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Abstract—Conventional circuit dissipates energy to reload
missing information because of overlapped mapping between
input and output vectors. Reversibility recovers energy loss
and prevents bit error by including Fault Tolerant mechanism.
Reversible Computing is gaining the popularity of various fields
such as Quantum Computing, DNA Informatics and CMOS
Technology etc. In this paper, we have proposed the fault
tolerant design of Reversible Full Adder (RFT-FA) with minimum
quantum cost. Also we have proposed the cost effective design of
Carry Skip Adder (CSA) and Carry Look-Ahead Adder (CLA)
circuits by using proposed fault tolerant full adder circuit. The
regular structures of n-bit Reversible Fault Tolerant Carry Skip
Adder (RFT-CSA) and Carry Look-ahead Adder (RFT-CLA)
by composing several theorems. Proposed designs have been
populated by merging the minimization of total gates, garbage
outputs, quantum cost and critical path delay criterion and
comparing with exiting designs.

Index Terms—Reversible Logic, Fault Tolerant, Carry Skip
Adder, Full Adder, Quantum Cost

I. INTRODUCTION

Higher level of integration and use of fabrication processes

have dramatically reduced the heat loss over the last decades.

Landauer [1] proved that logic computation that are not

reversible, necessarily generate kT*log2 joules energy per
bit information loss, where k means Boltzman’s constant
and T is the absolute root temperature where computation
is performed. Reversible circuit doesn’t loss information by

considering a unique mapping between input and output. By

using reversible computation zero power dissipation circuits

is possible [2]. Reversible circuits are fundamentally different

from traditional irreversible and are used to emphasis future

technology. However reversible computation admits to gener-

ate multiple functions simultaneously. Quantum Computation

is also gaining popularity as some exponentially hard problem

can be solved in polynomial time and reversibility can be used

to construct Quantum circuits [3].

Different arithmetic operations were realized by using re-

versible primitives since few decades earlier. Existing designs

of Full Adder circuit were proposed in [4], [5], [6], [7] and

finally generalized by [3] but any of these designs has no

fault detection capability. Fault Tolerant full adder circuit was

proposed in [8], [9], [10] without any generalization or cost

effective structure. We have achieved more compact design

of n-bit adder circuit which shows better performance than
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Fig. 1. (a) Fredkin Gate and (b) New Fault Tolerant Gate

existing designs [6], [7], [8], [9], [12], [11]. Here we have

pictured the regular structure of Fault Tolerant adder circuits

by using Fault Tolerant gates (Fig. 1 shows the design of

Fredkin (FRG) [13] and New Fault Tolerant (NFT) [14] gates).

Rest of the paper is organized as follows: Section II dis-

cusses the construction of Reversible Logic, Fault Tolerant

method, Quantum realization and Arithmetic Full Adder cir-

cuit. Section III illustrates the proposed cost effective design

of Reversible Fault Tolerant Full Adder (RFT-FA), Carry Skip

Adder (RFT-CSA) and Carry Look-Ahead Adder (RFT-CLA)

by attaching the comparison with existing designs. Section IV

describes a brief overview of the performance of proposed

designs. Section V ends the paper with concluding remarks.

II. BACKGROUND STUDY

In this section, we have discussed about the basic definitions

and properties of Reversible Logic, Fault Tolerant mechanism

and Quantum realization of reversible circuit.

A. Reversible Logic

Reversible Logic always retrains an unique mapping be-

tween input and corresponding output vectors.

Definition 1. The unit logic entity of reversible circuit is
called Reversible Gate where the number of inputs is equal
to the number of outputs and there is an one to one mapping

between input and output vectors [3].

Let, the input vector, Iv = {I1, I2, . . ., In} and output vector,
Ov = {O1, O2, . . ., On} then according to the above definition
the relationship is Iv ↔ Ov .

Definition 2. The input vector, Iv and output vector, Ov for

2×2 Feynmen Gate (FG) [15] is defined as follows:
Iv = {a, b} and

Ov = {a, a ⊕ b}
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Fig. 2. 2×2 Feynman/CNOT Gate

TABLE I
TRUTH TABLE OF FEYNMAN GATE

Input Output
a b a a⊕b
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Fig. 2 shows the block diagram of Feynman Gate and Table I

shows the unique mapping between input and output vectors

of Feynman gate.

Definition 3. The Garbage Output of any reversible gate
or circuit is unwanted or unused output which will not be used

in future rather than for checking reversibility [3].

For example, the Exclusive-OR operation can be realized

by using only one Feynman Gate which produces an extra

dummy output (a) along with its principle output signal (a ⊕
b) to preserve reversibility (shown in Fig. 2).
Definition 4. Delay of any circuit is the number of max-

imum gate(s) from any input to any output where both ends

preserve a continuous communication line. Total delay to

generate EX-OR function is 1 (shown in Fig. 2) [3].

Definition 5. The input vector, Iv and output vector, Ov of

3×3 Fredkin Gate (FRG) [13] is defined as follows:
Iv = {a, b, c} and

Ov = {a, āb ⊕ ac, āc ⊕ ab}
The block representation of FRG is shown in Fig. 1(a).

Definition 6. The 3×3 dimensional Feynman Double Gate
(F2G) [16] is another reversible gate where the input vector,
Iv and the output vector, Ov are defined as follows:

Iv = {a, b, c} and
Ov = {a, a ⊕ b, a ⊕ c}

The Block Diagram and the unique mapping between input

and output vectors of Feynman Double (F2G) gate can be

shown as Fig. 3 and Fig. 4 respectively.

Definition 7. The input vector, Iv and output vector, Ov of

3×3 New Fault Tolerant (NFT) gate [14] as follows:
Iv = {a, b, c} and

Ov = {a ⊕ b, ac̄ ⊕ b̄c, ac̄ ⊕ bc}

F2G
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Fig. 3. 3×3 Feynman Double Gate

INPUT VECTOR (a, b, c)

OUTPUT VECTOR (a, a     b, a    c)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Fig. 4. Feynman Double Gate (F2G) preserves Fault Tolerance over input-
output unique mapping

The block diagram of NFT gate is shown in Fig. 1(b).

Definition 8. The input and output vectors of 4×4Modified
TSG (MTSG) gate [3] are Iv and Ov respectively and can be

defined as follows:

Iv = {a, b, c, d} and
Ov = {a, a ⊕ b, ab ⊕ c, (a ⊕ b)c ⊕ ab ⊕ d}

Another popular reversible gates are Peres Gate (PG) [18],

Toffoli Gate (TG) [17] and New Gate (NG) [19] etc.

B. Fault Tolerant Method

Reversibility recovers bit loss but is not able to detect bit

error in circuit. Fault Tolerant reversible circuit is capable to

prevent error at outputs.

Definition 9. Fault Tolerant (FT) gate, also called Conser-
vative Reversible Gate [9] which means the Hamming weight

of its input and output are equal.

Let, the input and output vectors of any Fault Tolerant gate

are Iv= {I0, I1, . . ., In−1} and Ov= {O0, O1, . . ., On−1} where
the following equations (1) and (2) must be preserved:

Iv ↔ Ov (1)

I0 ⊕ I1 ⊕ . . . ⊕ In−1 = O0 ⊕ O1 ⊕ . . . ⊕ On−1 (2)

For example, the Fault Tolerance property of Feynman Double

gate (shown in Fig. 3) can be verified from Fig. 4 where square

and circle represents ODD and EVEN parities respectively

and the equivalent decimal values of input-output vectors are

represented as corresponding decimal number (0-7).

F2G, FRG and NFT are 3×3 dimensional and MIG is 4×4
dimensional fault tolerant gate having unique mapping be-

tween Input and Output vectors. The input and corresponding

output parities of Fault Tolerant gates are same [16]. In early,

fault tolerant Gate is also called Parity Preserving Gate.

C. Quantum Realization

Quantum realization is another fact to judge the efficiency of

reversible circuit which uses matrix multiplication rather than

conventional Boolean operations. In Quantum Mechanics, the

states of a particle is represented by qubits instead of bits. The

operations over on qubits are matrix multiplication specified

by using quantum gates (shown in Fig. 5) [20].

Definition 10. Quantum Cost (QC) of any reversible
circuit is the total number of 2×2 quantum primitives that
are used to realize equivalent quantum circuit [3], [21].
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Fig. 5. Elementary Quantum Logic gates: (a) NOT, (b) Exclusive-OR, (c)
Square Root of NOT (SRN) and (d) Hermitian matrix of SRN
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Fig. 6. Quantum circuit realization of Fredkin gate [13]

For example, the quantum cost of Feynman gate (shown in

Fig. 2) is one because single 2×2 Quantum EX-OR gate is
enough to realize its operations. The quantum circuit of several

reversible gates is presented in [3]. Fig. 6 shows the quantum

representation of Fredkin gate and the cost is 5.

Here we have proposed the quantum realization of reversible

fault tolerant Modified IG (MIG) [8] and New Fault Tolerant

(NFT) [14] gates by using quantum EX-OR, Square Root of

NOT (SRN or V) and Hermitian of SRN (V+) gates as shown

in Fig. 7. According to design, the quantum cost of Modified

IG (MIG) (New Fault Tolerant (NFT)) gate is 7(5).

D. Arithmetic Adder Circuit

Adder is an essential part of digital circuits to implement

most of the mathematical operations. Single bit adder or Full

Adder is the unit entity of any kind of computing devices.

Definition 11. A Full Adder is a digital circuit which
takes two bits from two operands and carry bit from prior

stage as input and generates the summation of three bits and

corresponding carry as output [3].
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Fig. 7. Quantum equivalent circuit realization of MIG [8] and NFT [14] by
using quantum primitives
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Fig. 8. Full adder Realization by using MTSG [3]

Let, a and b both are the single bit operand and cin is the
carry of previous stage then outputs of full adder circuit, Sum

(s) and Carry (cout) can be defined as follows:

s = a ⊕ b ⊕ cin

cout = acin ⊕ bcin ⊕ ab

For example, single MTSG gate able to realize reversible full

adder circuit as shown in Fig. 8.

Following section has described the proposed designs of

Fault Tolerant Full Adder (RFT-FA) circuit followed by Carry

Skip Adder (RFT-CSA) and Carry Look-ahead Adder (RFT-

CLA) by including their performances over existing designs.

III. PROPOSED DESIGN

In this section, first we have described the proposed design

of cost effective Reversible Fault Tolerant Full Adder by using

New Fault Tolerant (NFT) and Feynman Double (F2G) gates.

Then we have described the design of Fault Tolerant Carry

Skip (RFT-CSA) and Carry Look-ahead (RFT-CLA) adders

by using proposed design of Fault Tolerant Full Adder.

A. Fault Tolerant Full Adder Design

The quantum cost of New Fault Tolerant (NFT)(shown in

Fig. 7(b)) and Fredkin (FRG) gates are same i.e. 5. But the

quantum cost of Feynman Double (F2G) gate is 2. We have

used New Fault Tolerant (NFT) and Feynman Double (F2G)

gates because of reusability of proposed adder circuit for Carry

Skip Adder and Carry Look-ahead Adder.

Definition 12. Single NFT Full Adder (SNFA) is a Fault
Tolerant full adder circuit which consists of one New Fault

Tolerant (NFT) gate and three Feynman Double (F2G) gates

where the quantum cost is 11 and the total number of garbage

output is 3 (shown in Fig. 9).

Theorem 1: The minimum number of garbage bit to realize
Reversible Fault Tolerant Full Adder circuit is 3.

Proof: Let, a, b and cin are the inputs of a full adder circuit
where s and cout are the corresponding outputs. There are three
different states at the inputs (a, b and cin) where the outputs
(s and cout) produce same patterns as shown in Table II. For
any parity preserving reversible circuit, total number of EVEN

or ODD parity at input or output is equal. Table II shows that

the all input patterns are EVEN but the corresponding output

patterns are ODD. Turning three ODD patterns at output into

EVEN by adding two extra bits is not possible. Because two

bits can represent 22 different states where 00 and 11 (01 and

10) are EVEN (ODD) only. So, Reversible Full Adder circuit

requires at least 3 garbage bits to make itself Reversible Fault

Tolerant Full Adder.
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TABLE II
INPUT-OUTPUT PATTERNS OF FULL ADDER

Input Output
a b cin s cout
0 1 1 0 1
1 1 0 0 1
1 0 1 0 1

F2G F2G NFT0 F2G
a

b
0

G

G
Gcin

a    b    cin
ab    bc      acin in

Fig. 9. Proposed design of Fault Tolerant Single NFT Full Adder (SNFA)

TABLE III
COMPARISON BETWEEN PROPOSED AND EXISTING DESIGNS OF

REVERSIBLE FAULT TOLERANT FULL ADDER

Fault Tolerant Total Gates
GB QC

Full Adder 3×3 4×4
Proposed 4 0 3 11
Existing [8] 0 2 3 14
Existing [9] 5 0 4 25
Existing [10] 6 0 6 18
GB= Garbage bits, QC= Quantum Cost

The performance analysis between the proposed design and

all other existing designs is shown in Table III.

Table III shows that the Ref. [8] uses two gates and the

corresponding quantum cost is 14 where proposed design uses

low dimensional four gates and the quantum cost is only 11.

B. Fault Tolerant Carry Skip Adder

Fast carry emission is the main concern of Carry Skip Adder

and it depends on: firstly, if any operand is equal to logical

1 then the full adder propagates cin to cout and secondly, it

also generates carry itself (cout independent on cin).

Definition 13. Propagate is a simple XOR operation be-
tween two operands which is responsible for only bypassing

the carry of previous stage to next stage [6].

Let, X= (x0, x1, x2, . . ., xn−1) and Y= (y0, y1, y2, . . ., yn−1)

are two n-bit operands where Propagate pi of ith stage can be
defined from xi and yi as follows:

pi = xi ⊕ yi

Definition 14. Generate is an AND operation which enables
current stage of adder to generate carry for next stage [6]. So

the Generate of ith stage as follows:

gi = xiyi

Definition 15. Reversible Fault Tolerant Carry Skip Adder
(RFT-CSA) consists of SNFAs and FRGs to perform summa-
tion and propagate carry respectively which reduce the delay

or bypassing carry due to the recalculation of carry for the next

stage. If any input is equal to a logical 1, then it propagates

the carry input to the carry output [9].

Proposition 1. n-bit RFT-CSA can be realized by using
(3n+1) F2Gs, n FRGs and n NFTs.
Proof: Let, n SNFAs are needed to realize n-bit RFT-CSA

(each SNFA consists of three F2Gs and one NFT) to generate

sum (si) and Propagate (pi) where i= 0, 1, 2, . . . , (n-1). And
n FRGs are needed for performing AND operation among n
Propagates with cin. So the calculation of the number of NFT
(NFTCSA), the number of FRG (FRGCSA) and the number of

F2G (F2GCSA) to implement n-bit RFT-CSA is as follows:

NF TCSA = n,

F RGCSA = n and

F2GCSA = 3n

But RFT-CSA needs another extra F2G to generate final

carry, cout by performing EXOR operation between cn−1 and

(pn−1pn−2 . . .p0cin).

F2GCSA = 3n+ 1

So, n-bit RFT-CSA can be realized by using (3n+1) F2Gs, n
FRGs and n NFTs.
Proposition 2. n-bit RFT-CSA can be realized with (n+5)

Critical Path Delay.

The proposed design of 4-bit RFT-CSA is shown in Fig. 10

which uses proposed full adder (SNFA) circuit.

Finally, the total garbage (GBCSA) and Quantum Cost

(QCCSA) of n-bit RFT-CSA can be written as follows:

GBCSA = 4n

QCCSA = 5 ∗ 2n+ 2 ∗ (3n+ 1)
= 16n+ 2

The comparison between proposed RFT-CSA and existing

designs is shown in Table IV. Carry Skip Adder is more

reliable in case of hardware implementation where circuit cost

is another factor of design with respect to Delay. In Table IV,

the QC of proposed design is 66 which is minimum than all

existing designs. Although the number of 3×3 gates of [7] is
about equal to proposed design but QC of proposed design has

been improved 20% because of using cost effective Feynman

Double gate (QC of Feynman Double gate is only 2). The

proposed cost-effective design of Fault Tolerant CSA (RFT-

CSA) has improved cost factor having fault detection as well.

SNFASNFASNFASNFA

FRG
FRG

FRG
FRG

F2G

cin

c0c1
c2

cout

s3 s2 s1

s0

0
0

0

0

x0
y

0 00x1
y

1 00x2
y

2 00x3
y3 00

c3

Fig. 10. Proposed design of Reversible Fault Tolerant Carry Skip Adder
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TABLE IV
COMPARISON BETWEEN PROPOSED AND EXISTING DESIGNS OF CARRY

SKIP ADDER

Carry Skip Total Gates
GB DL QC

Adder 3×3 4×4
Proposed† 21 0 16 9 66
Existing [7]§ 22 0 26 16 88
Existing [8]† 6 8 19 13 80
Existing [9]§ 24 0 23 14 120
† Fault Tolerant, § with fan-out
GB= Garbage bits, DL= Delay, QC= Quantum cost

C. Fault Tolerant Carry Look-ahead Adder Circuit

This section introduces the design of Reversible Fault Toler-

ant Carry Look-ahead Adder (RFT-CLA) circuit overlaps the

performance of all existing designs. Proposed design of RFT-

CLA is based on New Fault Tolerant (NFT) and Feynman

Double (F2G) gates where the carry is generated before sum.

Definition 16. Reversible Fault Tolerant Carry Look-
ahead Adder (RFT-CLA) consists of serial attachment of n
SNFAs but the work as a carry generator itself where the carry

output of ith stage (ci) is produced before sum si where i= 0,
1, 2, . . . , (n-1).
Proposition 3. n-bit RFT-CLA can be realized by using the

combination of n NFTs and n F2Gs.
Proposition 4. The Delay of n-bit Reversible Fault Tolerant

CLA (DRFT−CLA) can be minimized to (n+3).
Proof: According to Definition 4, the Delay of any circuit

is the number of maximum gates laying on contiguous path

of any input to output. The Delay of SNFA, DSNFA= 4

to generate sum not carry. Delay of parallel adder circuit

depends on carry propagation (from cin to cout) of every stage.
Any n-bits RFT-CLA needs n SNFAs where Delay of RFT-
CLA, DRFT−FA �= 4n. Because carry input (ci) of ith stage
is generated by spending 1 units Delay where i= 0, 1, 2, . . . ,
(n-1). In first stage, extra two units Delay is added because

F2G F2G NFT0 cin
F2G

0

F2G F2G NFT0 F2G
0

F2G F2G NFT0 F2G
0

F2G F2G NFT0 F2G
0

0

1

2

3

0

1

2

s3

x0y0

x1y1

x2y2

x 3y3

c

c

c

c

s

s

s

Fig. 11. Efficient Design of 4-bit Reversible Fault Tolerant Carry Look-ahead
Adder

TABLE V
COMPARISON BETWEEN PROPOSED AND EXISTING DESIGN [8] OF FAULT

TOLERANT CARRY LOOK-AHEAD ADDER

Fault Tolerant Total Gates
GB DL QC

Carry Look-ahead Adder 3×3 4×4
Proposed (4-bit) 16 0 12 7 44
Existing [8] (2-bit) 15 4 28 12 73

GB= Garbage bits, DL= Delay, QC= Quantum cost

of first carry output (c0) generation is related to operands at
first stage. On the other hand, last stage has extra single unit

Delay because the final sum is generated after one stage of

generation of final carry (cout). So the Delay calculation for
n-bits RFT-CLA is as follows:

DRFT−FA = n+ 3

Therefore an n-bit RFT-CLA can be realized by using (n+3)
unit Delay.

Proposition 5. An n-bit Reversible Fault Tolerant Carry
Look-ahead Adder (RFT-CLA) can be realized with minimum

Quantum Cost 11n.
Proposition 6. An n-bit Reversible Fault Tolerant Carry

Look-ahead Adder (RFT-CLA) can be realized with minimum

Garbage 3n.
Fig. 11 shows the proposed design of 4-bit Reversible Fault

Tolerant Fast Adder and Table V shows the performance of

proposed design by comparing with existing [8] design of 2-bit

reversible Fault Tolerant Carry Look-ahead Adder.

IV. PERFORMANCE ANALYSIS

Previous two sections have discussed about the design of

Reversible Fault Tolerant Full Adder, Carry Skip Adder and

Carry Look-ahead Adder and the comparison of corresponding

existing designs. This section have presented an abstract

overview of proposed designs and the complexity analysis for

n-bit Reversible Fault Tolerant Adder circuits. Fig. 12 repre-
sents that the performance of proposed 4-bit Reversible Fault

Tolerant Carry Skip Adder is better compared to existing [8].

The number of gates in proposed design is greater than existing

design [8] because of dimensional impact (lower dimension is

preferable) which can be treated as negligible because of other

factors (delay, garbage and quantum cost). Table VI describes

the another evolutionary observation between proposed n-bit
Reversible Fault Tolerant Carry Skip Adder and Carry Look-

ahead Adder designs. We have already given the comparative

study between proposed and existing designs of reversible

fault tolerant Carry Skip Adder (Carry Look-ahead Adder)

in Table IV (Table V) individually. Proposed designs of CSA

and CLA demand better performance than existing designs

in terms of number of gates, garbage outputs, delay and

quantum cost. Along with the lower dimensional (3×3) fault
tolerant gates our proposed designs have got more flexibility

in reversible CMOS [22] realization. Pictorial representation

of performance evaluation of Reversible Fault Tolerant Carry

Look-ahead adder circuit over Carry Skip Adder circuit is

shown in Fig. 13.
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Fig. 12. Comparison between Proposed design and Existing design [8] of
4-bit Carry Skip Adder

TABLE VI
COMPARISON AMONG PROPOSED REVERSIBLE FAULT TOLERANT FAST,

CARRY SKIP AND CARRY LOOK AHEAD ADDER

Proposed Total Gates
GB DL QC

Adder Cirucits FRG F2G
RFT-CLA † n 3n 3n n+3 11n
RFT-CSA 2n 3n+1 4n n+5 16n+2

† Minimum Delay and Minimum cost
GB= Garbage bits, DL= Delay, QC= Quantum cost

V. CONCLUSION

In our proposed designs, we have combined all marginal

cost factors (Gate cost, Delay, Garbage and Quantum cost) to

generate optimized architecture of Reversible Fault Tolerant

adder circuits which gather better performance than existing

all fault tolerant designs. This paper has covered the designs

of minimum cost fault tolerant Carry Skip Adder (RFT-CSA)

and Carry Look-ahead Adder Circuits. Both designs have used

the proposed structure of fault tolerant Full Adder (RFT-FA or

SNFA) circuit has minimum quantum cost 11. Several number

of theorems have been proposed to make the designs of RFT-

CSA and RFT-CLA more generalized for n-bit fault tolerant
adder circuitry. Finally, we have attached the evolutionary

report of performance of proposed designs.

Fig. 13. Comparison between Proposed design of 4-bit Reversible Fault
Tolerant Carry Skip Adder and Carry Look-ahead Adder
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