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Minimum Cross-Entropy  Spectral  Analysis 
of Multiple Signals 

Abmwt-This paper  presents  a new information-theoretic  method 
for simultaneously  estimating a  number of power spectra  when  a  prior 
estimate of each is available  and new  information is obtained  in  the 
form of values of the autocorrelation  function of their  sum.  One  appli- 
cation of this  method  is  the separate estimation of the spectra of a  sig- 
nal  and  additive noise, based on autocorrelations of the  signal plusnoise. 
A derivation of the  method from the principle of minimum cross  en- 
tropy  is  given, and the  method  is compared to  m3imum cross-entropy 
spectral  analysis, of which it is a  generalization. Some basic mathemati- 
cal  properties are discussed.  Three  numerical examples are included, 
two based 011 synthetic spectra,  and one based on actual  speech  data. 

I. INTRODUCTION AND BACKGROUND 

W E present  here an information-theoretic  method for 
simultaneously estimating a number  of  power  spectra 

when a prior  estimate of each is available and new information 
is obtained  in the  form of values of  the autocorrelation  func- 
tion  of  their sum. The  method applies, for instance, when one 
obtains  autocorrelation  measurements  for L signal with  inde- 
pendent additive interference  and one  has some prior  knowl- 
edge concdrning the signal and  the noise spectra; the result is 
signal- and noise-spectrum estimates that take both  the  prior 
estimates  and the  autocorrelation  information  into  account. 
One thus  obtains a procedure for noise suppression that offers 
some advantages over more traditional  procedures,  such as 
those  based on  spectral subtraction. 

The  present  method is a generalization of minimum cross- 
entropy spectral analysis [ I ] ,  which  is in  turn a generalization 
of maximum entropy (or linear-predictive or autoregressive) 
spectral analysis [ 2 ] ,  [3]. All of these methods  proceed  from 
autocorrelation values.  Minimum cross-entropy  spectral  analy- 
sis  (MCESA) differs from maximum entropy spectral analysis 
(MESA) in  that  it explicitly uses a prior  estimate of the  power 
spectrum;  it reduces to MESA  as a special  case when the prior 
estimate is uniform  and  one of  the given autocorrelation values 
is for zero lag. The  present method, multisignal MCESA, dif- 
fers from MCESA in  that  it  treats  an  arbitrary  number  of  inde- 
pendent  spectra  simultaneously; in the special  case of a single 
spectrum,  it  becomes identical to MCESA. 

MESA may be regarded as an  application  of the principle of 
maximum entropy [4], [SI ; single- and multisignal MCESA 
are  applications of a generalization of that principle, the prin- 
ciple of minimum cross entropy (also  called minimum discrim- 
ination  information,  directed divergence, 1-divergence, relative 
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entropy, or Kullback-Leibler number) [6]  - [ 1  I ] .  In the re- 
mainder of this  section, we describe single- and multisignal 
MCESA further, and include some background on  the prin- 
ciple of minimum cross entropy.  For a comparison of these 
spectrum-analysis methods with MESA, see [ l ]  and [ 121 . 
Section I1 contains a derivation of our multisignal estimator, 
and  Section 111 discusses a few of its general properties. Sec- 
tion N presents  three numerical examples, one  of which  is 
based on measured  samples of speech signals and noise. Sec- 
tion V contains a few remarks on algorithms. Finally,  Section 
VI contains a concluding discussion. 

A. Single- and  Multisignal MCESA 
MCESA addresses the following problem:  estimate  the 

power spectrum S ( f )  of a real, band-limited,  stationary  pro- 
cess with  bandwidth W, given  values of  the  autocorrelation 
function 

R(t) = 2 J W  df  S ( f )  cos 2r f t  

for  finitely  many lags t = tr, r = 0, . . . , M ,  and given, in addi- 
tion, a prior estimate P of S; P may be thought  of as the best 
guess at 5’ we could  make  in the absence of autocorrelation 
data. The MCESA estimator has the form [ll 

I 
= 1/P(f) + 2 2pr cos 2r f t ,  

r 

where the Or are chosen so that Q satisfies the constraint that 
the autocorrelation  function assume the given  values: 

We call Q the posterior estimate a€ S based on the prior esti- 
mate P and  constraints (2). This estimator can be obtained di- 
rectly from  the minimum cross-entropy principle [ 11 ; it can 
also be obtained by minimizing the Itakura-Saito  distortion 
measure [ 13 

subject to (2) [ l ]  . When P ( f )  is uniform,  and  one of the 
autocorrelation values is at lag zero (say, to =L 0), the constant 
1/P can be absorbed into  the coefficient P o .  Thus, in this case, 
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the MCESA estimator ( 1 )  can be written in the usual MESA 
form, and MCESA reduces to MESA. 

For  multisignal MCESA, the  problem is to estimate the 
power spectra & ( f )  of a  number  of  independent  processes, 
given  values of  the  total  autocorrelation 

R(t) = 2 Jw d f   S i ( f )  cos 2nft 
i o  

and  a  prior  estimate Pi for  each Si. The  estimator  has  the  form 

1 
Q i ( f )  = l / P j ( f )  + 2 20, cos 2nft, 

(3) 

r 

where the Pr are chosen so that  the constraint  equations 

r W  

are satisfied. Note that  the summation  term in the denomina- 
tor in (3) is independent of i. In Section 111, we  derive the 
estimates (3) directly from the principle of  minimum cross en- 
tropy. We also show that  they can  be  obtained  by  minimizing 
the  sum 

of Itakura-Saito  distortions  subject to the  constraints (4). 
Equations (3) and (4) reduce to ( 1 )  and (2) when  there is only 
one  spectrum Si. Thus,  multisignal MCESA reduces to ordi- 
nary MCESA in case there is only  one signal. 
B. Cross-Entropy Minimization 

The principle of  minimum cross entropy is a  general  method 
for inference  about  probability  distributions when informa- 
tion is  available  in the form  of  expectation values of  known 
functions. 

Let qt be a  probability  density on a space of states x of 
some  system.  Suppose that qt  is not  known,  but  there is 
some prior density p (on the same  space) that is our  current es- 
timate  of qt.  Now suppose we  gain  new information  about qf 
in the  form  of  eKpectation values 

Jdx 4%) g&> =E, (5 ) 
of  known  functions g,. In general, these constraints do  not de- 
termine qt uniquely: the  equations (5) are satisfied by  other 
densities q than qt (but not necessarily by p ) .  The  problem to 
be  solved  is,  given p and  the  constraints (S), to make the best 
possible choice  of  a new (or posterior) estimate q of qt . The 
principle of  minimum cross entropy  states  that one  should 
choose that density q ,  among all the densities that satisfy the 
constraints, that has the least cross entropy 

m ,  PI = J d x  d x )  1% (Cr(x)lp(x>> (6) 

with  respect to p .  For  justifications  of  the principle, see [7]  , 
[ 141 , and [ 121 . 

Given a positive prior probability  density p ,  if there exists a 

posterior q that minimizes the cross entropy and satisfies the 
constraints (S), it has the form 

q(x) = p(x> exp (- X - 2 Prgr(x)) (7)  
r 

with  the possible exception  of  a set of  states  on  which  the  con- 
straints imply that q vanishes [6, p. 381, [ lo]  . In (7),  h and 
0, are Lagrange multipliers whose values are determined  by  the 
normalization  constraint 

J d x  4(x) = 1 

and by the  constraints ( 9 ,  respectively. Conversely, if there 
are  values for X and 0, for  which the  constraints are satisfied, 
then  the  solution exists and is given by (7 )   [ lo ]  . Conditions 
for  existence  of  solutions are  given by Csiszir [ 101 . 

11. DERIVATION 
We assume that  the time-domain signal  is a sum of  stationary 

random  processes gi(t), i = 1 ,  . * , K.  In many applications, K 
will be 2-one  signal process  and  one  noise  process-but the 
case of  arbitrary K is no  harder than K = 2,  so we do  the der- 
ivation in that generality. It is convenient to work  with 
discrete-spectrum  approximations to the gi [ 11 , [ 151 : 

N 

S j ( t )  = 2 (ajk COS 2nfkt i- bik Sin 2nfkt)  
k = l  

where the aik and  the bik are random variables and  the f k  are 
nonzero  frequencies, not necessarily uniformly  spaced. We 
write Xik for  the power of  the  process si at  frequency k f k ,  

Xik = (a;k + b!k), 

and will describe the process in terms of a  joint probability 
density qt(x)  = qt(xl, * * * , x ~ )  where xi stands  for (xi l  , - * . , 
x ~ N ) .  The marginal  density for each xi  is defined  by 

qJ(xi> = {q+(x) n &j 
j # i  

where each  component xjk of the variables of  integration 
ranges from 0 to a. 

Let Pik = P i (  f k )  be prior  estimates  of  the  power  spectra  of 
the si. Then we may  take 

N 
Pi(xi) = n (llPik) ex!? (-xik/Pik) (9) 

k = l  

as prior estimates  of qf(xi). The  assumed  exponential  form is 
equivalent to a Gaussian distribution in the  amplitude variables 
aik and bik; for  justification  of  its use, see [ 11 and [ 161 . Note 
that  the coefficients are chosen so that  the expected value of 
the  power X j k  of the  process si at frequency f k  is equal to  the 
prior estimate Pik. Since we  assume independence  of xi and 
xi (i # j ) ,  our prior estimate  of qt becomes 

The  autocorrelation  function  of  each  process si is given by 
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where c,k = 2 cos 2ntrfk. Suppose we obtain information 
about qt in the form of autocorrelation values for  the sum of 
the si, 

K 
R r =  2 Rir ,  (12) 

i =  1 

y =  0,. . . , M where to = 0. In view of (1 l ) ,  this  has the form 
of linear constraints on expectation values of q t .  We apply 
the principle of minimum cross entropy  to these constraints 
and the prior equation (10). Following the steps that led to 
(9) in [ 11 yields a posterior  estimate q of qt given by 

K N  
d x )  = n n Aik exp (-AikXik) 

-. 
(13) 

i= l  k = l  

where 

Aik = 1/pik + 2 /3vc,k 
Y 

and the /3, are Lagrange multipliers corresponding to  the  con- 
straints.  The  posterior  estimate of  the power spectrum of si is 

P 

thus, 

where the /3, must  be chosen so that  the constraints 

K N  
R r  = 2 CrkQik (15) 

i = l  k = l  

are satisfied. Equations (14) and (15) are simply discrete ana- 
logs of (3) and (4). 

Whenp and 4 are given by (10) and 

[cf. (13)] ,  the cross entropy (6) can be calculated explicitly: 

The quantity in brackets is a discrete analog of  the Itakura- 
Saito  distortion measure [13] ,  [17] of Pi with respect to Qi; 
cross-entropy minimization is thus equivalent to choosing the 
Q; so as to minimize the sum of Itakura-Saito  distortions. We 
obtain an alternative derivation of (14) by minimizing the 
right side of (16) directly, subject to the constraints (1 5 ) .  
Namely, we form the expression 

involving  Lagrange multipliers /3,, and we set the partial deriva- 
tive with respect to each Qik equal to zero: 

This yields ( 1  4). 

111. PROPERTIES 
In this  section, we discuss three miscellaneous properties of 

our multisignal method. We call the first “order preservation”; 
briefly, it states that  the  method preserves the relative magni- 
tudes of the priors. The second, “preservation of indepen- 
dence,” is related to  the assumption of statistical indepen- 
dence of the processes si; it follows from a generalization of 
the  property  of cross-entropy minimization that was  called 
“system independence”  in [7] and [ 141 . The third is related 
to a  phenomenon that we  call “prior washout,” and that oc- 
curs when a posterior resulting from  one analysis is used as 
a  prior  for  a subsequent analysis; we compare and contrast 
the behavior of the single- and multisignal methods in this 
situation. 

A. Order  Preservation 
Let Pi and Pj be two prior spectra and let Qi and Qj be corre- 

sponding posterior  spectra resulting from  a multisignal MCESA 
analysis. The order-preservation property is the observation 
that for each frequency f k  we have Qi < Qj, Qi = Qj, or Qi > 
Qj if and  only if Pi <Pi, Pi =Pi, or Pi >Pi ,  respectively. This 
follows from the form of  the representation of the Qi in (3). 
The property accords well with intuition: if  we expect a priori 
that si has greater power than sj at frequency f k ,  that expecta- 
tion should not be altered by new information that concerns 
only  the sum of the  two powers. 

B. Preservation of Independence 
In ( lo ) ,  we wrote the prior  probability density p in the form 

K 
P ( X >  = n Pi(Xi> 

i= 1 

[cf. (9)] to reflect the initial assumption that the xi are inde- 
pendent. Preservation of independence is the property that 
the posterior density 4 has the same form, 

K 
dx)  = n 4i (xi) 

i= 1 

[cf. (13)] , so that  the xi remain independent  after the prior 
density is replaced by the posterior. This posterior indepen- 
dence would be a simple consequence of the system indepen- 
dence property  of [7] and [14] if the constraints were of the 
form 

R, = dx qt(x)g,(xi(,,), I 
that is, if each constraint involved only one of the sets xi of 
variables  (where which set was  involved might depend on the 
constraint). System independence was one of the consistency 
axioms in [7] ; informally, it states that  it does not  matter 
whether independent  constraint  information about separate 
systems with  independent  priors is accounted  for separately, 
for each  system, or  jointly,  by treating the system as one com- 
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posite system. In  the present case, the  constraints have the 
more  general  form [cf. (1  1) and (12)] 

I K 
Rr = dxqt(x) gri(xJ; 

i= 1 

each  constraint involves a linear combination  of  functions, 
each involving one of the xi .  Nevertheless,  posterior  indepen- 
dence still follows from prior  independence in this  more  gen- 
eral  case. 

C. Prior Washout 
The  phenomenon we  are here calling "prior  washout" was 

mentioned in [ 141 in connection  with  "Property 14." Prop- 
erty 14, in slightly specialized form,  states  the  following.  Let 
p be  a  prior  probability density. Let I ( ' )  and I(2)  be sets of 
constraints  of  the  form (5), but  with  the right side replaced  by 
g,") for I ( ' )  and  by 2,'" for Z('); that is I ( ' )  and both con- 
strain the  expectations  of  the same set of  functionsg,,  but  the 
expected values may differ. L,et q(') be  the  posterior  density 
obtained  from  the prior density p by  cross-entropy  minimiza- 
tion subject to  the.constraints I ( ' ) ,  and  let q(2) be  the  poste- 
rior density  obtained  when q(') is taken as a new prior and 
cross entropy is minimized  subject to  the  constraints I(*). 
Then the same posterior  density q(2) is obtained when cross 
entropy is minimized subject to I('), but p rather than q(') is 
used  as the  prior.  The effects of  taking  the  constraint  informa- 
tion I ( ' )  into  account are thus  completely washed out when 
I ( ~ )  is taken  into  account. 

One  consequence  of prior washout is a similar property  of 
single-signal MCESA. For definiteness, consider  a  'speech- 
processing system; say  we wish to estimate the speech  spectra 
d l ) ,  ,!d2), in a  succession  of analysis frames,  and we can 
measure the speech  autocorrelations R f ) ,   R P ) ,  . . . in these 
frames at  a fixed set of lags r.  Starting  with a prior spectral es- 
timate P, suppose we form  a  posterior  estimate for  a 
frame i by  taking  the  autocorrelation  information into ac- 
count. Suppose we then use this posterior Q(j) as,a prior esti- 
mate  for  a  later  frame j and  obtain  a  posterior  estimate  for 
that frame  by  taking R ( j )  into  account. Prior  washout  implies 
that  the result Q") is the same that we would have gotten if 
we had used P instead  of Q(j)  as the  prior  estimate  for  frame 
j ;  taking into  account  completely washes out the  effects 
of having taken R(j)  into  account. 

This  property  has  implications  for certain noise-suppression 
schemes in which  one  might envision  using MCESA. Suppose 
that additive noise is present in a  speech-analysis  system. It is 
ofien  possible to detect  whether  or not speech is present in an 
analysis frame. If frame i is such  a  frame, then Q('? is  an esti- 
mate  of  the  noise  spectrum.  Since  the noise spectrum  contains 
information  about  part  of  what is likely to be  present in a  later 
frame j that  contains  speech  plus noise, it follows that using 
~('1 as a prior for  frame j might result in more  accurate  estima- 
tion  of  the  total  spectrum in that frame, thus allowing more 
accurate  compensation for  the noise, say by  subtraction  of  the 
noise spectrum. (On the  other  hand, we might  worry that  this 
procedure  would  unduly  enhance the noise component  of  the 
later  estimate,  thus  further degrading the speech.) However, if 
the  analyses  of  frames i and j are  based on  the same set of 
autocorrelation lags, prior washout  occurs,  and the use of Q(j) 

as a  prior  for  frame j has no effect whatever on  the result Q") 
of the analysis in frame j .  

Although the same property  holds  for  multisignal MCESA, a 
combination  of single- and  multisignal M C E S A  can be used to  
avoid prior washout  and  exploit  the results of  analyzing  frames 
containing  noise  only.  In  particular,  during  a  frame  when 
speech is absent,  obtain  an  estimated noise spectrum  by  a 
single-signal  analysis.  Use this spectrum as a  prior  noise esti- 
mate,  together  with  some  appropriate  spectrum as a  prior 
speech  estimate,  for  a  multisignal analysis in later  frames. A 
procedure of this  sort is illustrated in Section  IV. 

The reason that  prior washout  does not occur in this case  is 
that  the initial computation  of  the  estimated  noise  spectrum 
uses constraints on noise  autocorrelations values,  while the 
subsequent  computations use constraints on  total  autocorrela- 
tions;  thus,  different sets of  functions are being  constrained. 
In  fact,  let PN be the  prior used  in obtaining  the initial esti- 
mated noise spectrum Q$) ' by single-signal MCESA.  Then 
~ $ 1  has  components  at  frequency f k  of  the form 

If Q$) is used as  noise prior in later  computations,  and  a 
spectrum Ps is used as a  speech  prior,  the resulting noise and 
speech  posteriors Q$) and Qf '  have the form 

If PN were used in place  of Q$) in the  later  computations,  the 
resulting posteriors  would have the  form 

r 

r 

Now, for linearly independent constraints, (17) and (19) are 
compatible  only if 0: = 0, +'p: holds,  and (18) and (20) are 
compatible  only if = 0: holds.  Thus,  the  analog  of prior 
washout will not, in general, occur  here  unless Or = 0 holds, 
that is, unless Q$) = PN. 

IV. EXAMPLES 
In  this  section, we present  three  numerical  examples; in each, 

a given set of  data is analyzed both  by multisignal M C E S A  
and  by either single-signal MCESA or  a  conventional M E S A  
method.  In  the first example,  autocorrelations  at  a  number  of 
equally  spaced lags are computed  from  the  sum  of  a pair of 
assumed "true"  spectra,  and single- and  multisignal MCESA 
estimates are obtained  from  them.  The  second  example is 
based on  the same set of assumed spectra as the  first,  but in- 
stead of  exact  autocorrelations  computed  from  the  spectra, we 
use autocorrelations  estimated  from  samples  of  a  process,  gen- 
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Fig, 1. Total assumed  original spectrum  (first two examples). 

erated  with the help  of a random-number  generator, whose 
theoretical  power  spectrum is the sum of  those assumed. In 
the  third, autocorrelations  are  estimated  from  sums of speech- 
signal and noise samples, and  spectral  estimates are obtained 
by MESA and multisignal MCESA. 

The assumed original spectra for  the first two examples  are 
a pair SB and Ss, which we think  of as a known “background” 
component  and  an  unknown “signal” component  of  the  total 
spectrum. For numerical purposes, we  use the spectral powers 
SBk and Ssk at 100 equally spaced frequencies f k  = k0.005, 
k0.015,. a * , k0.495  between -0.5 and + O S  (the Nyquist 
band: we take  the spacing between  autocorrelation lags to be 
unity).  The background consists of  an  approximation to white 
noise plus a peak corresponding to a sinusoid at frequency 
0.215: 

1.05, f k  =*0.215 
SBk = 

0.05, otherwise. 

The signal term consists of a nearby, similar peak at frequency 
0.165: 

1, f ,  = k0.165 
SSk = 

0, otherwise. 

Thus,  the  total assumed spectrum SB t Ss is as shown (for 
positive frequencies) in Fig. 1. Here are the corresponding 
autocorrelations R,  at six lags t, = 0, 1, . . . , 5 : 

t ,  0 1 2 3 4 5 

R,  9.0000  1.4544  -2.7732  -3.2248  0.2032  2.6900. 

For  the multisignal calculation, we use a pair of prior spec- 
tral  estimates PB and Ps. Since we are assuming prior  knowl- 
edge of the background spectral component S B ,  we simply 
take PB = S, as shown  in Fig. 2. To reflect prior ignorance 
of the signal component Ss, we  take Ps to be  uniform as in 
Fig. 3; for  this example, we  have somewhat  arbitrarily  normal- 
ized Ps to have the same total power as PB. For  the single- 
signal calculation, we  use P = PB t Ps as the prior  spectral 
estimate. 

Fig. 4 shows the result of  the single-signal  analysis-the 
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Fig. 2. Prior  estimate  of  background  spectrum: assumed  original back- 
ground  spectrum  (first two examples). 
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Fig. 3. Prior  estimate  of signal spectrum:  uniform  (first  two  examples). 
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Fig. 4. Single-signal MCESA posterior  estimate of total  spectrum (first 
example). 

MCESA posterior  estimate Q obtained  from  the  prior  estimate 
P and  autocorrelations R,. Corresponding to the  “known” 
peak at frequency  0.215 (which  was included in the prior), 
there is a sharp peak in the posterior at  that  frequency; corre- 
sponding to  the “unknown” peak at frequency  0.165,  there is 
a maximum at approximately that frequency  that is broader 
than  the first, but resolvable from it. 

The same original spectra SB and Ss and the same autocor- 
relations R, were used in  an example in [ l ]  . There a MESA 
and an  MCESA spectral estimate were compared (see [ 1, Figs. 
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Fig. 5 .  Multisiial MCESA posterior estimate of background  spectrum 
(first example). 

5 and 61 ). The MESA estimate failed to resolve the  two peaks, 
and  showed  a single maximum at  about  the midfrequency. 
The MCESA estimate was  based on PB instead  of PB + Ps as a 
prior;  the result differed from Fig. 4, but was qualitatively 
similar. In  both cases, the MCESA estimate  implies  the pres- 
ence of the signal at frequency 0.165,  but  does  not provide  a 
numerical  estimate  of  the signal. Such  an  estimate is provided 
by  multisignal MCESA. 

The  two  individual  posterior  estimates QB and Qs from  the 
multisignal analysis are shown in Figs. 5 and 6.  The sharp 
peak at  frequency 0.215 is  seen to be correctly assigned en- 
tirely to  the background  posterior  QB-unsurprisingly, since it 
was present in  the  background  prior,  but not  the signal prior. 
The  broader  maximum  corresponding to  the original peak at 
frequency 0.165 is present in the signal posterior Qs and is 
also present,  although less prominent, in QB. To  understand 
why, qualitatively, consider that  the  autocorrelations  depend 
only on  the  total  spectrum;  the  autocorrelation  constraints can 
be equally well satisfied by allocating spectral power  near fre- 
quency 0.165 to QB or to  Qs. By the discussion in Section 
111, the relative magnitudes  of the posteriors at each  frequency 
depend on  the relative magnitudes  of the priors. Both PB and 
Ps are flat near  frequency  0.165,  and  because  of  the  normal- 
ization chosen, Ps is somewhat greater there.  Consequently, 
the  broad  maximum in Qs is somewhat greater than  that 
in QB. 

For the second  example, we generated  a sum of  pseudoran- 
dom processes whose theoretical power  spectrum is SB + Ss 
(in the  notation  of  the  previous  example).  The  white  part of 
SB was  modeled  by  independent,  zero-mean Gaussian pseudo- 
random variables with variance 5.  The  two  peaks  were  mod- 
eled by  sinusoids  with  fixed  amplitude,  but  randomly  chosen 
phase.  For  each  of ten  repetitions  of  the  experiment, we gen- 
erated 180 samples s t ,  (t = 1 ,  - - e , 180) and  computed  auto- 
correlation estimates R,, (r = 0, 1 ,  * * . , 5) by the  formula 

This is a biased estimate,  but guarantees positive-definiteness. 
No additional  windowing  or filtering was used.  Then, using 

1.25 
1 

0.00  0.1 0 0.20 0.30 0.40 0.50 

FREQUENCIES 

Fig. 6 .  Multisignal  MCESA posterior estimate of signal  spectrum (fust 
example). 

these  estimated  autocorrelations  and the same prior spectra 
P, PB,  Ps as in the first example, we computed  a single-signal 
MCESA posterior  estimate  Q  for the  total spectrum  and  multi- 
signal  MCESA posterior  estimates QB, Qs  for  the background 
and  signal spectra. 

The results of the single-signal analysis are shown in Fig. 7, 
in which the posterior  spectra  from  the ten  repetitions  of  the 
experiment are overlaid. Overlay plots  of QB and Qs from 
the same ten  repetitions are shown in Figs. 8 and 9. Thus, 
Figs. 7,8, and 9 are to be compared, respectively, to Figs. 4,5, 
and  6  from the first example.  The qualitative similarities are 
apparent. 

The  third  example is  based on time-domain  samples  of 
voiced speech  and noise. The  speech  comprises  a portion of an 
English sentence  spoken  by  a  male  speaker  and  includes  the 
first word,  “Sue,”  of  the  sentence,  together  with silent seg- 
ments  before  and  after it. The noise consists of  a  segment  of 
helicopter noise equal in duration to the  speech.  These  were 
separately  filtered,  sampled,  and digitized at 8000 samples/s. 
The speech  and noise data were then added  sample  by  sample, 
resulting in samples  of  noisy  speech.  These  samples were  seg- 
mented into analysis frames  of 180 samples,  and 1 1  autocor- 
relations R,, r = 0, 1 ,  . . . , 10 were estimated for each  frame 
by (2 1) where sj is the j t h  sample in the frame. 

The last frame  before the  actual  beginning  of  the  word was 
selected; this  frame  of  “noisy  speech” thus consisted  entirely 
of noise. From  the  autocorrelation  estimates  for  this  frame,  a 
uniform-prior, single-signal  MCESA spectral estimate was com- 
puted  for use  as a prior estimate  of  the noise spectrum in sub- 
sequent  frames.  This  should  be essentially equivalent to a  con- 
ventional MESA estimate  of  the  noise  spectrum’as  obtained  by 
the Yule-Walker method.  A uniform  spectrum was used as a 
prior estimate  for the speech  spectrum in the subsequent 
frames. These two priors are shown in Fig. 10. Much of  the 
noise power is concentrated in a peak near 2780 Hz. 

From  the  two  priors  and the  autocorrelation estimates, mul- 
tisignal MCESA estimates  of  the  speech  and noise spectra  were 
computed  for  later  frames.  From  the  autocorrelation esti- 
mates, MESA  (LPC) spectral estimates were computed  for  the 
noisy  speech. We present  the results for a selected frame of 
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Fig. 7. Single-signal  MCESA posterior  estimates of total spectrum  (sec- 
ond example). 

1'50 T 1 
I 

.50 

FREQUENCIES 

Fig. 8.  Multisignd MCESA posterior  estimates of background  spectrum 
(second example). 
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Fig. 9. Multisignal MCESA posterior  estimates  of signal spectrum  (sec- 
ond  example). 

voiced speech-the second of seven that span the vowel /ut. 
For comparison to these results, we present in  Fig. 11 a MESA 
estimate of the uncorrupted speech. This was computed 
exactly like the MESA estimate for the noisy speech,  except 
that  the R I  were estimated  from the speech samples only,  not 
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Fig. 10. Prior  estimates of speech  and  noise  spectra  (third  example). 
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Fig. 11. MESA estimate of speech  spectrum  from  noise-free data  (third 
example). 
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Fig. 12. MESA estimate of total spectrum  (third  example). 

from the sums of speech and noise samples. 
The MESA estimate  for  the noisy speech is shown in Fig. 12. 

This spectrum agrees rather well with the noise-free estimate in 
the band from 0 up to about 2000 Hz, which includes the first 
two formants. Above 2000 Hz, however, there is only  a single 
maximum; the third  and fourth formants have  merged with 
the peak in the noise spectrum to form a single peak at  about 
2690 Hz. 

We subtracted the noise prior (Fig. IO) from this result (Fig. 
12). The difference, shown in Fig. 13, represents an attempt 
to estimate the speech spectrum by a MESA analysis and spec- 
tral  subtraction.  The  subtracted MESA spectrum is fairly close 
to  the unsubtracted MESA spectrum,  except in the neighbor- 
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Fig. 13. Result of subtracting noise prior (see Fig. 10) from  spectrum 
in Fig. 12 (third example). 

hood  of  the noise peak at  2780 Hz. Near that  frequency,  the 
subtraction so far overcompensates that  the difference actually 
assumes rather large  negative  values. (Absolute values  are 
plotted in the figure.) 

The  multisignal MCESA posteriors are shown in Figs. 14 and 
15; Fig. 14 is the speech,  and Fig. 15 is the noise. Fig. 15 
shows  a  maximum  near 2440 Hz, about  130 Hz higher than 
the  third  formant,  and  a suggestion of the  fourth  formant is 
discernible. Except for frequencies  near  the noise peak, the 
multisignal  speech  spectrum (Fig. 14)  and the subtracted 
MESA result (Fig. 13) are quite close, the multisignal result 
usually being the closer of  the  two  to  the estimate based on 
noise-free data (Fig.  11).  Near 2780 Hz, the  multisignal result 
is substantially closer, and  where  the  subtracted MESA be- 
comes negative, the multisignal  estimate  only  takes  physically 
meaningful positive values. Both  methods  underestimate  the 
total power  near 2780 Hz (cf. Fig. 15);  however,  the  multi- 
signal method  apportions  the  total  between  speech  and  noise 
in a  somewhat  reasonable  way,  whereas the  other  does  not. 

V. ALGORITHMS 
The  computations  for  the  examples  in  Section  IV  were  done 

with  a  program that uses the Newton-Raphson  method to find 
values for  the 0, in (14)  such that (1 5) is satisfied. The  pro- 
gram  is fully general in that  neither  the  frequenciesfk  nor  the 
lags t ,  need  be  equispaced. It is also, consequently,  much too 
slow to be practical, except  for small numbers  of  examples. 
FFT  methods are precluded,  and  the  program, in fact,  runs 
through several iterations,  each  time passing between  the  time 
and  frequency  domains by  what  amounts  to  a slow Fourier 
transformation. 

We have not  yet tried to find the  most efficient possible 
multisignal MCESA algorithm, but we  have recently  written  an 
algorithm that is considerably faster than  the one just men- 
tioned for  input  data  that satisfy two  assumptions:  the auto- 
correlation lags are equispaced,  and  the prior spectra are all of 
the MESA form [(l) without  the  term l/P(f) in the  denomi- 
nator].  The assumptions  imply that  the posterior  spectra are 
also of the MESA form.  They also permit  us to avoid the  fre- 
quency  domain  altogether: all the spectra can be represented 
by  various sets of  standard LE'C parameters  such as autore- 
gressive coefficients or reflection coefficients. Speech output 
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Fig. 14. Multisignal MCESA posterior estimate of speech spectrum 
(third example). 
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Fig. 15. Multisignal MCESA posterior estimate of noise spectrum  (third 
example). 

can be  obtained in a  form suitable for driving a  conventional 
LPC speech synthesizer. A  12th-order,  two-signal  computa- 
tion  takes  about  7  s/frame on  a PDP 11/45"" equipped  with 
floating-point hardware. 

We have recently  been  able to demonstrate effective noise 
suppression in noisy  speech  by processing entire  sentences  and 
listening to  the synthesized output. The results will be re- 
ported in a  future paper. 

VI. DISCUSSION AND CONCLUSIONS 
Multisignal MCESA  is a new spectruin-estimation  method 

based on a  provably  optimal  information-theoretic  inductive- 
inference  procedure. When separate prior estimates are  avail- 
able for  the power  spectra  of two  or more  processes,  and new 
information is obtained in the  form  of values of  the  autocor- 
relation function  of their sum,  the  method yields separate  pos- 
terior estimates. One  application is separating the spectrum  of 
a signal from that of additive noise. Preliminary  experiments 
with  speech  synthesis are encouTaging. By incorporating prior 
estimates  for both signal and noise spectra,  the  multisignal 
method  offers  considerable scope and flexibility for tailoring 
an estimator to the characteristics of  a signal or noise. 

In  the  third example in Section  IV, we contrasted  this 
method  with  a  more  ad  hoc  method  for  taking  a prior noise 
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estimate into account-estimate the sum  of  signal and  noise 
spectra  from  autocorrelations  and  then  subtract  the prior noise 
estimate. The latter  method seems to imply an unwarranted 
absolute  commitment to  the noise-spectrum  estimate: adjust- 
ments to  the signal-spectrum  estimate are made solely respon- 
sible for  fitting  the  autocorrelation of the sum to measured 
values. The  multisignal method,  by  contrast, adjusts both 
noise and signal estimates in  fitting  the  autocorrelation  of  the 
sum. We saw that  the multisignal  method  could  thereby avoid 
nonphysical (negative) estimates that  can result from spectral 
subtraction. 

In  the same example,  a  prominent noise peak was present in 
the sum spectrum. Most of  the power in it was properly at- 
tributed to  the noise  spectrum in the posteriors, but substan- 
tial leakage a few decibels  lower into  the signal (speech) spec- 
trum  occurred. The  relative apportionment  of  the  power in 
that peak  between the signal and noise posteriors  would be 
substantially altered by  a change in the level of the  uniform 
spectrum that was  used  as the speech prior. This is in contrast 
to single-signal MCESA where all uniform priors give equiva- 
lent results (as long as one  of  the  constrained  autocorrelations 
is the  total power).  How best to choose the level of  this  uni- 
form prior relative to  the noise prior is a  question not  yet 
answered.  Indeed, since the signal  is known to be speech, it 
would  undoubtedly be beneficial to replace  the  uniform signal 
prior with  one tailored to the characteristics of  speech.  How 
best to  do  this tailoring is another unanswered  question.  In 
short,  there is much to be  learned  about  how to choose  the 
prior estimates to reflect our prior knowledge  of signals and 
noise in practical situations. 
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