > 2.

THEOREM 3. For any a fixed α > 1, let the cost function of
a circle of radius r be f (r) = rα. Then it is NP-hard to decide
whether a discrete set of n clients in the plane, and a discrete set
of m potential transmission points allow a cheap set of circles that
covers all demand points.

Proof (sketch). Let I be an instance of PLANAR 3SAT, and let GI
be the corresponding variable-clause incidence graph. After choos-
ing a suitable layout of this planar graph, resulting in integer vari-
ables with coordinates bounded by a polynomial in the size of GI
for all vertices and edges, we replace each the vertex represent-
ing any particular variable by a closed loop, using the basic idea
shown in the left of Figure 1; this allows two fundamentally differ-
ent ways of covering those points cheaply (using the “odd” or the
“even” circles), representing the two truth assignments. For each
edge from a vertex to a variable, we attach a similar chain of points
that connects the variable loop to the clause gadget; the parity of
covering a variable loop necessarily assigns a parity to all incident
chains. Note that choosing sufficiently fine chains guarantees that
no large circles can be used, as the overall weight of all circles in
a cheap solution will be less than 1. (It is straightforward to see
that for any fixed α > 1, this can be achieved by choosing coordi-
nates that are polynomial in the size of GI , with the exponent being
O(1/(α−1)).)

client points

transmission
points

even circles

odd circles

Figure 1. (Left) The switch structure of a variable gadget. Note
how there are two fundamentally different ways to cover all points
cheaply. (Right) The structure of a clause gadget. One small circle
is needed for picking up the client point at the center of the gadget.

For the clauses choose a hexagonal arrangement as shown in the
right of Figure 1: There is one central point that must be covered
somehow; again, α > 1 guarantees that it is cheaper to do this from
a nearby transmission point, rather than increasing the size of a
circle belonging to a chain gadget.

Now it is straightforward to see that there is a cheap cover, using
only the forced circles, iff the truth assignment corresponding to

the covering of variabe loops assures that each clause has at least
one satisfying variable. 2

3. SCENARIO (2): SERVER LOCATIONS
RESTRICTED TO A LINE

3.1 Servers along a fixed horizontal line

3.1.1 Exact solutions
Suppose that the servers are required to lie on a fixed horizontal

line, which we take without loss of generality to be the x-axis. Such
a restriction could arise naturally (e.g., the servers must be con-
nected to a power line, must lie on a highway, or in the main corri-
dor in a building). In addition, this case must be solved first before
attempting to solve the more general problem—along a polygonal
curve.

In this section, we describe dynamic programming algorithms to
compute a set of server points of minimum total cost. For notational
convenience, we assume that the clients Y are indexed in left-to-
right order. Without loss of generality, we also assume that all the
clients lie on or above the x-axis, and that no two clients have the
same x-coordinate. (If a client pi lies directly above another client
p j , then any circle enclosing pi also encloses p j , so we can remove
p j from Y without changing the optimal cover.)

Let us call a circle C pinned if it is the leftmost smallest axis-
centered circle enclosing some fixed subset of clients. Equivalently,
a circle is pinned if it is the leftmost smallest circle passing through
a chosen client or a chosen pair of clients. Under any Lp metric,
there are at most O(n2) pinned circles. As long as the cost func-
tion f is non-decreasing, there is a minimum-cost cover consisting
entirely of pinned circles.

Linear Cost. If the cost function f is linear (or sublinear), we
easily observe that the circles in any optimum solution must have
disjoint interiors. (If two axis-centered circles of radius ri and r j
intersect, they lie in a larger axis-centered circle of radius at most
ri + r j.) In this case, we can give a straightforward dynamic pro-
gramming algorithm that computes the optimum solution under any
Lp metric.

The algorithm given in Figure 2 (left) finds the minimum-cost
cover by disjoint pinned circles, where distance is measured using
any Lp metric. We call the rightmost point enclosed by any pinned
circle C the owner of C.

If we use brute force to compute the extreme points enclosed by
each pinned circle and to test whether any points lie directly above
a pinned circle, this algorithm runs in O(n3) time. With some more
work, however, we can improve the running time by nearly a linear
factor.

This improvement is easiest in the L∞ metric, in which circles
are axis-aligned squares. Each point pi is the owner of exactly i
pinned squares: the unique axis-centered square with pi in the up-
per right corner, and for each point p j to the left of pi, the leftmost
smallest axis-centered square with pi and p j on its boundary. We
can easily compute all these squares, as well as the leftmost point
enclosed by each one, in O(i log i) time. (To simplify the algorithm,
we can actually ignore any pinned square whose owner does not lie
on its right edge.) If we preprocess P into a priority search tree in
O(n logn) time, we can test in O(logn) time whether any client lies
directly above a horizontal line. The overall running time is now
O(n2 logn).

For any other Lp metric, we can compute the extreme points en-
closed by all O(n2) pinned circles in O(n2) time using the follow-
ing duality transformation. If C is a circle centered at (x,0) with

radius r, let C∗ be the point (x,r). For each client pi, let p∗i =
{C∗|C is centered on the x-axis and pi ∈C}, and let Y ∗= {p∗i | pi ∈
Y}. We easily verify that each set p∗i is an infinite x-monotone
curve. (Specifically, in the Euclidean metric, the dual curves are
hyperbolas with asymptotes of slope ±1.) Moreover, any two dual
curves p∗i and p∗j intersect exactly once; i.e., Y ∗ is a set of pseudo-

lines. Thus, we can compute the arrangement of Y ∗ in O(n2) time.
For each pinned circle C, the dual point C∗ is either one of the
clients pi or a vertex of the arrangement of dual curves Y ∗. A cir-
cle C encloses a client pi if and only if the dual point C∗ lies on
or above the dual curve p∗i . After we compute the dual arrange-
ment, it is straightforward to compute the leftmost and rightmost
dual curves below every vertex in O(n2) time by depth-first search.

Finally, to test efficiently whether any points lie directly above
an axis-centered (Lp) circle, we can use the following two-level
data structure. The first level is a binary search tree over the x-
coordinates of Y . Each internal node v in this tree corresponds to a
canonical vertical slab Sv containing a subset pv of the clients. For
each node v, we partition the x-axis into intervals by intersecting
it with the furthest-point Voronoi diagram of pv, in O(|pv| log|pv|)
time. To test whether any points lie above a circle, we first find a
set of O(logn) disjoint canonical slabs that exactly cover the circle,
and then for each slab Sv in this set, we find the furthest neighbor
in pv of the center of the circle by binary search. The region above
the circle is empty if and only if all O(logn) furthest neighbors
are inside the circle. Finally, we can reduce the overall cost of the
query from O(log2 n) to O(logn) using fractional cascading. The
total preprocessing time is O(n log2 n).

THEOREM 4. Given n clients in the plane, we can compute in
O(n2 logn) time a covering by circles (in any fixed Lp metric) cen-
tered on the x-axis, such that the sum of the radii is minimized.

Superlinear Cost. A similar dynamic programming algorithm
computes the optimal covering under any superlinear (in fact, any
non-decreasing) cost function f . As in the previous section, our al-
gorithm works for any Lp metric. For the moment, we will assume
that p is finite.

Although two circles in the optimal cover need not be disjoint,
they cannot overlap too much. Clearly, no two circles in the opti-
mal cover are nested, since the smaller circle would be redundant.
Moreover, the highest point (or apex) of any circle in the optimal
cover must lie outside all the other circles. If one circle A contains
the apex of a smaller circle B, then the lune B\A is completely con-
tained in an even smaller circle C whose apex is the highest point
in the lune; it follows that A and B cannot both be in the optimal
cover. See Figure 3(a).

A
B

C

C
PC

A C

B(A,C)

(a) (b) (c)

Figure 3. (a) The apex of each circle in the optimal cover lies out-
side the other circles. (b) The points YC lie in the shaded region. (c)
If A and C are adjacent circles in the optimal covering, the shaded
region B(A,C) is empty.

To compute the optimal cover of Y , it suffices to consider sub-
problems of the following form. For each pinned circle C, let YC
denote the set of clients outside C and to the left of its center; see
Figure 3(b). Then for each pinned circle C, we have cost(YC) =

minA(f (radius(A))+ cost(YA)), where the minimum is taken over
all pinned circles A satisfying the following conditions: (1) The
center of A is left of the center of C; (2) the apex of A is outside
C; (3) the apex of C is outside A; and (4) A encloses every point in
YC \YA. The last condition is equivalent to there being no clients
inside the region B(A,C) bounded by the x-axis, the circles A and
C, and vertical lines through the apices of A and C; see Figure 3(c).

Our dynamic programming algorithm (Figure 2 (right)) consid-
ers the pinned circles C1,C2, . . . ,Cp in left to right order by their
centers; that is, the center of Ci is left of the center of C j whenever
i < j. To simplify notation, let Yi = YCi . For convenience, we add
two circles C0 and Cp+1 of radius zero, centered far to the left and
right of Y , respectively, so that Y0 = ∅ and Yp+1 = Y .

Implementing everything using brute force, we obtain a run-
ning time of O(n5). However, we can improve the running time
to O(n4 logn) using the two-level data structure described in the
previous section, together with a priority search tree. The region
B(Ci,C j) can be partitioned into two or three three-sided regions,
each bounded by two vertical lines and either a circular arc or the x-
axis. We can test each three-sided region for emptiness in O(logn)
time.

THEOREM 5. Let f : R+ → R be a fixed non-decreasing cost
function. Given n clients in the plane, we can compute in O(n4 logn)
time a covering by circles (in any fixed Lp metric) centered on the
x-axis, such that the sum of the costs of the circles is minimized.

The algorithm is essentially unchanged in the L∞ metric, except
now we define the apex of a square to be its upper right corner.
It is easy to show that there is an optimal square cover in which
no square contains the apex of any other square. Equivalently, we
can assume without loss of generality that if two squares in the
optimal cover overlap, the larger square is on the left. To compute
the optimal cover, it suffices to consider subsets YC of points either
directly above or to the right of each pinned square C. For any
two squares A and C, the region B(A,C) is now either a three-sided
rectangle or the union of two three-sided rectangles, so we can use
a simple priority search tree instead of our two-level data structure
to test whether B(A,C) is empty in O(logn) time.

However, one further observation does improve the running time
by a linear factor: Without loss of generality, the rightmost box in
the optimal cover of YC has the rightmost point of YC on its right
edge. Thus, there are at most n candidate boxes Ci to test in the
inner loop; we can easily enumerate these candidates in O(n) time.

THEOREM 6. Let f : R+ → R be a fixed non-decreasing cost
function. Given n clients in the plane, we can compute in O(n3 logn)
time a covering by axis-aligned squares centered on the x-axis,
such that the sum of the costs of the squares is minimized.

3.1.2 Fast and simple solutions
In this section we describe simple and inexpensive algorithms

that achieve constant factor approximations for finding a minimum-
cost cover with disks centered along a fixed horizontal line L, using
any Lp metric. The main idea for the proofs of this section is to as-
sociate with a given disk D in OPT, a set of disks in the approximate
solution and argue that the set of associated disks cannot be more
than a given constant factor cover of D, in terms of cumulative edge
length, cumulative area, and so forth.

As in the previous section, the case of L∞ metric is the eas-
iest to handle. By equivalence of all the Lp metrics, constant-
factor c-approximations for squares will extend to constant-factor
c′-approximations for Lp disks.

MINSUMOFRADIUSCIRCLECOVER(Y) :
for every pinned circle C

find the leftmost and rightmost points enclosed by C
Cost[0]← 0
for i← 1 to n

Cost[i]← ∞
for each pinned circle C owned by pi

if no points in P lie directly above C
p j ← leftmost point enclosed by C
Cost[i]←min{Cost[i], Cost[j−1]+ radius(C))}

return Cost[n]

MINSUPERLINEARCOSTCIRCLECOVER(Y, f) :
sort the pinned circles from left to right by their centers
Cost[0]← 0
for j← 1 to p+1

Cost[j]← ∞
for i← 1 to j−1

if Ci and C j exclude each other’s apices
and B(Ci,C j) is empty

Cost[j]←min{Cost[j], Cost[i]+ f (radius(Ci)))}
return Cost[p+1]

Figure 2. The dynamic programming algorithm: Left: linear cost; Right: superlinear cost function.

Square Greedy Cover Algorithm (SG): Process the client points
in order of decreasing distance from the line L. Find the farthest
point p1 from L; cover p1 with a square S1 exactly of the same
height as p1 centered at the projection of p1 on L. Remove all
points covered by S1 from further consideration and recurse, find-
ing the next farthest point from L and so forth. In the case where
two points are precisely the same distance from L, break ties arbi-
trarily.

Obviously, SG computes a valid covering of Y by construction.We
begin the analysis with a simple observation.

LEMMA 7. In the SG covering, any point in the plane (not nec-
essarily a client) cannot be covered by more than two boxes.

Proof. Suppose Si and S j are two squares placed during the run-
ning of SG and that i < j so that Si was placed before S j . Then
Si cannot contain the center point of S j since then S j would not
have had the opportunity to be placed, and similarly S j cannot con-
tain the center point of Si. Now consider a point p ∈ Si ∩ S j . If p
were covered by a third square Sk then either one of {Si,S j} would
contain the center of Sk, or Sk would contain the center of one of
{Si,S j}, neither of which is possible. 2

THEOREM 8. Given a set Y of n clients in the plane and any
α > 1, SG computes in time O(n logn) a covering of Y by axis-
aligned squares centered on the x-axis whose cost is at most three
times the optimal.

Proof. Let Y = {p1, . . . , pn} and consider a square S in OPT.
We consider those squares {Si j} selected by SG corresponding to
points {pi j : pi j ∈ S}, see Figure 4, and argue that these squares

!

!
"#

!
"
$

!
"%

!
"&

!
"'

(

)*!+$)*!+$

Figure 4. Squares of the SG algorithm inside a square of the opti-
mal solution.

cannot have more than three times the total edge length of S. The
same will then follow for all of SG and all of OPT. The argument,
without modification, covers the case of cost measured in terms
of the sum of edge length raised to an arbitrary positive exponent
α≥ 1.

Arguing as in Lemma 7 it is easy to see that at most two boxes
Si j associated with points pi j ∈ S processed by SG actually protrude

outside of S, one on the left and one on the right. Denote by r the
total horizontal length of these protruding parts of squares, then
r 6 s, the side length of S, since the side length of each protruding
square is at most s and at most half of each square is protruding.

Because of Lemma 7 the total horizontal length of all nonpro-
truding parts of the squares Si j is at most 2s, consequently all points
covered by S in OPT are covered by a set of squares Si j in SG whose
total (horizontal) edge length ∑ j si j is at most 3s.

For exponents α > 1 observe that ∑ j si j ≤ 3s and 0≤ si j ≤ s for
all j implies that ∑ j si j

α ≤ 3sα.
To analyze the running time of the algorithm we need some more

details about the data structures used: Initially, sort the points by
x-coordinate and separately by distance from the line L in time
O(n logn) and process the points in order of decreasing distance
from L. As the point pi at distance di from L is processed, we
throw away points which are within horizontal distance di from
pi. This takes time O(logn + ki) time where ki is the number of
points within di from pi. Since we do this up to n times with
k1 + · · ·+ kl = n the total running time is O(n logn). 2

For the linear cost function, it is easy to modify the SG algorithm
to get a 2-approximation algorithm.

Square Greedy with Growth Algorithm (SGG): Process the points
as in SG. However, if capturing a point pi by a square Si would re-
sult in an overlap with already existing square S j then, rather than
placing Si, grow S j just enough to capture pi, keeping the vertical
edge furthest from pi at the same point on L. If placing Si would
overlap two squares, grow the one which requires the smallest edge
extension. Break ties arbitrarily.

A proof somewhat similar to that of Lemma 2 shows that:

THEOREM 9. Given n clients in the plane, SGG computes in
time O(n logn) a covering by axis-aligned squares centered on the
x-axis whose cumulative edge length is at most twice the optimal.

Proof. As we process points pi using SGG, attribute to each point
pi a line segment si along L as follows. If processing pi resulted
in the placement of a square Si centered at the projection of pi in
L then attribute to pi the projection on L of a horizontal edge of
Si (Case 1). If, on the other hand, processing of pi resulted in the
growing of a prior square S j to just capture pi, attribute to pi the
projection on L of the portion of the horizontal edge of the ex-
panded S j needed to capture pi (Case 2). (This amount is at most
the distance of pi to L since otherwise pi would have been fallen
into case 1.) We must show that the lengths of the segments is no
more than twice the edge lengths of squares in OPT.

It suffices to show that for any square S in OPT, the segments si
associated with points pi ∈ S processed by SGG cannot have total
edge length which exceeds twice the edge length s of S.

To see this observe that the sum of the lengths of those si lying
completely inside S does not exceed s since they are nonoverlap-
ping. In addition, each of the parts of the at most two segments

protruding from S can have length at most s/2, in case 1 for the
same reason as in the SG algorithm, in case 2 since the total length
of the segment is at most s/2.

In order to make SGG efficient, we proceed as in SG. In addi-
tion, we maintain a balanced binary search tree containing the x-
coordinates of the vertical sides of the squares already constructed.
For each new point pi to be processed we locate its x-coordinate
within this structure to obtain its neighboring squares and to decide
whether case 1 or case 2 applies. This can be done in time O(logn)
just as adding a new square in case 1 or updating an existing square
in case 2. Removing points covered by the new or updated square
is done as in SG, so that the total runtime remains O(n logn). 2

Unlike SG, SGG is not a constant factor approximation for area.
Consider n consecutive points at height 1 separated one from the
next by distance of 1 + ε. Processing the points left to right using
SGG covers all points with one square of edge length n+(n−1)ε,
and so area O(n2), while covering all points with n overlapping
squares each of edge length 2, uses total area 4n.

Finally, extending these results from squares to disks in any Lp
metric is not difficult. Enclosing each square in the algorithm by
an Lp disk leads to an approximation factor 3c2 for GG and 2c2

for SGG, where c = pα/p. In particular, for L2 disks, this yields a
2
√

2-approximation for α = 1 and a 4-approximation for α = 2.

3.2 Finding the best axis-parallel line
When the horizontal line ` is not given but its orientation is fixed,

we first prove that finding the best line, even for α = 1, is uncom-
putable, then in this linear case give a simple approximation, and
finally a PTAS.

3.2.1 A hardness result – uncomputability by radicals
Our approach is similar to the approach used by Bajaj on the un-

solvability of the Fermat-Weber problem and other geometric opti-
mization problems [5, 6].

THEOREM 10. Let c(t) = ∑i ri denote the minimum cost of a
cover whose centers lie on the line of equation y = t. There exists a
set Y of clients such that, if t0 is the value that minimizes c(t), then
t0 is uncomputable by radicals.

The proof proceeds by exhibiting such a point set and showing
by differentiating c(t) that t0 is the root of a polynomial which is
proven not to be solvable by radicals.

The following definitions and facts can be found in a standard
abstract algebra reference; see, for example, Rotman [22]. A poly-
nomial with rational coefficients is solvable by radicals if its roots
can be expressed using rational numbers, the field operations, and
taking kth roots. The splitting field of a polynomial f (x) over the
field of rationals Q is the smallest subfield of the complex numbers
containing all of the roots of f (x). The Galois group of a poly-
nomial f (x) with respect to the coefficient field Q is the group of
automorphisms of the splitting field that leave Q fixed. If the Ga-
lois group of f (x) over Q is a symmetric group on five or more
elements, then f (x) is not solvable by radicals over Q.

Consider the following set of points:{(3,4),(−3,−2),(102,2),
(98,−2),(200,−2)}. By exhaustive case analysis, we can show
that the optimal solution must consist of one circle through the first
two points, a second circle through the next two points, and a third
circle touching the last point, and the optimal horizontal line must
lie in the range−2≤ y≤ 2. For a given value of y in this range, the
cost of the best cover is

c(y) =
√

2(y−1)2 +18+

√

2y2 +8+(2− y).

Therefore, in order to find the best horizontal line, we must mini-
mize c(y). Setting the derivative to zero, we obtain the equation

c′(y) =
2(y−1)

√

2(y−1)2 +18
+

2y
√

2y2 +8
−1 = 0.

We easily verify that c′′(y) is always positive. The minimum value
c(y) ≈ 8.3327196 is attained at y ≈ 1.4024709, which is a root of
the following polynomial:

f (y) = 1024+512y−1600y2 +1536y3−960y4

+368y5−172y6 +28y7−7y8.

Using the computational system GAP [15], we compute that the
Galois group of f (y) is the symmetric group S8, so the polynomial
is not solvable by radicals.

3.2.2 Fast and simple constant-factor approximations
The simple constant factor approximations for a fixed line can

be extended to the case of approximations to the optimal solution
on an arbitrary axis-parallel line with the same constant factors,
though with a multiplicative factor of O(n2) increase in running
time.

3.2.3 An FPTAS for finding the best horizontal line
We begin with the case α = 1. Let d denote the distance between

the highest and lowest point. Clearly, d/2 6 OPT 6 nd/2. Partition
the horizontal strip of height d that covers the points into 2n/ε hor-
izontal strips, each of height δ = dε/2n, using 2n/ε− 1 regularly-
spaced horizontal lines, `i. For each line `i, we run the exact dy-
namic programming algorithm, and keep the best among these so-
lutions. Consider the line, `∗, that contains OPT. We can shift line
`∗ to the nearest `i, while increasing the radius of each disk of OPT
by at most δ, to obtain a covering of the points by disks centered
on some `i; the total increase in cost is at most δn = dε/2 6 ε
OPT. Thus, our algorithm computes a (1 + ε)-approximation in
time O((n3/ε) logn).

In order to generalize this result to the case α > 1, let us write
PSEUDO-OPT for the lowest cost of a solution on any of the hor-
izontal lines `i, SHIFT for the result of shifting OPT to the closest
of these lines, and r1, ...,rm for the radii of the optimal set of disks.
For an arbitrary power α≥ 1, we have

PSEUDO-OPT ≤ SHIFT≤
m

∑
i=1

(ri +δ)α

≤
m

∑
i=1

rα
i +δα

m

∑
i=1

(ri +δ)α−1

≤ OPT(1+δα22α−1n/d).

The last line uses δ ≤ d,ri ≤ d and OPT ≥ (d/2)α. Choosing δ =
εd/(α22α−1n) gives the desired (1+ ε)-approximation.

Together with the results from previous sections we have:

THEOREM 11. Given n clients in the plane and a fixed α > 1,
there exists an FPTAS for finding an optimally positioned horizon-
tal line and a minimum-cost covering by disks centered on that line.
It runs in time O((n3/ε) logn) for the linear cost case (α = 1) and
O((n5/ε) logn) for α > 1.

3.3 Approximating the best line –
any orientation

Finally, we sketch approximation results for selecting the best
line whose orientation is not given. We give both a constant factor
approximation and a PTAS for the linear cost case (α = 1).

3.3.1 Fast and simple constant-factor approximations
Given a line `, we say that a set D of disks D1,. . . ,Dk is `-

centered if the centers of every disk C j in D belongs to `. Recall
that the cost of D is the sum of all its radii.

LEMMA 12. Given k > 1, a line `, an `-centered set D of k
disks that cover Y , and any point p0 on `, there exist p′ ∈Y and an
`′-centered set D ′ of k disks that cover Y , where `′ is the line that
joins p0 and p′, such that the cost of D ′ is at most 2α times the cost
of D .

Proof. We will assume without loss of generality that ` is the x-
axis, p0 is the origin and that no other point in Y lies on the y-axis.
The latter restriction can easily be enforced by a small perturbation.
Let the coordinates of pi be xi and yi, and let mi denote the slope
yi/xi of the line `i for 1 6 i 6 n. First, we reorder Y so that |m1|6
. . . 6 |mn|. In what follows we assume that x1 > 0 and y1 > 0. The
other cases can be treated analogously.

For each disk D j = D(t j,r j) in D , we construct a disk D′j whose
radius is r′j = 2r j and center t ′j is obtained from t j by rotating it

around the origin counterclockwise by an angle tan−1(m1). The
set D ′ of k disks thus defined is `′-centered, where `′ = {(x,y) ∈
R2 | y = m1x} and p1 ∈ `′. To see that D ′ covers Y , simply observe
that d(t j, t ′j) 6 r j for all 1 6 j 6 k and apply the triangle inequality:
any point in D j must be at distance at most 2r j of t ′j . The cost of
this new solution is clearly at most 2α times that of D in the linear
cost case. 2

By a double appplication of this lemma, first about an arbitrary
p0 yielding a point p′ = pi, then about pi yielding another p′ = p j ,
it is immediate that any `-centered cover of Y can be transformed
into an `i, j-centered cover whose cost is increased at most four-
fold, where `i,i is the line joining pi and p j . By computing (exactly
or approximately) the optimal set of disks for all O(n2) lines de-
fined by two different points of Y , we conclude:

THEOREM 13. Given n clients in the plane and a fixed α > 1,
in O(n4 logn) time, we can find a collinear set of disks that cover P
at cost at most 4αOPT , and for α = 1, in O(n3 logn) time, we can
find a collinear set of disks that cover P at cost at most 8

√
2OPT .

3.3.2 A PTAS for finding the best line with
unconstrained orientation

We now prove that finding the best line with unconstrained ori-
entation and a minimum-cost covering with disks whose centers are
on that line admits a PTAS.

THEOREM 14. Let Y be a set of n clients in the plane that can
be covered by an optimal collinear set of disks at linear cost OPT
(i.e., α = 1), and ε > 0. In O((n4/ε2) logn) time, we can find a
collinear set of disks that cover Y at cost at most (1+ ε)OPT .

Proof. Let H be a strip of minimal width h that contains Y . Using
a rotating calipers approach, H can be computed in O(n logn) time.
If h = 0, we can conclude that OPT = 0 and we are done.

Otherwise, we can assume wlog that H is horizontal and that its
center line is the x-axis. Let R denote the smallest enclosing axis-
parallel rectangle R of Y , w its width, and h its height, Then h≤ w
and, moreover, h/2 6 OPT . Let `∗ be the optimal line.

We now distinguish two cases:
Case 1. w > 2h: Observe that both vertical sides v1,v2 of R

contain a point of Y . Therefore, `∗ must have distance at most
OPT to v1 and v2. A straightforward calculation shows that then `∗

must intersect the lines `1 and `2 extending v1 and v2 at a distance
of at most 4OPT from the x-axis.

The idea is now to put points on those parts of `1 and `2 which
are equally spaced at distance δ = εOPT/n. Then we consider all
lines passing through one of these points on `1 and one on `2. For
each such line we find the optimal covering of P by circles centered
on it using the algorithm of Theorem 4, and give out the best one
as an approximation for the optimum.

Observe, that there is one of the lines checked, ˆ̀, whose inter-
section points with `1 and `2 are at distance at most δ/2 from the
ones of `∗. Elementary geometric considerations show that to any
point p in `∗ closest to some point of P there is a point in ˆ̀ within
distance at most δ. Consequently, to any circle of radius r of the
optimal covering centered on `∗, there is a circle on l̂ of radius r+δ
covering the same set of points (or more). Thus, l̂ has a covering
that differs by at most nδ from the optimal one. By the choice of δ
we have a 1+ ε-approximation to the optimum.

Observe, that we chose O(OPT/δ) = O(n/ε) points on `1 and
`2, so we are checking O((n/ε)2) lines. For each of them, we apply
the algorithm of Theorem 4 which has runtime O(n2 logn) yielding
a total runtime of O(n4/ε2 logn).

Case 2. w < 2h: In this case the optimal line `∗ can have a
steeper slope and even be vertical. Of course, it must intersect R
and we expand R to a cocentric rectangle R′ such that the foot-
point of any point in Y on `∗ must lie inside R′. An easy geomet-
ric consideration shows that extending the width of R by h and its
height by w will suffice, so R′ is a square of side length w + h.
Then we put equally spaced points of distance δ = εOPT/n on the
whole boundary of R′, apply the algorithm of Theorem 4 to all lines
passing through any two of these points, and return the one giving
the smallest covering as an approximation to the optimum. The
same consideration as in the first case shows that this is indeed a
(1 + ε)-approximation. Since the length of the boundary of R′ is
4(w + h) 6 12h 6 24OPT , we obtain the desired runtime in this
case, as well.

For both cases it remains to show how to obtain a suitable value
of δ, since we do not know the value of OPT . Since any value
below OPT suffices, we simply run a constant factor c approxima-
tion algorithm of Theorem 4 and take 1/c times the value it returns
instead of OPT in the definition of δ. 2

4. MINIMUM-COST COVERING TOURS
We now consider the minimum cost covering tour (MCCT) prob-

lem: Given k > 1 and a set Y = {p1, . . . , pn} of n clients, determine
a cover of Y by (at most) k disks centered at X = {t1, . . . , tk} with
radii r j and a tour T visiting X , such that the cost length(T)+C ∑rα

i
is minimized. We refer to the tour T , together with the disks cen-
tered on X , as a covering tour of Y . Our results are for the case of
linear transmission costs (α = 1). We first show a weak hardness
result, then characterize the solution for C 6 4, and finally give a
PTAS for a fixed C > 4.

4.1 A hardness result
We prove the NP-hardness of MCCT where C is also part of

the input. Note that this does not prove the NP-hardness of MCCT
where C is a fixed constant, which is the problem for which we give
a PTAS below. Note also that C appears in the run time exponent
of that PTAS, and so the PTAS no longer runs in polynomial time
if C is not a fixed constant.

THEOREM 15. MCCT with linear cost is NP-hard if the ratio C
is part of the input.

Proof (sketch). We show a reduction from HAMILTON CYCLE

IN GRID GRAPHS. Given a set of n points on a grid, we construct

an instance of MCCT in which each of the given points is a client.
We set C to be larger than 2n. We claim that the grid graph has a
Hamilton cycle if and only if there is a tour T visiting a set of disk
centers with radii ri whose cost is at most n.

Clearly a Hamilton cycle in the grid graph yields a tour of cost
n with each client contained in a disk of radius 0 centered at that
point.

Conversely, suppose we have a tour whose cost (length plus sum
of radii) is at most n. Note that no two clients can be contained
in a single disk, as such a disk must have radius at least 0.5, and
thus its contribution to the cost C · ri > 2n ·0.5 = n contrary to our
assumption. Next we want to show that each disk in an optimal
solution is centered at the client it covers. Suppose this is not the
case, there is some client j which is covered by a disk centered
at c j 6= j. Let the distance between client j and the center of the
disk covering it be d. Now consider an alternate feasible solution
in which the tour visits c j then j then back to c j , covering j with a
disk of radius 0. No other client is affected by this change, as the
disk only covers point j. The cost of the new solution is the cost of
the original (optimal) solution +2d−Cd as we add 2d to the length
of the tour, but decrease C ∑ri by Cd. Since C > 2 the new solution
is better than the original optimal solution, a contradition. 2

4.2 The case C 6 4: The exact solution is
a single circle

THEOREM 16. In the plane, with a cost function of length(T)+
C ∑ri and C 6 4, the minimum-cost solution is to broadcast to all
clients from the circumcenter of the client locations and no tour
cost.

The proof rests on the following elementary geometry lemma
(whose proof is omitted here).

LEMMA 17. For three points p, q and r in the plane, such that
the triangle pqr contains its own circumcenter, the length of a trip
from p to q to r and back to p is at least 4r where r is the circum-
radius of the points.

Proof of Theorem 16. Let r(X) and r(Y) denote the minimum
radius of a circle enclosing X or Y , respectively. Let T be a covering
tour of Y , X ⊆ T be the set of disk centers and r j their radii. Finally,
let rmax = max j r j.

By the triangle inequality, Lemma 17 implies that the length(T) >

4r(X). Since the tour visits all the centers in X and the disks cen-
tered at X cover Y , we have r(Y) 6 r(X)+ rmax. By definition, the
cost of T is length(T)+C ∑ j r j , which by the observation above is
at least 4r(X)+C ∑ j r j > 4r(X)+Crmax. The assumption C 6 4
then implies that it be at least C(r(X) + rmax) > Cr(Y), which is
the cost of covering by a single disk with a zero-length tour. 2

4.3 The case C > 4: A PTAS
We distinguish between two cases for the choice of transmission

points: they may either be arbitrary points in the plane (selected by
the algorithm) or they may be constrained to lie within a discrete
set T of candidate locations.

The constant C specifies the relative weight associated with the
two parts of the cost function – the length of the tour, and the sum
of the disk radii. If C is very small (C 6 4), then the solution is to
cover the set Y using a single disk (the minimum enclosing disk),
and a corresponding tour of length 0 (the singleton point that is
the center of the disk). If C is very large, then the priority is to
minimize the sum of the radii of the k disks. Thus, the solution
is to compute a covering of Y by k disks that minimizes the sum

of radii (as in [19]), and then link the resulting disk centers with
a traveling salesman tour (TSP). (In the case that k > n, the disks
in the covering will be of radius 0, and the problem becomes that
of computing a TSP tour on Y .) Note that our algorithm gives an
alternative to the Lev-Tov and Peleg PTAS [19] for coverage alone.

Our algorithm is based on applying the m-guillotine method [20],
appropriately adapted to take into account the cost function and
coverage constraint.1 We need several definitions; we largely fol-
low the notation of [20]. Let G = (V,E) be an embedding of a
connected planar graph, of total Euclidean edge-length L. Let D be
a set of disks centered at each vertex v of G of radius rv. We refer
to the pair (G,D) as a covering network if the union ∪v∈V Dv of the
disks covers the clients Y . We can assume without loss of general-
ity that G is restricted to the unit square B, i.e., ∪e∈E e⊂ int(B).

Our algorithm relies on there being a polynomial-size set of can-
didate locations for the transmission points that will serve as the
vertices of the covering tour we compute. In the case that a set T
of candidate points is given, this is no issue; however, in the case
that the transmission points are arbitrary, we appeal to the follow-
ing grid-rounding lemma (proved in the full paper).

LEMMA 18. One can perturb any covering network (G,D) to
have its vertices all at grid points on a regular grid of spacing
δ = O(ε · diam(S)/n), while increasing the total cost by at most a
factor of (1+ ε).

An axis-aligned rectangle, W ⊆ B, is called a window; rectan-
gle W will correspond to a subproblem in a dynamic programming
algorithm. An axis-parallel line ` that intersects W is called a cut.

For a covering network with edge set E and a set of disks D , we
say that (E,D) satisfies the m-guillotine property with respect to
window W if either (1) all clients Y ⊂W lie within disks of D that
intersect the boundary of W ; or (2) there exists a cut ` with certain
properties (an m-good cut with respect to W) that splits W into W1
and W2, and (E,D) recursively satisfies the m-guillotine property
with respect to both W1 and W2. Due to the lack of space, we cannot
give the full definition of an m-good cut (see the full paper).

The crux of the method is a structural theorem, which shows how
to convert any covering network (G,D) into another covering net-
work (G′,D ′), such that the new graph G′ satisfies the m-guillotine
property, and that the total cost of the new instance (G′,D ′) is
at most O((L +CR)/m) times greater than the original instance
(G,D), where L is the total edge length of G and R the sum of
the radii of D . The construction is recursive: at each stage, we
show that there exists a cut with respect to the current window W
(which initially is the unit square B), such that we can “afford” (by
means of a charging scheme) to add short horizontal/vertical edges
in order to satisfy the m-guillotine property, without increasing the
total edge length too much.

We then apply a dynamic programming algorithm, running in
O(nO(m)) time, to compute a minimum-cost covering network hav-
ing a prescribed set of properties: (1) it satisfies the m-guillotine
property (with respect to B), which is necessary for the dynamic
program to have the claimed efficiency; (2) its disks cover the clients
Y ; and (3) its edge set contains an Eulerian subgraph. This third
condition allows us to extract a tour in the end. In the proof of the
following theorem (see the full paper), we give the details of the
dynamic programming algorithm that yields:

THEOREM 19. The min-cost covering tour problem has a PTAS
that runs in time O(nO(1/ε)).

1The “m” in this section refers to a parameter, which is O(1/ε), not
the number of servers.

Acknowledgments
We thank all of the participants of the McGill-INRIA International
Workshop on Limited Visibility, at the Bellairs Research Institute
of McGill University, where this research was originated. We ac-
knowledge valuable conversations with Nancy Amato, Beppe Li-
otta, and other workshop participants and heartily thank the orga-
nizers Sue Whitesides and Hazel Everett for facilitating and en-
abling a wonderful working environment.

5. REFERENCES
[1] P. K. Agarwal and M. Sharir. Efficient algorithms for

geometric optimization. ACM Computing Surveys,
30(4):412–458, 1998.

[2] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell.
Approximation algorithms for lawn mowing and milling.
Comput. Geom.: Theory Appl., 17(1–2):25–50, 2000.

[3] E. M. Arkin and R. Hassin. Approximation algorithms for
the geometric covering salesman problem. Discrete Applied
Math., 55(3):197–218, 1994.

[4] S. Arora, P. Raghavan, and S. Rao. Approximation schemes
for Euclidean k-medians and related problems. In Proc. 30th
Annu. ACM Symp. Theory Computing, pages 106–113, 1998.

[5] C. Bajaj. Proving geometric algorithm non-solvability: An
application of factoring polynomials. J. Symbol. Comput.,
2(1):99–102, 1986.

[6] C. Bajaj. The algebraic degree of geometric optimization
problems. Discrete & Comput. Geom., 3:177–191, 1988.

[7] V. Bilò, I. Caragiannis, C. Kaklamanis, and
P. Kanellopoulos. Geometric clustering to minimize the sum
of cluster sizes. In Proc. 13th European Symp. Algorithms,
Vol 3669 of LNCS, pages 460–471, 2005.

[8] H. Brönnimann and M. T. Goodrich. Almost optimal set
covers in finite VC-dimension. Discrete & Comput. Geom.,
14(4):463–479, 1995.

[9] M. Charikar and R. Panigrahy. Clustering to minimize the
sum of cluster diameters. J. Computer Systems Sci.,
68(2):417–441, 2004.

[10] A. E. F. Clementi, P. Penna, and R. Silvestri. On the power

assignment problem in radio networks. Technical Report
TR00-054, Electronic Colloquium on Computational
Complexity, 2000.

[11] A. Dumitrescu and J. S. B. Mitchell. Approximation
algorithms for TSP with neighborhoods in the plane. J.
Algorithms, 48(1):135–159, 2003.

[12] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time
approximation scheme for geometric graphs. SIAM J.
Computing, 34(6):1302–1323, 2005.

[13] S. P. Fekete, R. Klein, and A. Nüchter. Searching with an
autonomous robot. In Proc. 20th ACM Annu. Symp. Comput.
Geom., pages 449–450, 2004. Video available at
http://compgeom.poly.edu/acmvideos/socg04video/.

[14] S. P. Fekete, R. Klein, and A. Nüchter. Online searching with
an autonomous robot. In Algorithmic Foundations of
Robotics VI, Vol 17 of Tracts in Advanced Robotics, pages
139–154. Springer, Berlin, 2005.

[15] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.4, 2005.
http://www.gap-system.org.

[16] T. F. Gonzalez. Covering a set of points in multidimensional
space. Inf. Proc. Letters, 40(4):181–188, 1991.

[17] J. Hershberger. Minimizing the sum of diameters efficiently.
Comput. Geom.: Theory Appl., 2(2):111–118, 1992.

[18] D. S. Hochbaum and W. Maass. Approximation schemes for
covering and packing problems in image processing and
VLSI. J. ACM, 32(1):130–136, 1985.

[19] N. Lev-Tov and D. Peleg. Polynomial time approximation
schemes for base station coverage with minimum total radii.
Computer Networks, 47(4):489–501, 2005.

[20] J. S. B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Computing, 28(4):1298–1309,
1999.

[21] K. Pahlavan and A. H. Levesque. Wireless information
networks, Vol 001. Wiley, New York, NY, 2nd ed., 2005.

[22] J. J. Rotman. Advanced Modern Algebra. Prentice Hall,
2002.

