Minimum Dilation Stars

David Eppstein and Kevin A. Wortman

Univ. of California, Irvine
Donald Bren School of Information and Computer Sciences

The Minimum Dilation Star Problem

Input: a set of n points (e.g., locations of airports)
Output: a point x (e.g. the hub of an airline network)

Dilation of points s, t for hub x
= factor by which travelers from s to t are inconvenienced
$=$ ratio of path length $|s x|+|x t|$ through x to direct path $|s t|$
Choose x that minimizes the maximum dilation among all pairs

Constrained vs unconstrained

Unconstrained problem: x can be any point in the plane
Constrained problem: x must be one of the input points

Related work

Facility location:

choose center(s) for points optimizing some quality measure typically involving point-center distances

Network design:

Find optimal spanning tree or spanning network for a set of points

Spanner construction:

Find graph accurately representing distances in point set (here, graph = star with input points as leaves)

> All three have large literatures
> but minimizing dilation appears to be novel

Quasiconvex programming [Amenta, Bern, Eppstein, J. Aloorithms 1999, et seq.]

Input: family of quasiconvex functions $f_{i}(\mathbf{x}), \boldsymbol{x}$ in \mathbf{R}^{d}
i.e., lower level sets $\left\{\boldsymbol{x}\right.$ such that $\left.f_{i}(\boldsymbol{x}) \leq \mathrm{L}\right\}$ are convex for all i, L

Unconstrained minimum dilation star as QCP

Input: point set S
$Q(S)=$ set of $O\left(\mathrm{n}^{2}\right)$ functions (|sx|+|xt|)/|st| measuring dilation of each input pair

Level sets are ellipses, so quasiconvex
Choose hub x minimizing $\max \{f(x)$ for f in $Q(S)\}$

Leads to simple $O\left(\mathrm{n}^{2}\right)$ algorithm: construct $\mathrm{Q}(\mathrm{S})$, apply QCP
Can we do better?

Implicit quasiconvex programming [Chan, SODA 2004]

Defined by a function Q mapping inputs to sets of quasiconvex functions

Q(Input) may be much larger than the input itself

Could solve by computing Q then applying any QCP algorithm

Chan showed many implicit QCPs can be solved more efficiently using a decision oracle and a subdivision process

Decision oracle

Given implicit QCP input S, point x, value y Is there a function f in $Q(S)$ with $f(x)>y$?

Evaluation oracle

Given implicit QCP input S, point x, value y Compute max $f(x)$ among f in $Q(S)$

Decision from evaluation

If have evaluation oracle, decision is easy: compute max $f(x)$, compare to y

Evaluation oracle when max dilation is $\mathrm{O}(1)$:

Sort points by distance from x
Compute dilation from each point to $O(1)$ near neighbors in sorted sequence return maximum among computed dilation values

Why is this correct?

View points as partitioned into segments of annuli centered on x (conceptually, not in algorithm)

O(1) segments per annulus Exponentially increasing radii (ratio depends on max dilation)

Each segment has O(1) points (else dilation would be too high)

The points s , t having max dilation must be in neighboring annuli (else dilation would be too low)

Evaluation oracle when max dilation is Omega(1):

Find $O(1)$ nearest points to each input point
Compute dilation from each point to these $\mathrm{O}(1)$ nearby points return maximum among computed dilation values

Why is this correct?

Let $0=$ circle centered on s with radius |st|

If dilation $>3, \mathrm{x}$ is well outside 0
Partition O into $\mathrm{O}(1)$ pieces such that each piece has ≤ 1 point (else dilation would be too high)

Number of points nearer to s than t
 is bounded by the number of pieces

Subdivision process

$$
\text { For some constants } r=0(1), a<1
$$

Subdivide any input A into r smaller inputs $A_{0}, A_{1}, A_{2}, \ldots$
Each A_{i} is of size at most $a \cdot \operatorname{size}(A)$

$$
\mathrm{Q}(\mathrm{~A})=\text { union of } \mathrm{Q}\left(\mathrm{~A}_{\mathrm{i}}\right)
$$

Subdivision process for min dilation star

Each quasiconvex function is determined by some pair of points
Partition input S into three equal subsets S_{0}, S_{1}, S_{2}
Define subproblem $A_{i}=S \backslash S_{i}$

$$
r=3, a=2 / 3
$$

Chan's implicit QCP algorithm

Repeatedly subdivide into O(1) subproblems
Apply generalized linear programming
elements = subproblems objective function = value of union of QCPs

GLP violation test = decision oracle GLP basis change = recursive call to implicit QCP

Choose number of subproblems so that E (total size of recursive calls) = constant fraction of input

Leads to randomized implicit QCP algorithm expected time $=0$ (decision oracle + subdivision process)

Result: $0(n \log n)$ time for unconstrained min dilation star

Constrained Problem Overview

To select best hub from a set H of candidates (initially all inputs):
repeat:

> Pick a random point h from H
> Evaluate the dilation D of h
> Construct locus L of hubs with dilation < D
> $H=H$ intersect L
until H is empty; optimal hub is the last chosen h

Each iteration reduces candidates by a factor of 2 in expectation so O(log n) iterations

Bottleneck is construction of L

The locus of low-dilation hubs

$L=\{x$ such that max dilation of pairs (s, t) through x is $<D\}$
$=$ intersection of $\mathrm{O}\left(\mathrm{n}^{2}\right)$ similar ellipses, having each pair (s, t) as foci
But, only O(n) ellipses contribute to the intersection boundary!
$\mathrm{O}(\mathrm{n})$ having as foci a point and one of its k -nearest Euclidean neighbors $\mathrm{O}(\mathrm{n})$ having as foci two points within $\mathrm{O}(1)$ positions of each other in sorted order of distances from unconstrained center
(proof idea similar to unconstrained algorithm)
Can construct intersection of $\mathrm{O}(\mathrm{n})$ ellipses in time $\left.\mathrm{O}\left(\mathrm{n} 2^{\text {alpha(}} \mathrm{n}\right) \log \mathrm{n}\right)$
(standard application of Davenport-Schinzel sequence theory)
Outer sampling loop of constrained algorithm adds another log
Total time to find best hub among input points: O(n 2 alpha(n) $\log ^{2} n$)

Conclusions

Unconstrained minimum dilation star:

O(n logn) expected time randomized algorithm
Works in any constant dimension

Constrained minimum dilation star:

$\mathrm{O}\left(\mathrm{n} 2 \mathrm{alpha}(\mathrm{n}) \log ^{2} \mathrm{n}\right)$ expected time randomized algorithm
Works only in the plane

Open: Derandomize? Higher dimension constrained problem?

