Minimum Cost Design of Water Distribution Systems

Don J. Wood
University of Kentucky
C. O. Charles
University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports
Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Wood, Don J. and Charles, C. O., "Minimum Cost Design of Water Distribution Systems" (1973). KWRRI Research Reports. 133.
https://uknowledge.uky.edu/kwrri_reports/133

This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

MINIMUM COST DESIGN OF WATER DISTRIBUTION SYSTEMS

Dr. Don J. Wood Principal Investigator
Graduate Student Assistant: C. O. Charles, Ph. D.
Project Number B-017-KY (Completion Report)
Agreement Number 14-01-0001-3285
Period of Project - July 1970 - June 1973
University of Kentucky Water Resources Institute
Lexington, Kentucky

The work on which this report is based was supported in part by funds provided by the Office of Water Resources Research, United States Department of Interior, as authorized under the Water Resources Research Act of 1964.

TABLE OF CONTENTS
ABSTRACT
ACKNOWLEDGEMENTS
INTRODUCTION
RESEARCH PROCEDURES
RESULTS
Analog Simulation of Pipe System Hydraulics
Digital Programs for the Analysis of Pipe System Hydraulicslinear methodpath methodprogram description and users options
Program for Optimum Design of Water Distribution Networks problem definition problem formulation method of solution computer program example
CONCLUSIONS
PUBLICATIONS
APPENDIX I

Abstract

The objective of this study was to develop the analytical tools and procedures for minimum cost design of water distribution systems. Both analog and digital means of carrying out pressure and flow calculations were developed. As a result of this effort, digital programs for pressure and flow calculations in water distribution systems were written and have been widely distributed to practicing engineers. One procedure is based on a direct solution of the basic system equations using a linearization scheme and has several advantages over conventional techniques such as the Hardy Cross method. These include avoiding the need to initially balance the network and an assured convergence of the procedure.

Using this tool a procedure was developed for selecting pipe diameter which will result in a minimum cost design within the prescribed constraints. The method of steepest ascent and dynamic programming concepts were used to carry out the optimization. This procedure applies to closed loop"systems without internal pumping. However, this work provides a basis for extending the concepts to more generalized water distribution systems.

KEY WORDS: water distribution, optimization, piping systems, network design, ecormmic efficiency

A CKNOWLEDGEMENTS

The author would like to express his appreciation to Dr. J. A. Deacon who provided valuable advice relative to this project. Dr. C. O. Charles who worked as a research assistant on the project made a major contribution. Also, the support of the Office of Water Resource Research is gratefully acknowledged.

INTRODUCTION

The objective of the study as outlined in the original proposal was, "to investigate the various functional constraints controlling the design of water distribution systems and develop analytical methods and digital computer routines which can be utilized to design a water distribution system at minimum cost". It was determined early in this investigation that the available means for the hydraulic analysis of water distribution systems did not lend themselves well to a minimum cost analysis. Therefore, a considerable effort was made to develop the analytical tools for pressure and flow calculations which could be incorporated into a minimum cost analysis of water distribution systems.

A promising technique which was investigated was the use of analog simulation for system hydraulics which could be incorporated into a digital-analog scheme to carry out the cost minimization. Techniques for carrying out an analog simulation of pipe system hydraulics ona standard analog computer were developed and reported by the principal investigator (1). It was intended to use the analog computer to model the hydraulics and to use analog to digital conversion and a digital computer to compute the cost. It was felt that with such a model an effective directed search could be undertaken to determine the optimum design of the pipe system. However, it turned out that the necessary equipment for the development of this concept was not available to this project. Since some rather expensive equipment is involved this approach had to be abandoned.

A major effort was devoted to the development of an analytical procedure for hydraulic analysis based on linearization of the basic non-linear system equations. The purpose of developing this approach was that it appeared to offer a method
for handling pipe system hydraulics which could be more easily incorporated into a minimum cost study. A scheme which directly solved the basic equation after linearizing the non-linear terms was developed. A publication is available describing this phase of the study (2). This method of hydraulic analysis refereed to as the linear method offered distinct advantages over the conventional Hardy Cross and Newton Raphson methods which are generally used. Therefore, some additional effort was made developing the linear method for generalized situations. As a result of this, a general computer program has been developed and made available to engineers working in this field. Over one hundred and fifty engineering firms have acquired this program.

Finally, using the linear method for hydraulic analysis a computer program has been developed for minimum cost design of closed loop water distribution systems. This work was primarily the effort of C. O. Charles and is documented in his Ph. D. dissertation (3). In this program the method of steepest ascent and concepts of dynamic programming were employed to formulate a procedure which would select the optimum set of pipe diameters for a closed loop system.

RESEARCH PROCEDURES

The entire project is concerned with the development of the basic elements of an analytical model to be employed for minimum cost design. This entails the conception, formulation and testing of certain analytical procedures. In most cases either analog or digital computer programs were the end product of this effort. The usual procedures for formulating, debugging and testing computer programs were employed.

RESULTS

Analog simulation of pipe system hydraulics

This phase of the investigation has been completely documented in Reference 1 and is available through that publication. As previously stated, however, the necessary digital-analog equipment was not available to develop a technique for optimum design using analog simulation.

Digital programs for the analysis of pipe system hydraulics

A considerable effort was made to develop a digital computer program which would easily handle general water distribution systems in a manner which would lend itself to a minimum cost investigation. This effort resulted in the development of two computer programs. General information pertaining to the development of these programs follows:

The programs will compute steady flow in pipe systems of any arrangement. The system can include pumps, valves, bends, and other minor loss components, storage tanks and source and storage reservoirs. A system of p pipes can be described by the number of junctions, j, the number of closed primary loops, l, and the number of terminal energy points, t, in the system. A junction is simply a point in the system where two or more pipes meet. Any point where flow enters or exits the pipe system is also a junction. A primary loop is a closed loop of pipes in the system which have no other loops within it. A terminal energy point is a point in the system where the fluid energy is known. This is essentially any point where the pressure and the elevation are known. Source or storage reservoirs, pressurized sources, storage tanks and discharge points of known pressure are the most common terminal
energy points. To describe a system the junctions, loops and terminal energy points must be identified. If a terminal energy point and a junction coincide, this point should be identified as a terminal energy point only. If the junctions, loops and terminal energy points are identified with the restriction just stated, the following holds for all pipe systems:

$$
\begin{equation*}
p=j+\ell+t-l \tag{1}
\end{equation*}
$$

where
$\mathrm{p}=$ number of pipes
$j=$ number of junctions
$\ell=$ number of loops
$\mathrm{t}=$ number of terminal energy points.
In terms of the unknown discharge in each pipe, a number of continuity and energy equations can be written equaling the number of pipes in the system. For each junction a continuity equation equating the flow into the junction to the flow out is written as:

$$
\begin{equation*}
\left.Q_{\text {in }}=Q_{\text {out }} \quad \quad \text { (j equations }\right) \tag{2}
\end{equation*}
$$

For each loop the energy equation can be written as follows

$$
\begin{equation*}
\left.\Sigma \mathrm{h}_{\mathrm{L}}=\Sigma \mathrm{E}_{\mathrm{P}} \quad \text { (} \ell \text { equations }\right) \tag{3}
\end{equation*}
$$

where
$h_{L}=$ head loss in each pipe (including minor loss)
$\mathrm{E}_{\mathrm{P}}=$ energy put into the liquid by a pump.
If there are no pumps in the loop then the energy equation states that the sum of the head loss around the loop equals zero.

If there are t terminal energy points, $t-l$ energy equations can be written for paths between any two terminal energy points as follows

$$
\begin{equation*}
\left.\Delta E=\Sigma_{h_{L}}-\Sigma E_{p} \quad \text { (t }-1 \text { equations }\right) \tag{4}
\end{equation*}
$$

where $\Delta \mathrm{E}$ is the energy difference between the two terminal energy points. Any path in the pipe system can be chosen between the points. However, care must be taken to avoid redundant paths. The best method to avoid this difficulty is to either choose all paths starting at one source (like l-2, 1-3, l-4, etc.) or to use the previous end point for a path as the starting point for the next path (like l-2, 2-3, 3-4, etc.). Either of these methods will result in $t-1$ equations with no redundant ones.

These junction loop and path equations constitute a set of simultaneous equations equal to the number of pipes in the system which can be solved for the discharge in each pipe. A direct solution of these simultaneous equations is not possible because of the non-linear terms. Two basic methods of solution were considered.

Linear method - For this approach the non-linear terms are linearized giving a set of linear simultaneous equations which can be solved using matrix methods. The linearization is formulated as follows. The line loss is given by:

$$
\begin{equation*}
h_{L P}=K_{P} Q^{n} \tag{5}
\end{equation*}
$$

where K_{P} is a pipe line constant and for the Hazen Williams equation employed in the computer analysis is

$$
\begin{equation*}
\mathrm{K}_{\mathrm{P}}=\frac{4.73 \mathrm{~L}}{\mathrm{C}^{1.852} \mathrm{D}^{4.87}} \tag{6}
\end{equation*}
$$

Here $L=$ line length in ft, $D=$ line diameter in ft and C is the Hazen Williams roughness coefficient. The discharge Q in eqn. 5 is in cfs and the exponent $\mathrm{n}=1.852$.

Minor losses are given by a loss coefficient, M, which multiplies the velocity head to give the loss at the component.

This is

$$
\begin{equation*}
h_{L M}=M \frac{V^{2}}{2 g} \tag{7}
\end{equation*}
$$

where V is the mean line velocity and g is the gravitational constant. In terms of the discharge this is

$$
\begin{equation*}
h_{L M}=K_{M} Q^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}_{\mathrm{M}}=\frac{.02517 \mathrm{M}}{\mathrm{D}^{4}} \tag{9}
\end{equation*}
$$

The pump head is expressed in two ways.

$$
\begin{equation*}
E_{P}=\frac{Z_{P}}{Q} \tag{10}
\end{equation*}
$$

For this expression the horsepower put into the system by the pump is given as HP and

$$
\begin{equation*}
Z_{P}=\frac{550 \mathrm{HP}}{v} \tag{11}
\end{equation*}
$$

where $Y=$ specific weight of the liquid $\left(\# / \mathrm{ft}^{3}\right)$. Alternately the pump head can be expressed as

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}=\mathrm{A}+\mathrm{BQ}+\mathrm{CQ}^{2} \tag{12}
\end{equation*}
$$

where A, B, and C are coefficients of a parabolic characteristic curve which defines the pump operation in the vicinity of the operating point. Since this expression is only valid over a specified range it should not be indiscretely employed in an analysis.

The basic energy equation for a loop or a path between terminal energy points is:

$$
\begin{equation*}
\Sigma\left(\mathrm{h}_{\mathrm{LP}}+\mathrm{h}_{\mathrm{LM}}\right)=\Delta \mathrm{E}+\Sigma \mathrm{E}_{\mathbf{P}} \tag{13}
\end{equation*}
$$

Here Δ_{E} is the energy difference between the terminal energy points. This equation can be linearized in terms of a flowrate Q_{i} in the vicinity of the solution. This is done as follows

$$
\begin{align*}
& h_{L P}=h_{L P i}+\Delta h_{L P}=K_{P} Q_{i}^{n}+n K_{P} Q_{i}^{n-1}\left(Q-Q_{i}\right) \tag{14}\\
& h_{L M}=h_{L M i}+\Delta h_{L M}=K_{M} Q_{i}^{2}+2 K_{M} Q_{i}\left(Q_{i}-Q\right) \tag{15}\\
& E_{P}=E_{P i}+\Delta E_{P}=\frac{Z_{P}}{Q_{i}}-\frac{Z_{P}}{Q_{i}{ }^{2}}\left(Q-Q_{i}\right) \tag{16}
\end{align*}
$$

or:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}=\mathrm{A}+\mathrm{BQ}_{\mathrm{i}}+\mathrm{CQ}_{\mathrm{i}}{ }^{2}+\left(\mathrm{B}+2 \mathrm{CQ} \mathrm{Q}_{\mathrm{i}}\right)\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{i}}\right) \tag{17}
\end{equation*}
$$

With these substitutions eqn. 13 can be expressed as a linear function of Q as

$$
\begin{align*}
& \Sigma\left(n_{K_{P} Q_{i}}{ }^{n-1}+2 K_{M} Q_{i}+\frac{Z_{P}}{Q_{i}}\right) Q= \\
& \Sigma\left(\frac{2 Z_{P}}{Q_{i}}+(n-1) K_{P} Q_{i}^{n}+K_{M} Q_{i}^{2}\right)+\Delta E \tag{18}
\end{align*}
$$

For the alternate form of the pump head this equation is

$$
\begin{align*}
& \Sigma\left(n_{K_{P}} Q_{i}^{n-1}+2 K_{M} Q_{i}-B-2 C Q_{i}\right) Q= \\
& \Sigma\left(A-C Q_{i}^{2}+(n-1) K_{P} Q_{i}^{n}+K_{M} Q_{i}^{2}\right)+\Delta E \tag{19}
\end{align*}
$$

Equation 18 (or 19) is employed to formulate an equation for each loop ($\Delta \mathrm{E}=0$) and $t-1$ terminal energy equations which combine with
the j continuity equations to for a set of \mathbf{P} simultaneous linear equations in terms of the flowrate in each pipe.

Path method - The same notation previously defined in the description of the linear method is used. The basis of this method is to compute a flow correction ΔQ which when added to an initial set of flowrates (which satisfy continuity) will tend to satisfy the energy equation for each path. This is

$$
\Sigma\left(h_{L P}+h_{L M}\right)=\Delta E+\Sigma E_{P}
$$

In terms of the initial flowrate Q_{i} and the flow correction ΔQ these terms are

$$
\begin{align*}
& h_{L P}=h_{L P i}+\Delta h_{L P}=K_{P} Q_{i}^{n}+n K_{P}{Q_{i}}^{n-1} \Delta Q \tag{20}\\
& h_{L M}=h_{L M i}+\Delta h_{L M}=K_{M^{\prime}} Q_{i}^{2}+2 K_{M^{M}} Q_{i} \Delta Q \tag{21}\\
& E_{P}=E_{P i}+\Delta E_{P}=\frac{Z_{P}}{Q_{i}}-\frac{Z_{P}}{Q_{i}{ }^{2}} \Delta Q \tag{22}
\end{align*}
$$

or

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}=\mathrm{A}+\mathrm{BQ}_{\mathrm{i}}+\mathrm{CQ}_{\mathrm{i}}{ }^{2}+\left(\mathrm{B}-2 \mathrm{CQ}_{\mathrm{i}}\right) \Delta \mathrm{Q} \tag{23}
\end{equation*}
$$

These can be solved to give a flow correction as

$$
\begin{equation*}
\Delta Q=\frac{\Delta E-\Sigma\left(K_{P} Q_{i}^{n}+K_{M} Q_{i}^{2}-\frac{Z_{P}}{Q_{i}}\right.}{\Sigma\left(n K_{P} Q_{i}^{n-1}+2 K_{M} Q_{i}+\frac{Z_{P}}{Q_{i}^{2}}\right)} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta Q=\frac{\Delta E-\Sigma\left(K_{P} Q_{i}^{n}+K_{M} Q_{i}^{2}-\left(A+B Q_{i}+C Q_{i}^{2}\right)\right)}{\Sigma\left(n K_{P} Q_{i}^{n-1}+2 K_{M} Q_{i}-B-2 C Q_{i}\right)} \tag{25}
\end{equation*}
$$

Using either eqn. 24 or eqn. 25 a flow correction is computed for each path and the flowrates of the pipes in that path are corrected by this amount.

For each method the following information must be available before the hydraulic analysis can be made. For each line the length, diameter and the Hazen Williams Roughness coefficient must be known. This latter parameter is available in handbooks and depends on the type and condition of the pipe. Valves, bends, meters, etc, are included in the analysis by determining the minor loss coefficient for the components. The minor loss coefficient is defined as a constant which multiplies the velocity head in the line to give the head loss at that component. In many cases a standard value for this coefficient is given in various references. This coefficient can also be easily determined if discharge-head loss data is available for the component. Several components can be included in a line by summing their minor loss coefficients.

Pumps can be included in two ways. The useful horsepower (or kilowatts) which the pump puts into the system may be specified. Alternately the coefficients of a parabolic characteristic curve may be specified. This curve represents the pump headdischarge relationship as shown below.

In the normal range of pump operation this relation ship can be described closely by

$$
\mathrm{E}_{\mathrm{P}}=\mathrm{A}+\mathrm{BQ}+\mathrm{CQ}^{2}
$$

where A, B, and C are coefficients of the fitted curve. If this representation of the pump is used, however, the solution must yield a discharge in the normal range of operation or the solution will be invalid. This is because the characteristic curve is not valid outside that range.

For each junction the external inflow or outflow is specified and the elevation of the junction is known.

Program description and users options - The programs were developed for use by practicing engineers and were offered to engineers on several bases. Material on the programs has been provided to over 150 engineering firms and individuals. The following brief release provided information to potential users:

Two programs have been developed at the University of Kentucky which will analyze pressure and flow in any pipe system and are available to potential users. These programs are written in FORTRAN IV, G Level and a users guide with source program listings and examples has been prepared. A brief description of the programs follow.

I Program based on linearized system equations -
This program utilized a new procedure for pipe systems analysis which has several advantages over conventional methods. Because this method simultaneously computes the flow in each pipe, the convergence is very fast (usually 3-4 trials to very high accuracy regardless of size of the system). Also, convergence is assured. Initial flowrates are not assumed and changes in flow system demand only require a change in data pertaining to that demand. However, since matrix methods are employed a computer of sufficient storage must be available to use this method for a system of n pipes approximately ($n x(n+35)$ dimensioned storage locations must be available. The IBM 360-65 computer at the University of Kentucky, for example, will handle systems up to 220 pipes with its present storage capacity and without using additional disc storage. The procedure is fast. A 37 pipe system
can be analyzed in about 10 seconds while a 125 pipe system takes 2 minutes and 15 seconds on the University of Kentucky computer.

II Program based on loop and path flow adjustments -
This program is essentially an extension of a loop balancing method similar to the Hardy Cross technique to any type of pipe flow system with pumps, valves, etc. included. It does require as input data initial flowrates which satisfy continuity. In rare cases the Hardy Cross procedure does not produce convergence and this situation could occur. However, for most situations the program produces a fast accurate solution. In addition much less storage is required so a large system can be analyzed with a computer of limited storage capacity.
Basic features of both procedures are:

1. Any piping configurations can be analyzed (closed loop networks, tree systems of combinations).
2. Flow units of CFS, GPM, MGD or SI units (M^{3} / s) can be used. 3. Pump, valves and other lossy components, and storage tanks can be included in the pipe system.
3. Pressures and hydraulic grades at indicated points in the system are output in addition to head changes at pumps, valves and in lines.
4. Data preparation for both programs is straightforward and very similar and allows any number of changes in system parameters (pipe sizes, pump characteristics, flow demands, etc.) to be investigated in a single computer run.

The programs are available to interested users in one of the following ways:

1. Attend two day short course at the University of Kentucky announcement attached. This is the best means of gaining the necessary experience for using the programs effectively and is especially recommended for persons not presently using computers for hydraulic analysis. All material and computer source programs are provided for participant. Some post-course consultation and
a post-course laboratory problem chosen by the participant provide additional aid in implementing the programs.
2. Participate in users course on a correspondence basis. This is primarily for users who have an interest in developing the capability of using the programs but cannot attend a short course. It is desirable that the pariticipant have some background in the use of computers. All material and source programs are provided for the participant in addition to problems. The data for these problems are coded and returned for computer processing. In addition the participant may code and submit data for an additional problem over a period of a year which is of interest to him. Systems of up to 50 pipes will be processed as part of the course (larger systems require a nominal additional charge for computing expenses). Consultation regarding the application of the programs to pipe systems will be provided by phone or mail.
3. Obtain material only. This is primarily for users who are already using a digital computer for hydraulics problems. Users guides, program listings and examples will be sent for both programs. Complete details of the programs, program listings and examples are provided in the users manuals (4,5).

Program for optimum design of water distribution networks.

A major effort to develop a programmable procedure for minimum cost design was made. Details of this effort are included in a Ph. D. thesis (3). The salient points of this effort will be covered in this report.

Problem definition - In designing a hydraulic network distribution system, the engineer has not only to meet the demands at particular points in the system, but also should do so within specified constraints and at the least possible cost. For this study the geometrical configuration of the network is prescribed. The cost is a function of diameter and flow and the constraints can be
regarded as of three types: (i) hydraulic (Kirchhoff laws), (ii) pressure and (iii) diameter. There are also different classes of constraints within each type. For example some pressure constraints are of the type that the pressure must be greater than or equal to a minimum while another constraint is that the pressure must not exceed some maximum value. The diameter constraints are normally of two kinds; the first is that no diameter should be less than a cer tain minimum, the other that the diameters should be available on the market. This becomes necessary since pipe diameters are made commercially in certain discrete sizes. The problem is therefore to find a set of pipe diameters to satisfy all the constraints at the least cost. The method used to do this is a combination of steepest descent (ascent) and dynamic programming.

Since the cost function involves flow in pipes, it is necessary to calculate the flow quickly. Flow is also important in the calculation of pressure since pressure is a function of flow. To compute flow quickly the method of linear analysis which was developed for this purpose is employed.

Problem formulation - Any problem of optimization has essentially two characteristics (1) a cost function and (2) one or more constraints. For the hydraulic network these are described as follows:
(1) Cost function -- The cost function used for network optimum design is divided into two parts: (a) Capital and (b) operation and maintenance costs. For the capital cost the result of the regression analysis performed by Linaweaver and Clark is used. This analysis was carried out on pipe line data for oil, gas and water pipe lines and gives a relationship between the variables, diameter, D, in inches and the capital cost, in dollars, per mile. This relationship is given by

Capital Cost $=1890 \mathrm{D}^{1.29}$ per mile
or

$$
\text { Capital Cost }=0.358^{1.29} \text { per foot }
$$

The correlation coefficient is 0.98 according to the article.
At the time of this survey the Engineering News Record Construction Cost Index (ENRI) was 877. This enables the capital cost relationship to be updated by the ratio, PRESENT ENRI/877. The procedure described is used herein for the capital cost portion of the cost analysis. Alternate schemes could be used to express the capital cost as some continuous function of pipe diameter.

The capital expenditure is usually incurred at the time of construction of the project, and is paid back over the life of the project. During that time, the value of money is determined by the rate of interest, $i \%$ per annum. In order to spread the capital cost evenly over the whole life of the project, it is necessary to multiply the initial cost by a capital recovery factor (crf) where:

$$
\begin{aligned}
\operatorname{crf} & =\left[\frac{i}{100}\left(1+\frac{i}{100}\right)^{\mathrm{nn}}\right] /\left[\left(1+\frac{i}{100}\right)^{\mathrm{nn}}-1\right] \\
\text { where } \mathrm{nn} & =\text { life of project in years. }
\end{aligned}
$$

Thus in a system of m pipes the annual capital cost is

$$
\sum_{i=1}^{m} 0.358 L_{i} D_{i}^{1.29}(\mathrm{crf}) \quad \frac{(\mathrm{PRESENT} \text { ENRI) }}{877}
$$

where $L_{i}=$ length in feet of i-th pipe.
The operation and maintenance portion of the cost function is obtained by first equating the pumping power required for each pipe to that of an equivalent number of kilowatt-hours and then multiplying the number of Kilowatt-hours by the corresponding unit cost. The power utilized in a pipe is related to the corresponding head loss. The Hazen-Williams empirical expression for head loss is used. This expression is $H_{L}=K Q^{1.8518}$
where $\quad K=\frac{4.77 \mathrm{~L}(12)^{4.87}}{C^{1.8518} D^{4.87}}$
and $\quad \mathrm{C}=$ roughness coefficients.
The power lost in the pipe line is related to H_{L} in the following way:

Power loss $=\frac{\mathrm{H}_{\mathrm{L}} \mathrm{Q} \gamma}{550}$ horse power (where Q is in cfs and γ is in the specific weight of the liquid in $\mathrm{Lb} / \mathrm{ft}^{3}$).

Inserting the head loss equation in this expression gives:
Power loss $=\frac{\mathrm{KQ}^{2.8518}}{550}$ (62.4) horse power (assuming water is the liquid).

The final annual cost due to maintenance and operation in a pipe can be expressed as:
$\mathrm{KQ}^{2.8518} \frac{(62.4)}{550}(0.746)(365 \times 24) \mathrm{c}$ per year
where $c=$ unit cost of electricity in $\$$ per KwH. Thus the total cost function (R) is

$$
\begin{align*}
R= & \sum_{i-1}^{m} 0.358 L_{i} D_{i}^{1.29}(\mathrm{crf})(\text { Present ENRI } / 877)+ \\
& \sum_{i=1}^{m} K_{i} Q_{i} 2.8518 \frac{(62.4)}{550}(0.746)(365 \times 24) c=R \tag{27}
\end{align*}
$$

The factor (365×24) assumes that the system is in operation for the whole year. If this is not the case, then this factor can be replaced by the anticipated number of hours in the year that the system will be in operation.
(2) Constraints -- The primary constraint is one which requires the flows to obey basic hydraulic relationships involving continuity of flow at junctions and head losses in the individual loops.

Another type of constraint, dealing with pressures, assumes alternate forms. The system must be designed for a maximum
value of pressure which must not be exceeded.
There also may be a minimum pressure required for each junction which is necessary to maintain acceptable system performance. An example of such a minimum is that required by fire-fighting activities for which standards have been developed by National Board of Fire Underwriters (NBFU)(33). It is assumed that though there are variations in minimum pressure, there is none in the maximum.

Acceptable pipe diameters are also constrained. NBFU recommends that the diameter of street mains should not be less than 6-inches. This is again a fire-protection provision where the primary consideration is to obtain an acceptable quantity of water. In addition, diameters available on the commercial market are discrete and not continuous. A 6 -inch pipe may be available, while 6. 25-inch usually is not. It is therefore necessary that the sizes selected for design must be commercially available.
(3) The mathematical model -- The problem is summarized as follows:

The cost function to be minimized is

$$
\begin{aligned}
R= & \sum_{i=1}^{m} 0.358 L_{i} D_{i} 1.29 \frac{(\text { Present ENRI })}{877}(c r f)+ \\
& \sum_{i=1}^{m} K_{i} Q_{i}{ }^{2.8518} \frac{(62.4)}{550}(0.746)(365 \times 24) \mathrm{c}
\end{aligned}
$$

Subject to the following constraints:
(i) pressure and flow obey basic hydraulic relationships
(ii) $p \leq$ ABMAX where p is pressure and ABMAX is absolute maximum pressure
(iii) $\mathrm{p} \geq$ ABMIN where ABMIN is the absolute minimum pressure allowed
(iv) $p_{A} \geq P_{A}$ where p_{A} is pressure at junction A and P_{A} is the minimum allowed at junction A
(v) $\mathrm{D} \geq$ DMIN where DIMIN is the absolute minimum size diameter allowed
(vi) $D \in\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ where $d_{1}, d_{2}, \ldots, d_{n}$ are the available commercial size diameters.

Method of Solution The law of continuity is expressed in terms of flow ($\Sigma \mathrm{Q}_{\mathrm{i}}=0$) while the "head loss" or loop equations ($\Sigma \mathrm{K}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}{ }^{\mathrm{n}}=0$) are functions of flow and pipe properties. The Hazen-Williams line loss expression is used herein. Thus from (26)

$$
K=\frac{4.77 \mathrm{~L}(12)^{4.87}}{C^{0.8518} D^{4.87}}
$$

which is referred to as the loss coefficient. Flow is given by

$$
\begin{equation*}
Q=A v \tag{28}
\end{equation*}
$$

where A is the cross-sectional area and v the velocity It can be demonstrated that the differential $d Q$ is given by
$d Q=\frac{2 Q}{D} d D+A d v$
To preserve continuity, the algebraic sum of the changes in flow at any junction must be zero.

Thus at any junction

$$
\begin{equation*}
\Sigma \mathrm{dQ}_{\mathrm{i}}=0 \tag{30}
\end{equation*}
$$

and from eqn. (29)

$$
\begin{equation*}
\Sigma A_{i} d v_{i}=-2 \Sigma \frac{Q_{i}}{D_{i}} d D_{i} \tag{31}
\end{equation*}
$$

It is clear that by considering changes in flow at many junctions, equations involving $A_{i} d v_{i}$ and $d D_{i}$ can be obtained. It also follows from the continuity equations that one of these equations would be redundant. The system equations can be expressed in the following form:

$\left.\begin{array}{l}\text { Matrix coefficients } \\ \text { are 1, 0, -1 }\end{array}\right]$	$\left[\begin{array}{c}A_{1} d v_{1} \\ A_{2}{ }^{\text {dv }} 2 \\ A_{3}{ }^{\text {dv }} 3 \\ \\ \vdots \\ \cdot \\ A_{m}{ }^{\text {dv }}{ }_{m}\end{array}\right]$		$\left[\begin{array}{l}\text { Matrix } \\ \text { coefficients } \\ \text { are }-\frac{2 Q}{D} \\ \text { or } 0\end{array}\right.$	$\left[\begin{array}{l}\mathrm{dD}_{1} \\ \mathrm{dD}_{2} \\ \mathrm{dD}_{3} \\ \cdot \\ \vdots \\ \mathrm{dD}_{\mathrm{m}}\end{array}\right]$

By considering first order derivatives of the loop equations, another set of equations involving $A_{i} d v_{i}$ and $d D_{i}$ can be obtained as follows:

$$
H_{L}=K Q^{1.8518}
$$

is differentiated to obtain

$$
\begin{align*}
\mathrm{dH}_{\mathrm{L}} & =\mathrm{Q}^{1.8518} \frac{\mathrm{dK}}{\mathrm{dD}} \mathrm{dD}+1.8518 \mathrm{KQ}^{0.8518} \frac{\partial \mathrm{Q}}{\partial \overline{\mathrm{D}} \mathrm{dD}} \\
& +1.8518 \mathrm{KQ}^{0.8518} \frac{\partial \mathrm{Q}}{\partial \mathrm{v}} \mathrm{dv} \tag{33}
\end{align*}
$$

From (29) $\frac{\partial Q}{\partial D}=\frac{2 Q}{D}$ and $\frac{\partial Q}{\partial v}=A$
By substituting in (35)

$$
\begin{align*}
\mathrm{dH}_{\mathrm{L}} & =\mathrm{Q}^{1.8518} \frac{\mathrm{dK}}{\mathrm{dD}} \mathrm{dD}+1.8518 \mathrm{KQ}^{0.8518} \frac{2 \mathrm{Q}}{\mathrm{D}} \mathrm{dD} \\
& +1.8518 \mathrm{KQ}^{0.8518} \mathrm{Adv} \tag{34}
\end{align*}
$$

From (26)

$$
K=\frac{4.77 \mathrm{~L}(12)^{4.87}}{C^{1.8518} D^{4.87}}
$$

By differentiation

$$
\begin{equation*}
\frac{\mathrm{dK}}{\mathrm{dD}}=-\frac{4.87}{\mathrm{D}^{5.87}} \frac{4.77 \mathrm{~L}(12)^{4.87}}{\mathrm{C}^{1.8518}}=-4.87 \frac{\mathrm{~K}}{\mathrm{D}} \tag{35}
\end{equation*}
$$

Substitute (35) for $\frac{d K}{d D}$ in (34), then

$$
\begin{align*}
\mathrm{dH}_{\mathrm{L}} & =-4.87 \frac{\mathrm{KQ}^{1.8518}}{\mathrm{D}} \mathrm{dD}+3.7036 \frac{\mathrm{KQ}}{\mathrm{D}} \mathrm{dD} \\
& +1.8518 \mathrm{KQ}^{0.8518} \mathrm{Adv} \tag{36}
\end{align*}
$$

Simplifying and combining terms give

$$
\begin{equation*}
\mathrm{dH}_{\mathrm{L}}=-1.1664 \frac{\mathrm{KQ}^{1.8518}}{\mathrm{D}} \mathrm{dD}+1.8518 \mathrm{KQ}^{0.8518} \mathrm{Adv} \tag{37}
\end{equation*}
$$

These equations of the form $\Sigma_{\mathrm{dH}_{\mathrm{L}}}=0$ can be transformed into

$$
\begin{equation*}
1.8518 \sum \mathrm{KQ}^{0.8518}(\mathrm{Adv})=1.1664 \sum \frac{\mathrm{~K}}{\mathrm{D}} \mathrm{Q}^{0.8518} \mathrm{dD} \tag{38}
\end{equation*}
$$

or in matrix form:

$\left[\begin{array}{l} \text { Matrix Coefficients } \tag{39}\\ \text { are either } \\ \pm 1.8518 \mathrm{KQ}^{0.8518} \\ \text { or } 0 \end{array}\right]$	$\left[\begin{array}{c}A_{1} d v_{1} \\ A_{2} \mathrm{dv}_{2} \\ A_{3} \mathrm{dv}_{3} \\ \cdot \\ \cdot \\ A_{m}{ }^{\text {dv }}{ }_{m}\end{array}\right]=$	$\left[\begin{array}{l} \text { Matrix coefficients } \\ \text { are either } \\ \pm 1.1664 \\ \text { or } 0 \end{array}\right]$

By combining all independent equations derived from the basic hydraulic relations, (32) and (39), the following simultaneous equations are obtained.

	Matrix Coefficients are ± 1 or 0	$\left[\begin{array}{l}A_{1} \mathrm{dv}_{1} \\ \mathrm{~A}_{2} \mathrm{dv}_{2} \\ \mathrm{~A}_{3} \mathrm{dv}_{3}\end{array}\right] \begin{aligned} & \text { Matrix } \\ & \text { coefficients are } \\ & -\frac{2 Q}{D} \text { or } 0 \\ & \frac{\text { Matrix }}{}\end{aligned}$	$\left[\begin{array}{l}\mathrm{dD}_{1} \\ \mathrm{dD}_{2} \\ \mathrm{dD}_{3}\end{array}\right]$
	Matrix Coefficiḕnts are $\pm 1.8518 \mathrm{KQ}^{0.8518}$ or 0	$\left[\begin{array}{ll} A_{\mathrm{m}} \mathrm{dv}_{\mathrm{m}} \end{array}\right]\left[\begin{array}{l} \text { Matrix } \\ \text { coefficients are } \\ \mathrm{m}_{1.1664 \frac{\mathrm{KQ}}{\mathrm{D}}} 1.8518 \\ \text { or } 0 \end{array}\right.$	

It is observed that, if m is the number of pipes in the network then the matrices on both sides of equations (40) are of order m x m.

The cost function, as given by eqn. (27) is expressed in terms of the diameter, D, flow Q, and Hazen-Williams' loss coefficients. Q is a function of D and v, K is a function of D. Thus the cost function can be expressed in terms of D and v and the first derivative of the cost function can be put in a form similar to (40).

The cost function previously defined can be written as

$$
R=\Gamma \cdot a_{i} D_{i}^{1.29}+\sum b_{i} K_{i} Q_{i}^{2.8518}
$$

where a_{i} and b_{i} are constants. Differentiation of R with respect to $D_{i}^{\prime} s$ and vi's gives

$$
\begin{aligned}
d R & =\left(1.29 \Sigma a_{i} D_{i}^{0.29}+\Sigma b_{i} \frac{\lambda K_{i}}{\partial D_{i}} Q_{i}^{2.8518}\right) d D_{i} \\
& +2.8518 \Sigma b_{i} K_{i} Q_{i}^{1.8518} \frac{\partial Q_{i}}{\partial D_{i}} d D_{i} \\
& +2.8518 \Sigma b_{i} K_{i} Q_{i}^{1.8518} \frac{\partial Q_{i}}{\partial v_{i}} d v_{i}
\end{aligned}
$$

Since $\frac{\partial K_{i}}{\partial D_{i}}=-4.87 \frac{K_{i}}{D_{i}}$ (from 35) and from (29) $\frac{\partial Q_{i}}{\partial D_{i}}=\frac{2 Q_{i}}{D_{i}}$
and $\frac{\partial Q_{i}}{\partial v_{i}}=A_{i}$ the derivative becomes

$$
\begin{align*}
\mathrm{dR} & =1.29 \sum \mathrm{a}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}^{0.29} \mathrm{dD}_{\mathrm{i}}+0.8336 \Sigma \mathrm{~b}_{\mathrm{i}} \frac{\mathrm{~K}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}}{\mathrm{D}_{\mathrm{i}}}{ }^{2.8518} \mathrm{dD}_{\mathrm{i}} \\
& +2.8518 \Sigma \mathrm{~b}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}-.8518\left(\mathrm{~A}_{\mathrm{i}} \mathrm{dv}_{\mathrm{i}}\right) \tag{41}
\end{align*}
$$

This can be expressed in matrix form as follows:
where $e_{1}, e_{2}, e_{3}, \ldots, e_{m}$ are coefficients of $A_{1} d v_{1}, A_{2} d v_{2}$, $A_{3} d v_{3}, \ldots, A_{m} d v_{m}$ and $f_{1}, f_{2}, f_{3}, \ldots, f_{m}$ are coefficients of $\mathrm{dD}_{1}, \mathrm{dD}_{2}, \mathrm{dD}_{3}, \ldots, \mathrm{dD}_{\mathrm{m}}$.

By combining (40) and (42) the left hand side becomes a matrix of order $(m+1) x(m+1)$ and the right hand one of $(m+1) \times m$. It is also observed that "dR" only occurs once and that it is on the left hand side. Thus one of the columns on this side would have coefficients of

$$
1,0,0,0, \ldots 0
$$

Thus the following sets of equations are obtained

Before (43) can be used it is necessary to have values of Q_{i} and D_{i}. Values of D are assumed and values of Q are calculated. The pressure at the junctions are now computed and, if the pressure constraints are broken, new values of D are assumed and the process repeated until these constraints are satisfied.

In this initial stage, if new values of D are required it has been found convenient to add or subtract a constant increment to each of the diameters. It is usual to add the increments, but if the pressure at any point is greater than ABMAX the increment is subtracted.

After values of D and Q are obtained which are feasible solutions the partial derivatives with respect to diameters and velocities are computed and the matrix coefficients for (43) are not known. From these equations, by manipulating the matrices the following is obtained:

$$
\left[\begin{array}{c}
d R \tag{44}\\
A_{1} d v_{1} \\
A_{2} d v_{2} \\
A_{3} d v_{3} \\
\cdot \\
\cdot \\
A_{m} d v_{m}
\end{array}\right]=\left[\begin{array}{c}
\\
(\text { m+1)x } m \\
\text { matrix } \\
\\
\\
\\
d D_{m}
\end{array}\right]
$$

Since

$$
\mathrm{dR}=\mathrm{g}_{1} \mathrm{dD}_{1}+\mathrm{g}_{2} \mathrm{dD}_{2}+\mathrm{g}_{3} \mathrm{dD}_{3}+\ldots+\mathrm{g}_{\mathrm{m}} \mathrm{dD}_{\mathrm{m}}
$$

(where $g_{1}, g_{2}, \ldots, g_{m}$ are coefficients of the first fow of matrix in (44), then

$$
\begin{equation*}
\frac{\mathrm{dD}_{1}}{\mathrm{~g}_{1}}=\frac{\mathrm{dD}_{2}}{\mathrm{~g}_{2}}=\frac{\mathrm{dD}_{3}}{\mathrm{~g}_{3}}=\ldots .=\frac{\mathrm{dD}_{\mathrm{m}}}{\mathrm{~g}_{\mathrm{m}}}=\rho \tag{45}
\end{equation*}
$$

To obtain an optimal value of ρ, using the method of steepest ascent, it is necessary to solve the equation $\frac{d R}{d \rho}=0$. This is a complex equation and calculating the value of ρ to satisfy it is very cumbersome and at best approximate. The value assigned to ρ is a critical factor in using the steepest ascent (descent) method. Too big a value of ρ oversteps the optimum, too small a value requires too many unnecessary calculations. This makes it difficult to find the optimum value of ρ and thus a form of direct search technique was developed to determine this value.

Of the coefficients, $g_{1}, g_{2}, g_{3}, \ldots, g_{m}$ the one with the biggest absolute value is chosen, say g_{k}, and then $d D_{k}$ corresponding to g_{k} is given a value. The ratio $d D_{k} / g_{k}$ is now known and from (45) all values of $\mathrm{dD}_{1}, \mathrm{dD}_{2}, \ldots, \mathrm{dD}_{\mathrm{m}}$ are computed. These increments, $\mathrm{dD}_{\mathrm{l}}, \mathrm{dD}_{2}, \mathrm{dD}_{3}, \ldots, \mathrm{dD}_{\mathrm{m}}$ may be either positive or negative. If g_{k} is negative these increments are first of all algebraically added and if g_{k} is positive they are subtracted.

If there is a reduction in cost and no constraints are broken, then the process of algebraically adding or subtracting can be continued, or new partial derivatives computed and the entire procedure so far repeated. If there is no reduction in cost within the specified constraints then the increments are halved and the process of algebraically adding or subtracting is continued. If again there is no reduction, the procedure of halving increments and algebraically adding or subtracting is continued until there is such reduction or the tolerance level is reached. At this stage new matrix coefficients are computed and the whole process is repeated. Thus, for an initia increment size of two inches and tolerance level of half inch, the possible increments likely to be tried after the first are one inch and half-inch.

The process eventually converges to a situation where changes in cost are negligible. At this stage most of the diameters do not satisfy constraint number (vi) that is $D_{i}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{m}\right)$ and the final step in the procedure is to impose this condition.

If D_{i} is the diameter corresponding to g_{i} where $g_{i}>$
any other g and D_{i} lies between d_{p} and d_{q}-- where d_{p} and d_{q} are members of the class $\left(d_{1}, d_{2}, d_{3}, \ldots, d_{m}\right)$ and D_{i} is not -- then D_{i} is increased or decreased to d_{p} or d_{q} by making $d_{i}=d_{p}-D_{i}$ or $d D_{i}=d_{q}-D_{i}$. The other $d D^{1} s$ are computed and all the diameters are altered proportionately. The cost is computed for both cases when $d D_{i}=d_{p}-D_{i}$ and $d D_{i}=$ $d_{q}-D_{i}$. The cost which is cheaper is noted and the corresponding diameters are chosen.

From now on the diameter for the $i-t h$ pipe is fixed and $d D_{i}=0$. The derivative of cost function with respect to D_{i} will not be a term of equation (40), also any derivative with respect to D_{i} that is involved in the matrices of (40). The process is repeated until all the diameters are now in an acceptable set.

If, in making incremental changes in diameters, constraint (v) is broken, ($D \geq$ DIMIN) and if the diameter is not that of the pipe with the largest absolute partial derivative of cost function, the diameter of the pipe breaking this constraint will be assigned the value of DIMIN. The diameter increments for the other pipes will be unaffected. If the pipe breaking the diameter constraint is the one with the largest absolute partial derivative of cost function, then not only is this diameter"assigned the value DIMIN, but the changes in the other diameters are proportionately adjusted. If a pressure constraint is broken the incremental changes are reduced proportionately until the pressure constraint is satisfied.

The method just outlined above is dependent on the shape of the cost function to obtain the optimum. If the function is convex then the global optimum is obtained. The pressure constraints, especially (iv) ($\mathrm{p}_{\mathrm{A}} \geq \mathrm{P}_{\mathrm{A}}$) may have the effect of rendering the function non-convex, i.e., a "hole" in the feasible region. In this case it is advisable to ignore the pressure constraint in the initial stages of the process.

Computer Program - Using the method just described a computer

FLOWCHART FOR OPTIMUM DESIGN

FIGURE 1A

FLOWCHART FOR OPTIMUM DESIGN (CONT'D)

FIGURE 1B
program was written for the optimum design of closed pipe networks. A flowchart depicting the logic of this program is given in Figure 1. A listing of the program is presented in Appendix I. The program is fairly involved and the reader is referred to Reference 5 for the details.

Example - A pipe network of nineteen pipes was analyzed by this program to determine the minimum cost design. Figure 2 shows the geometry of the network. The computer output for this example is presented on the following pages to illustrate the type of information output by the computer. For the given cost information and constraints it would have been highly unlikely that this configuration could have been determined without such an aid as this program. At the present time additional efforts are being made to refine and improve this computer program. When this is completed the program will be made available to potential users.

Figure 2 Hydraulic Network for Example
(to convert flowrate to $\mathrm{m}^{3} / \mathrm{s}$ multiply gpm by $6.309 \times\left(0^{-5}\right)$

Pipe Number	Diameter (in.)	Length (ft.)	Roughness
1	12.0	1500	130
2	8.0	1000	130
3	8.0	1200	120
4	8.0	2000	120
5	8.0	2800	120
6	8.0	1100	120
7	8.0	1000	120
8	8.0	2500	120
9	8.0	800	100
10	6.0	1300	100
11	6.0	1000	100
12	10.0	1100	130
13	10.0	1800	130
14	6.0	1100	120
15	6.0	1800	120
16	6.0	1200	120
17	10.0	1800	130
18	6.0	1300	120
19	6.0		120

TABLE I PIPELINE DATA FOR EXAMPLE
MAXIMUM PRFISURE $=150.000$ LBS PER SO IN
MINIMUM PRESSURE $=\quad 30.000$ LBS PER SO IN
MINIMUM PRESSURE ALLOWEO AT JUNCTIUN 9 IS 50.000 LBS PER SQ IN

SMALLEST DIAMETER ALLUWED $=6.000$ INCHES
greatest incremental change in diametere 6.000 inches

WHEN THE LARGEST INCREMENTAL CHANGE in DIAMETERS is LESS THAN DR EQUAL TO 0.750 inches SUCH ChANGES ARE IGNORED

TOLERANCE ON FLOW=15.0000 GPH
LIFE OF PROJECT $=50.000$ YEARS

RATE OF INTEREST $=5.000$ PER ANNUM

COST OF ELECTRICITY=\$0.01 PER KILOWATT-HOUR
TOLERANCE ON MONEY=S 10.00

8UILDOUP FACTOR= 1.000

ENGINEERING NEWS RECORD INDEX= 877.
RESULTS of optimal trial

PIPE NS	JUNCTION		LENGTH	RDughness	olameter-inches ORIGINAL FINAL		FLOW	PRESSURE AT BEGIN		JUNCTIONS END
1	1	2	1500.00	130.	10.00	6.00	311.71	120.000		123.172
2	2	3	1000.00	130.	14.00	6.00	390.92	123.172		117.600
3	3	4	1200.00	120.	16.00	6.00	286.12	117.600		106.317
4	4	5	2000.00	120.	18.00	18.00	-1106.09	106.317		105.871
5	5	6	2800.00	120.	20.00	20.00	-631.90	105.871		108.346
6	6	7	1100.00	120.	12.00	6.00	498.41	108.346		124.091
7	7	8	1000.00	120.	24.10	16.00	2431.80	124.691		126.298
8	8	9	2500.00	120.	20.00	20.00	2611.29	126.298		121.777
9	9	1	800.00	100.	18.00	24.00	4638.29	121.777		120.000
10	9	10	1300.03	100.	16.00	6.00	227.00	121.777		123.541
11	10	11	1000.00	100.	14.00	6.00	327.47	123.541		112.683
12	11	12	1100.00	130.	12.00	6.00	205.47	112.683		114.023
13	12	;	1000.00	130.	10.00	6.00	87.99	114.023		105.871
14	10		1800.00	120.	12.50	6.00	-179.69	123.541		126.298
15	2	10	1100.00	120.	14.00	6.00	-79.22	123.172		123.541
16	7	11	1800.00	120.	16.00	12.00	-1933.19	124.691		112.683

CONCLUSIONS

The linear method developed as a result of this study for the hydraulic analyses of water distribution systems is proving to be a valuable aid to practicing engineers. This is supported by the large number of engineers who are presently using the program.

This method is also a useful tool in the minimum cost study of water distribution systems. The feasibility of developing a routine for minimum cost design also has been established through this study. A working program for closed loop systems has been developed.

A method for solving the hydraulics of water distribution system on a standard analog computer also has been developed. This provides the basic tool for an analog-digital model for optimum network design. However, while this appears to be a very promising technique its practicality is limited. This is because most practicing engineers do not have access to the necessary analog-digital systems.

PUBLICATIONS

1. Wood, D. J., "Analog Analysis of Water Distribution Networks," Transportation Engineering Journal, Proceedings, ASCE, Vol. 97, No. TE2, May 1971, 281-290.
2. Wood, D. J., and Charles, C. O., "Hydraulic Network Analyses Using Linear Theory," Proceedings, ASCE, Vol. 98, No. HY7, July 1972, pp. 1157-1170.
3. Charles, C. O., "Optimum Design of Hydraulic Networks Using Steepest Descent (Ascent) Method and Dynamic Programming, " Ph. D. thesis, University of Kentucky, January 1973 (unpublished).
4. Wood, D. J., "Users Guide for Linear Method of Analysis of Water Distribution Systems," Department of Civil Engineering, University of Kentucky, 1973 (unpublished).
5. Wood, D. J., "Users Guide for Path Method of Analysis of Water Distribution Systems," Department of Civil Engineering, University of Kentucky, 1973 (unpublished).

APPENDIX I

LISTING OF FORTRAN PROGRAM FOR OPTIMUM DESIGN OF CLOSED LOOP SYSTEMS

```
IMPLICIT REAL*S (A-H,O-2I
NTEGER UVITS,TREEET5O)
```



```
ODIMENSION A(50,5J),C{50,50},SAVE{2500),CHAIN(2500),
IKTUGH(S0),OPRE(SU),PRESS(50),HT(50),Y(50), PECED(50)
ABOUE(50), DEYANUL50),SD(50),SDELD(50),SQ(50),SOPRE(50),SN(501A(50),
2LELD(50),J(5U),LOOP(50,50),MLI50),MN(50),JBIGIN(50),JEND(50),L2(50
3), NPIPEI50)
OOO FORMAT (16I51 UNITS,MXX,MMX
1700 FORMAT (//19X,'RATE OF INTEREST#',F6.3,1X,PPER ANNUM')
IQJU FIRMAT ://IBX,'WHEN THE LARGEST INCREMENTAL CHANGE IN DIAMETERS IS
    I LESS THAN OR EUUAL TG ',IX,FG.3,1X,'INCHES' /58X, 'SUCH CHANGES
    2ARE IGNORED'।
2010 FORMAT (%,'18X,'MAXIMUM PRESSURE =', F9.3,1X**LSS PER SQ IN'
2010 FORMAT ///18x,'MINIMUM PRESSURE=',F9.3,1X,'LBS PER SO IN'
    FIFMAT (//l8X. "MINIMUM PRESSURE ALLOWEO AT JUNCTION',I3,IX,"IS',
2030 FGRMAT (//18X, 'TGLERANCE ON FLOW=', F7.4,1X, 'CFS')
2031 FDRMAT ///18X, 'TOLERANCE ON FLOW=', F7.4,1X, "GPM',
2032 FORMAT (//18X, 'TOLERANCE ON FLOH=', F7.4,IX, 'MGD')
2040 FORMAT (//1GX,'TOLERANCE ON MONEY=S', FB.2,1X)
2050 FORMAT (//18x,'GREATEST INCREMENTAL CHANGE IN DIAMETER=', FG.3.IX,
1'INCHES:)
2060 FORMAT (//18X, 'SMALLEST DIAMETER ALLOWED=',FG.3,1X,'INCHES')
2070 FORMAT (/MIBX, 'EIFE OF PROJECT=', FT.3,IX, 'YEARS')
2080 FORMAT (//18X, 'COST DF ELECTRICITY=5',F5.2,1X, IPER KILOMATT-HOUR
2090 FORMAT \//18X, EENGINEERING NEWS RECURO INDEX*', F7.0I
1701 FORMAT \//IBX, BUILO-UP FACTOR=4, FG.3)
    IF UNITS=1, FLOW IS INCFS, IF UNITS=2, FLOW IS IS GPM, IF UNITS=3 FLOM IS
INLET ARE LBS/IN**Z,
    NOT 'FOOT-HEAD OF WATER!
    READ (5,6000) ABMAX,ASMIN,OIMIN,DOL,DO2,003,004
C NJ= NO OF JUNCTIONS,NP=NO OF PIPES
    READ (5,2000) (JBIGIN(I),JENO(II,DII),ROUGH(I),LII), I=1,NP)
    TOTDEM =0.0
    NN=0
    kXXK=0
1111 FORMAT 11X,1H,10X,'0 U.T P U Ti)
    WR!TE (6,1111)
    WR1TE (6,1900) ABMAX
    O FORMAT (5F10.4)
2000 FORMAT 12I5,F5,
    O 11 I=1,N(5.2.2F10.5)
    READ (5,3000) PECED(I),DEMANO(I),DELEVII),DPRE(I),HT(I)
C PECEOITH=1.U INOICATES NUDE IS AN INLET. DEMAND INHETHER INLET OR OUTLET
    I IS ALWAYS POSITIVE. OELEV IS ELEVATION IN FEET. DPRE AND HT ARE IN LBS
    MIN**Z UNITS, EXCEPY WHEN PECED=1.0 ANO MXX ANE. I ITIN WHICH CASE DPRE
    MF BE IN (PECEDII) -NE. 1.0) TOTDEM =TOTUEM& GEMANDCI)
    IF (PECED(I) .EQ. 1.0) TOTAL ETOTAL + DEMAND(I)
    IF (PECED(I) NE. l.0) DEMAND(I)=-DEMANDII)
    IF (PECEDII).EQ. 1.0) NN=NN+1
    IF (HT(I) -NE. O.0) WRITE (6,2020) 1.HT{I)
    11 cuntinue
    IF (TOTOEM .EQ. TOTAL) GO ro 100
```

```
    WORITE (6,5000) TOTAL,TOTDEM
```

 WORITE (6,5000) TOTAL,TOTDEM
 NO FURMAT1//2OX,'TOTAL=',1X,F10.2,2X,'TOTDEM=',1X,F10.2,2X, 'INFLOW
 NO FURMAT1//2OX,'TOTAL=',1X,F10.2,2X,'TOTDEM=',1X,F10.2,2X, 'INFLOW
 STDP
 STDP
 100 00 12 1=1,N
 100 00 12 1=1,N
 SD(I)=0.0
 SD(I)=0.0
 日ODE(1)=D(I)
 日ODE(1)=D(I)
 IF (O(I) -LT. DIMIN: DII)=DIMIN
 IF (O(I) -LT. DIMIN: DII)=DIMIN
 SCAN(1)=0.
 SCAN(1)=0.
 Q111=1.0
 Q111=1.0
 NPIPE(II=0 NJ) OEMAND(1)=0.0
 NPIPE(II=0 NJ) OEMAND(1)=0.0
 ML(I)=0
 ML(I)=0
 CF ML(1) EEQ. of MM=
 CF ML(1) EEQ. of MM=
 IF (ML{I) -EQ. 0) LL=16
 IF (ML{I) -EQ. 0) LL=16
 101 READ (5,1000) (LODP(I,J),J=MM,LL)
101 READ (5,1000) (LODP(I,J),J=MM,LL)
LODPII, Jl MAY BE POSITIVE OR MEGAIIVE ACCORDING TO ASSUMED DIRECTION O
LODPII, Jl MAY BE POSITIVE OR MEGAIIVE ACCORDING TO ASSUMED DIRECTION O
FLOW. (EFFLUX FROM JUNCTIDN IS POSITIVE, INFLUX IS NEGATIVE). REGARO LAST
FLOW. (EFFLUX FROM JUNCTIDN IS POSITIVE, INFLUX IS NEGATIVE). REGARO LAST
JUNCTION AS REDUNDANT AND IGNORE IT FROMFLUX IS NJGATIVE). REGARD
JUNCTION AS REDUNDANT AND IGNORE IT FROMFLUX IS NJGATIVE). REGARD
JUNCTION AS REDUNDANT ANO IGNORE IT. FROM I -EQ. NJ THRU I \&EQ. NP
JUNCTION AS REDUNDANT ANO IGNORE IT. FROM I -EQ. NJ THRU I \&EQ. NP
HEAD LOSSES =0.0) WHILE FROM I .EQ. I THRU I .EQ. (NJ-1) LOOP(I,j) REFERS
HEAD LOSSES =0.0) WHILE FROM I .EQ. I THRU I .EQ. (NJ-1) LOOP(I,j) REFERS
INDIVIDUAL COMPONENTS OF CONIINUITY EQUATIONS
INDIVIDUAL COMPONENTS OF CONIINUITY EQUATIONS
OD 13 J=MM,LL
OD 13 J=MM,LL
IF (LOOP (I,N).EQ. O) GO TO 12
IF (LOOP (I,N).EQ. O) GO TO 12
13ML(I)=M(I)+1
13ML(I)=M(I)+1
MM=MM+16
MM=MM+16
Ga To rol
Ga To rol
C IF J=16 OR MULFIPLE OF 16 SUPPLY A BLANK CARD
C IF J=16 OR MULFIPLE OF 16 SUPPLY A BLANK CARD
12 CONTINUE
12 CONTINUE
IF IUNITS .EQ. I) }8=1
IF IUNITS .EQ. I) }8=1
IF \UNITS .EQ. 21 B==00222a
IF \UNITS .EQ. 21 B==00222a
IF CUNITS.EQ. 3) B=1.5473
IF CUNITS.EQ. 3) B=1.5473
6000 FORMAT (7F10.4)
6000 FORMAT (7F10.4)
RATE,LIFE,CENTS,X,BUILD,ENR
RATE,LIFE,CENTS,X,BUILD,ENR
9000 Format (BF10.51
9000 Format (BF10.51
KL=NJ-1
KL=NJ-1
READ (5,1000) (TREE(I),I=1,KL
READ (5,1000) (TREE(I),I=1,KL
F (ENR EQ. 0.01 ENR=877.

```
    F (ENR EQ. 0.01 ENR=877.
```



```
    IF (X - E2. 0.0) X=1.0
```

 IF (X - E2. 0.0) X=1.0
 IF (X EF2. O.0) X=1.0
 IF (X EF2. O.0) X=1.0
 WRITE (6,2060) DIMIN
 WRITE (6,2060) DIMIN
 NRITE (6,2050).001
 NRITE (6,2050).001
 NITE (0,1800) DD
 NITE (0,1800) DD
 IF (UNITS .EQ. I) WRITE (6,2030) DO4
 IF (UNITS .EQ. I) WRITE (6,2030) DO4
 IF IUNITS EEQ. 2) WRITE (6,2031) DD4
 IF IUNITS EEQ. 2) WRITE (6,2031) DD4
 F (NWITS SO 3) HRITE (6,2032) OD4
 F (NWITS SO 3) HRITE (6,2032) OD4
 F1TE (6,2070) BIFE
 F1TE (6,2070) BIFE
 WRITE (6,1700) RAJE
 WRITE (6,1700) RAJE
 WRITE (6,2080) CENTS
 WRITE (6,2080) CENTS
 WRITE {6,20401 DD3
 WRITE {6,20401 DD3
 RITE (6,1701) BUIL
 RITE (6,1701) BUIL
 NRITE 16,20901 ENR
 NRITE 16,20901 ENR
 N=1
 N=1
 L READ(5,1100) (0IA(I),ImN,INN)
 L READ(5,1100) (0IA(I),ImN,INN)
 N=N+16
 N=N+16
 INN=INN+16
 INN=INN+16
 1100 FORMAT (16F5.2)
1100 FORMAT (16F5.2)
c if lo or a multiple of ig,then a blank card must be inSERTED

```
c if lo or a multiple of ig,then a blank card must be inSERTED
```

IF (DIAIINN-16).NE. O.0) GO TO 141
$\mathrm{N} 1 \times 0$
IF IDIAIII ONE O.OI NL=N1+1
$\begin{array}{ll}\text { IF DOIACII } \\ 4 & \text { CONTINUE }\end{array}$
44 CONTINUE
$223 \mathrm{I}_{\mathrm{N}=0}^{\mathrm{NN}}=$
A10×001
LPL=0
CHANGE $=0.0$
EXTRA $=0.0$
c
$\mathrm{k} 2=0$
$\mathrm{x}=0$
$k X=0$
$C T 1=0.0$
$K K=0$
$K K=1$
$M=1$
LX* 16
IF (MMX EEQ. 0) GO TO 118
$9 \operatorname{READ}(5,1000)($ MN(I) $, 1=\mathrm{M}, L \mathrm{~L})$
$\mathrm{LX}=\mathrm{LX}+16$

DO $674 I=1$
LM= MN(I)
674 NPIPE(LM) $=1$
118 DO $14 \mathrm{tal}, \mathrm{NP}$

IF (O(I) -LT. DIMIN) D(I)=DIMIM

10(I) \}**4.87)
IF IUNITS .EQ. 2) K(1)=000012*K(I)
IF (UNITS .EQ. 3) KII) $=2.24416 * K(I)$
OD $14 \mathrm{~J}=1$, NP
$14 \mathrm{~A}(1, \mathrm{~J})=0.0$
$602 \mathrm{LL}=\mathrm{NJ}-1$
$00161=1$, LL
$L X K=M L(1)$
$0016 \mathrm{~J}=1$
$L N=L O O P(I, J)$
$\mathrm{LM}=(\mathrm{ABS}(\mathrm{LN})$
IF (LN -LT. 0) $A(I, L M)=-1.0$
IF (LN .GT. 0) A(I,LM)=1.0
16 CONTINUE
LXK $=$ MLIt).
00 $17 \mathrm{~J}=1$,
LN=LOOP (I, J)
LM=IABSILN)
A(1, LM) $\quad \mathrm{K}(\mathrm{LM})$

DO 18 I=
oo $18 \quad J=1, N P$
1G才 J+(1-1)*NP
18 SAVE(IG) BAlJ,I
CALL AINV (SAVE,NP, DDO,LZ, MN,NP*NP)
CALL GMPRT (SAVE, DEMAND,Y,NP,NP, 1,NP*NP,NP*1,NP*1)
DO 19 I $1=1$, NP^{2}
IF (KK *EAE O) $\alpha(1)=Y(I)$
(KK . NE. O) Q(I)=(Q(I)+Y(I))/2.

\begin{tabular}{|c|c|c|}
\hline \& \& $!$

\hline \multirow{33}{*}{$\stackrel{\sim}{\sim}$} \& 156 \&

\hline \& 157
158 \&

\hline \& 159 \&

\hline \& ${ }_{162}^{160}$ \&

\hline \& 102
163
164 \& 边

\hline \& 164
160
160 \&

\hline \& 167 \&

\hline \& 168
169
169 \& $20 \begin{gathered}\text { CTFCTA } \\ \text { CONTINUE }\end{gathered}$ 746/550.*24.*365.*X*CENTS*KII)*Q(1)**2*B*62.4

\hline \& 170

171
172 \&

\hline \& 173 \& $125 \mathrm{KL}=\mathrm{NJ}-1$

\hline \& | 174 |
| :--- |
| 175 |
| 189 | \&

\hline \& 176
177 \&

\hline \& 179 \&

\hline \& 180
182 \&

\hline \& 182 \& IF (LN EEG. LK) 60 to 113

\hline \& 183
184
185 \&

\hline \& 185
186 \&

\hline \& | 1187 |
| :--- |
| 188 |
| 188 | \&

\hline \& 1888 \&

\hline \& 190
191 \&

\hline \& (192 \&

\hline \& 194 \&

\hline \& 195 \&

\hline \& 196 \&

\hline \& 197 \& 1F (PECEO(LO) -EQ. 1.0 . AND. MXX .NE. 1) PRESS(NL +KL)=OPRE(LO)* 1DELEV(LO)

\hline \& 198
199 \&

\hline \& 200
201 \&

\hline \& 202
203 \&

\hline \& 204 \&

\hline \& 205
206 \& (latiole

\hline \& 207
208 \&

\hline \& 209
210 \&

\hline \& ${ }_{212}^{210}$ \&

\hline
\end{tabular}

CALL MINV (SAVE,NJ,DDD,LL,MN,NJ*NJI
CALL GMPRD (SAVE,PRESS,Y;NJ,NJ, $1, N J * N d, N J * 1, N J+11$
$00251=1$, NJ
OPRE(i)=(Y(I)-DELEV(I))*62.4/244.
IF (KX. NE, Of GO TO 104
IF IDPRE(I) -GT. ABMAX) GO TO 105

GO YO 25 (DU1 LE. DD2) GO TO 673
DO $26 \mathrm{~J}=1$, N P

26 CONTINUE
104 IF (DPRE(I) .GT. ABMAX) GO TO 106
IF (OPRE(I) .LT. ABMIN) GO TD 106
IF (DPREII) .LT. HT(I). AND. HTII) .NE. O.0) GO TO 100
60 TO 25
106 DIFF=DABS(OLNI-SO(N)
IF TOIFF .LE. .OOO1 .AND. CT4 .NE. O.0) CT3=CT4
IF IOIFF. LE. . 0001$)^{\circ} 60$ T0 208
IFF=DABS(DELO(N)-EXTRA)
IF (DIFF .LE. . OOO1) DELD(N)=EXTRA
(F (DELD(N) .NE. EXTRA) GO TO 671
DIFF=DAESIDELO(N)-O.0)
IF (DIFF .LE. . NOOI) GO TO 671

$0(J)=S Q(J)$
207 CONTINUE
NPI PE(N) $=1$
CHANGE $=0.0$
EXTRA $=0.0$
$\times x=0$
GO TO 118
208
209 D(J) $=0(J)+D E L D(J)-$ SDELO(3$)$ NPIPE(N)=1
CHANGE 0.0
EXTRA=0.0
$k X=0$
$\begin{gathered}\mathrm{GO} \\ \mathrm{CT}\end{gathered} \mathrm{T}=0 \mathrm{O} 118$
671 CT $4=0.0$
GO $10 \quad 205$
25 CJNTINGE
DIFF=0ABS (EXTRA-0.0)
IF (DIFF .LE, . 0001) EXTRA=0.0
IF (EXTRA EO. O.O) GO 10669
OIFF= OASS(DELD(N)-EXTRA)
IF (DIFF LLE. -OOON OELD(N)=EXIRA
IF (DELD(N) EQ. EXTRA) NPIPE N) $=1$
$659 \mathrm{KX}=\mathrm{kx}+1$

654 IF CCTI.NE: 0.0.AND. ET3.EO. CT41 GO TO 139


```
646 IF (KX .EO. 1) GO 10139
IF ICT3 -GT. CT4 AND. CT4 .NE. 0.01 CT3=CT4
```



```
IF (UO1. NE. A 101 ODI \(=001 / 2\).
DIFF=DABS(CT2-CY3)
```



```
\(39 \mathrm{NM}=\mathrm{NP}+1\) LE
\(k \times x \times=0\)
\(\mathrm{KX}=1\)
ODI =A10
EXTRA \(=0\)
EXTRA \(=0.0\)
CHANGE \(=0.0\)
\(C T 1=0.0\)
\(P L=0\)
```



```
NNN \(=0\)
\(\mathrm{N} N \mathrm{~N}=0\)
\(\mathrm{~N}=1\)
0034 I=1,NM
IF (I .EA. NM) GO TO 666
SDII=0.0
IF INP!PECII EEQ. I) NNN=NNN+ 1
IF (NP(PE(N) .EQ. 1) \(\mathrm{N}=\mathrm{N}+1\)
NPP \(\mathrm{NNP}^{\mathrm{N}}-1\)
IF (NNN .GT. NPP/2) DDI*AID/2.
IF (NNN EEQ. NP ) GO TO 137
666
ou \(35 \mathrm{~J}=1\), NM
\(A(1, J)=0.0\)
CTi,jix0.0
34 CONTINU
A(1,1) \(=1.0\)
DO 32 [ \(=1, N M\)
OO \(33 \mathrm{~J}=1\),NM
```



```
IF iJ EOR 1) GO TO 142
A(I, J1=.746/550.*24.*365.*X*CENTS*2.8518*K(J-1)*O(J-1)*B*62.4 if(-1.)
142 C(I,J)=ENR*.358*1.29* D(J)**.29*L(J)/(877.*BUILD)*FAC+.746*24.*365 -*X*CENTS*.8336*Q(J)*OABS(O(J))*K(J)*62.4/550.*B/D(J)
IF (NPIPE(J) EQ. II C(I,J)=0.0
GO TO 33
121 IF (J .EQ. 1\()\) GO TO 33
LN=1ABSILOOP( \(1-1) \cdot(J-1) 1)\)
120 IF (I .LE. NJ) AII, (LN + I) \(1=-1,0\)
IF (I -LE. NJI C(II.LN) \(=2 . * Q(L N J / D(L N)\)
IF (NPIPE(LN) ©EU. I) C(I,LN)=0.0
IF (I -GT. NJ) A(I,(LN+1))=-1.8518*K(LN)
IF (OILN) .LT, 0.O) A(I, (LN + II) \(=-\mathrm{A}(1,(L N+1)\)
IF 11 .GT. NJi \(C(1, L(N)=-1.1604 * K(L N) * Q(L N) / D(L N)\)
if (NPIPE(LN).EQ. W C(I,LN) \(=0.0\)
ro 33
```



```
IF (NPIPE(LNS). CO. 1 (LN) \(=-2.0 * G(L N\)
IF (NPIPE(L,N), EQ. 1 I \(C(1, L N)=0.0\)
IF (I ©GT. NJ) ALI, (LNN+1) \(1=1.8518 * K(L N)\)
IF (I .GT. NJi Cil,LN)=1.1664*K(LN)*G(LN)/U(LN)
```


IF (KKK.EU. I) GO 10144

IF (KX -NE. 1 -AND. CT3 -GT. CT4) CT3=CT4
$713 \mathrm{CT}=0.0$
$00861=1$, NP
DI $=$ DABS(alit-Y(i)
IF (KKK.EQ. 5) 60 TO 908
$808 \mathrm{CT}=\mathrm{CT}+E N R * .358 * \mathrm{D}(1) * * 1.29 *(11) /(877 . * B U I L U) * F A C$ CT=CT*. 746/550.*24.*365.*X*CENTS*K(1)*O(1)**2*8*2.4
36 CONTINUE
$\mathrm{C} \mathrm{CH}^{\mathrm{C}} \mathrm{CT}$
IF LLDOK .EQ. 3) GO TO 6ST
667 DIFF 20 ABSACHANGE 60 TO 212
IF CDIFF
IF CDIFF AEF . OOOL: GO TO 212
IF LOIFF. LE. . 0001) CHANGEODELD(N)
IF (DELD(N) .NE. CHANGE) GO TO 212
$663 \mathrm{CTINCT4}$
DO $2061=1$, NP
SD(1)=D(1)
$S D(1)=0(1)$
$0(1)=D(1)-$
SQ(I)=0il)
SK(I)=k(I)
206 CONTINUE
DELD(N)=EXTRA
LPL $=0$
2 DIFF=DABSIEXTRA-0.01
IF IOIFF.LE. . 0001) EXTRA=0.0
IF (EXTRA .NE: O.O .AND. CT4. .LT. CTI) GO TO 125

662 DIFF=DABSIEXTRA-DELO(N)I
IF IDIFF. OLE. IF OODII EXIRA=DELOIN
IF IDELD(N) EQ. EXTRA AND. CI4. LT. CTI) GO TO 125
IF TOELD(N) .NE. EXIRA GO TO 718
DIFFEDABSTDELOTNI-0.0)
651 IF (LOOK . NE. 3) LOOK=LOOK-1
IF 1 LOOKK, LT . OI LOOK $=1$
KXK $x=K X K X+1$
IF (KXKX - EN. 1 -ANU. CT2 -LE. CT3) DO1x1.5*DO2

655 DO $211 \mathrm{~J}=1$.ND
D(J)=D(J)-DELD(J)+SOELD(J)
$0\{J=50(J)$
$0(J)=50(J)$
KなJ=SK(J)
211 CONTINUE
OIFFRJABS(EXTRA-DELOIN)I
IF (DIFF .LE 10001$)$ EXTRA=DELD(N)
IF (DELD(N) EL. EXTRA) GO TO 125
719 IF (CT3. ©T. CT4) GO TO 125
20500203 I=1,N
IF (SCANII) -EQ. U.0) o(t)=D(1)-DELD(I)
IF (SCANII) .NE. 0.0.AND. UII) EEG. DIMIN) $M=1$

