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Abstract. Disparities of discrete distributions are introduced as a natural and useful
extension of the information-theoretic divergences. The minimum disparity point estimators
are studied in regular discrete models with i.i.d. observations and their asymptotic efficiency
of the first order, in the sense of Rao, is proved. These estimators are applied to continuous
models with i.i.d. observations when the observation space is quantized by fixed points, or at
random, by the sample quantiles of fixed orders. It is shown that the random quantization
leads to estimators which are robust in the sense of Lindsay [9], and which can achieve the
efficiency in the underlying continuous models provided these are regular enough.
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1. Introduction

This paper deals with the minimum distance point estimation with i.i.d. obser-
vations in the case when model is discrete, or when the initial information about

the data and hypothetical parametrized models is reduced by partitioning the ob-
servation space. The distance is in both cases measured by a disparity (divergence)

between hypothetical and empirical distributions. Partitioning is sometimes practi-
cal because it reduces the numerical complexity of estimation. Often data themselves

*This work was supported by grants A1075101 of the Academy of Sciences of the Czech
Republic, DGES PB96–0635 and GV99-159-1-01.
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are grouped into classes satisfying various easily verifiable criteria, e.g. in the econom-

etry and sociometry. Partitioning also allows one to use distances not applicable to
the unreduced data and models. For example, the minimum Pearson divergence
estimator was in this sense used by Neyman [13], or the maximum likelihood esti-

mator (MLE) was obtained by minimizing the information divergence of Kullback
in Rao [15].

The MLE is known to be efficient in regular models but is also known to be
nonrobust. The efficiency as well as the nonrobustness are resulting from specific

properties of the logarithmic function used in the definition of the information diver-
gence. Replacing the logarithmic function by other functions ϕ(t) with appropriate

properties in the neighbourhood of t = 1, one obtains estimators which are in the
discrete models efficient (first order, in the sense of Rao [15], [16]) and robust in the

sense of Lindsay [9].
Lindsay paid special attention to the family of functions

(1.1) ϕb(t) =

(
t− 1

1− b+ b
√
t

)2
, 0 � b � 1,

leading for b = 0 and b = 1 to the Pearson and Neyman divergences ([22], [13], see

also [17]), and for 0 < b < 1 to the so-called ϕb-disparities. In this paper we consider
the classes Φdiv and Φdisp ⊃ Φdiv of functions ϕ(t) which define ϕ-divergences and
ϕ-disparities leading in the discrete parametrized models to consistent and efficient
ϕ-estimators of the true parameter. In this respect we extend the results of Morales,

Pardo and Vajda [12] restricted to the minimum ϕ-divergence estimators in discrete
parametrized models. We also apply the minimum ϕ-disparity estimators to the

continuous models and study their efficiency in these models. In this respect we go
considerably beyond the framework of the paper of Lindsay [9] and other papers in

this area (see [1], [2], [14]).
Minimum ϕ-divergence and ϕ-disparity estimators (briefly, ϕ-estimators) are in

Sections 3 and 4 applied to the discrete models p(θ) = (pj(θ) : 1 � j � m), θ ∈ Θ,
in particular to the models

(1.2) p(y, θ) =
(
pj(y, θ) = F (yj , θ)− F (yj−1, θ) : 1 � j � m

)
, θ ∈ Θ,

obtained from the continuous models (F (x, θ) : x ∈ R), θ ∈ Θ, by partitioning the
observation space R by given points

(1.3) y = (y1, . . . , ym−1), y0 = −∞ < y1 < . . . < ym−1 <∞ = ym.

This is the deterministic partition of R specified by the vector y. In Section 5
attention is paid to the random partitions of R by the components of the random

440



vector

(1.4) yn = (ynj = F−1n (λj) : 1 � j � m),

where Fn(x), x ∈ R, is the empirical distribution function and

(1.5) λ = (λ1, . . . , λm−1), λ0 = 0 < λ1 < . . . < λm−1 < 1 = λm.

This partition is specified by the vector λ and the observed i.i.d. data.

The results of the present paper concerning the asymptotic properties of ϕ-

disparity estimators in the models of all three types mentioned extend similar results
in the above mentioned papers, and also in [11] and other papers cited there, dealing

with various particular ϕ-divergence estimators. Moreover, we show that both the
deterministic and random partitions lead to estimators which are ε-efficient in the

original model (F (x, θ) : θ ∈ Θ) for any given ε > 0, and that the estimators with
random partitions can achieve this efficiency without any a priori information about

the true parameter. It is important that, to this end, one can use any of the ϕ-
disparity estimators, including all those which are robust in the sense of Lindsay [9].

This means that, in fact, we introduce an infinite class of estimation procedures
which are robust and, from the practical point of view, efficient for all sufficiently

regular continuous models with i.i.d. observations.

Applicability of the present results in testing composite hypotheses about contin-
uous statistical results can be seen from [10].

2. ϕ-divergences and ϕ-disparities

By a stochastic vector we mean a vector with nonnegative components the sum of

which is 1. By a stochasticm-vector we mean a stochastic vector with m components
for m > 1.

The ϕ-divergence of arbitrary stochastic m-vectors p and q is defined by the for-

mula

(2.1) Dϕ(p; q) =
m∑

j=1

qjϕ

(
pj

qj

)
,

where ϕ is from the class Φdiv of all convex functions ϕ(t), t > 0, equal to 0 at t = 1.
For every ϕ ∈ Φdiv differentiable at t = 1 we have

(2.2) ϕ(t) ∼ ϕ(t)− ϕ′(1)(t− 1),
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where the right hand side belongs to Φdiv and the equivalence ∼ means that the two
functions define the same divergence (2.1).
Hereafter Φdiv stands for the subclass of the convex functions twice continuously

differentiable in the neighbourhood of t = 1 with ϕ(1) = 0, ϕ′′(1) > 0. Obviously,

we can assume without loss of generality that ϕ′(1) = 0 and ϕ′′(1) = 1 for every
ϕ ∈ Φdiv.
Note that the concept of ϕ-divergence was introduced by Csiszár [23] and Ali and

Silvey [24], and that in (2.1) it is assumed

0ϕ

(
0
0

)
= 0, qϕ

(
0
q

)
= ϕ(0)

�
= lim

t→0
ϕ(t) and 0ϕ

(
p

0

)
= p lim

t→∞
ϕ(t)
t
.

For the properties of ϕ-divergences we refer to Liese and Vajda [8] or Vajda [20].

������� 2.1. The nonnegative functions

ϕa(t) =
t(a+1)/2 − 1

2 (a+ 1)(t− 1)− 1
(|a| − 1)/2 ∼ t(a+1)/2 − 1

(|a| − 1)/2 , a �= 1,

(cf. the equivalence relation ∼ in (2.2)) with limits

ϕ1(t) = t ln t− t+ 1 ∼ t ln t and ϕ−1(t) = − ln t+ t− 1 ∼ − ln t

have continuous and positive second derivatives

ϕ′′a(t) =
|a|+ 1
2

t(a−3)/2, a ∈ R.

They define a class of modified power divergences

(2.3) Da(p; q) =
2

|a| − 1

( m∑

j=1

√
p1+a

j q1−a
j − 1

)
for all a �= −1, a �= 1,

with the well known information divergence and reversed information divergence of

Kullback

(2.4) D1(p; q) =
m∑

j=1

pj ln
pj

qj
and D−1(p; q) = D1(q; p)

obtained from ϕ1 and ϕ−1, or as the limits of Da(p; q) for a→ 1 and a→ −1. (The
skew symmetry D−a(p; q) = Da(q; p) for the remaining a ∈ R is clear from (2.3).)

Well known is also the Pearson divergence

(2.5) D3(p; q) =
m∑

j=1

p2j
qj
− 1 =

m∑

j=1

(pj − qj)2

qj
,
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the reversed Pearson divergence (Neyman divergence) D−3(p; q), and the Hellinger

divergence (squared Hellinger distance)

D0(p; q) = 2

(
1−

m∑

j=1

√
pjqj

)
=

m∑

j=1

(√
pj −√

qj
)2
.

The original power divergences of Cressie and Read [6] are 1-1 transforms of (2.3),

(2.6) Iλ(p, q) =
4D2λ+1(p; q)
|2λ+ 1|+ 1 , λ ∈ R.

These divergences do not provide exactly the squared Hellinger distance (at λ = −1/2
they are proportional, with the factor 4). Also the skew symmetry about λ = −1/2
in this family seems to be less practical than that about 0 in the family (2.3). For

example, it may be not easy to recognize at the first sight that I−0.357(p; q) means the
same as I−0.643(q; p), while for D−0.357(p; q) and D0.357(q; p) this is easy. Note that

both families (2.3) and (2.6) are one-one transforms of the α-divergences Rα(p; q),
α > 0, of Rényi [25]. E.g.,

λ(λ + 1)
2

Iλ(p; q) =

{
exp{λRλ+1(p; q)} − 1 for λ > −1,
exp{−(λ+ 1)R−λ(q; p)} − 1 for λ � −1.

The ϕ-disparity is defined by the same formula (2.1) as the ϕ-divergence, but

for much wider class of functions ϕ ∈ Φdisp. The class Φdisp is assumed to contain
all functions ϕ(t), t > 0, twice continuously differentiable in the neighbourhood of

t = 1, with ϕ(1) = 0, ϕ′′(1) > 0, such that ϕ∗(t) = ϕ(t) − ϕ′(1)(t − 1) is monotone
on the intervals (0,1) and (1,∞). Then, the function ϕ∗(t) is nonincreasing on (0,1),
nondecreasing on (1,∞) and strictly convex near t = 1. Especially, ϕ∗(t) is unimodal
with the mode (the minimum) at t = 1.

It is obvious that any ϕ, ψ ∈ Φ define the same disparity (2.1) if there exists a ∈ R
satisfying for all t > 0 the relation ϕ(t) − ψ(t) = a(t − 1), in symbols ϕ ∼ ψ. Since

any ϕ ∈ Φdisp satisfies the relation (2.2), we can assume without loss of generality
ϕ′(1) = 0 and the unimodality of all ϕ ∈ Φdisp.
Φdisp contains the class Φdiv of convex functions introduced above. Convex as well

as nonconvex functions ϕ ∈ Φdisp can be generated by the composition formula

(2.7) ϕ(t) = ψ(ϕ(t)), t > 0,

under the conditions presented in the next two theorems.

Theorem 2.1. If ϕ(t), t > 0, is monotone and twice continuously differentiable
in the neighbourhood of t = 1 with ϕ(1) = 0, ϕ′(1) �= 0, and ψ(y), y ∈ R, is
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monotone on the intervals (−∞, 0] and [0,∞), twice continuously differentiable in
the neighbourhood of y = 0 with ψ(0) = ψ′(0) = 0 and ψ′′(0) > 0, then the composite
function (2.7) belongs to Φdisp.

��		
. Under the assumptions we obtain in the neighbourhood of 1

ϕ′(t) = ψ′(ϕ(t))ϕ′(t),(2.8)

ϕ′′(t) = ψ′′(ϕ(t))(ϕ′(t))2 + ψ′(ϕ(t))ϕ′′(t).(2.9)

Hence

ϕ(1) = ψ(ϕ(1)) = 0 and ϕ′′(1) = ψ′′(0)(ϕ′(1))2 > 0.

If ϕ′(t) � 0 for all t > 0 then ϕ(t) is nonnegative and nondecreasing for t � 1, so that
ψ(ϕ(t)) is nondecreasing on [1,∞) and ϕ(t) is nonpositive for 0 < t � 1. Hence (2.7)
is nonincreasing on (0, 1]. �

Theorem 2.2. If ϕ ∈ Φdisp, ϕ′(1) = 0, and ψ(y), y � 0, is nondecreasing, twice
continuously differentiable in the neighbourhood of y = 0 (from the right at y = 0)
with ψ′+(0) > 0, then ϕ(t) = ψ(ϕ(t)), t > 0, belongs to Φdisp.

��		
. Under the stated assumptions, ϕ(t) is nonincreasing on (0, 1] and
nondecreasing on [1,∞) with ϕ(1) = 0. This implies the desired monotonicity

of ψ(ϕ(t)) and ψ(ϕ(1)) = 0. The differentiability in the neighbourhood of t = 1
follows from (2.8), (2.9) if t �= 1. If t = 1 then it follows by taking limits for t ↓ 1
and t ↑ 1 on both sides of (2.8), (2.9). �

It is easy to see that ψ(y) = 1 − e−y2 satisfies the assumptions of Theorem 2.1
and ψ(y) = 1− e−y the assumptions of Theorem 2.2. In both cases the application

of ψ to ϕ(pj/qj) behind the sum in (2.1) reduces the influence of extremal deviations
of qj from pj . Next an example follows where ψ(y) enhances the influence of such

deviations.

������� 2.2. It is easy to verify that the functions

ϕb(t) =
t− 1

1− b+ b
√
t
, 0 � b � 1,

are convex and twice continuously differentiable in the domain t > 0 with ϕ′b(1) �= 0,
i.e. they belong to Φdiv and satisfy the assumptions of Theorem 2.1. Since ψ(y) = y2

satisfies the assumptions of Theorem 2.1 as well, it follows that the functions

ϕb(t) = ψ(ϕb(t)) =

(
t− 1

1− b+ b
√
t

)2
, 0 � b � 1,
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belong to Φdisp. Somewhat tedious calculations show that ϕ′b(1) = 0 and that

the second derivatives are positive everywhere with ϕ′′b (1) = 2. The correspond-
ing ϕb-disparities are (cf. p. 1101 in [9])

(2.10) Db(p; q) =
m∑

j=0

(
pj − qj

(1− b)
√
qj + b

√
pj

)2
, 0 � b � 1.

Here D0(p; q) is the Pearson divergenceD3(p; q) from Example 2.1 and D1(p; q) is the
Neyman divergence D−3(p; q). Thus the disparities (2.10) are blends of the Pearson

and Neyman divergences. The symmetric blend D1/2(p; q) is four times the Hellinger
divergence D0(p; q) from Example 2.1.

Note that the replacement of the square function in Example 2.2 by ψ(y) = 1−e−y2

leads to functions ϕb(t) which still belong to Φdisp but are not convex. Indeed, the

functions ϕ(t) convex in the domain t > 0 with ϕ′(1) = 0 and ϕ′′(1) > 0 cannot
be bounded. In general, for convex ϕ and nondecreasing ψ the composition (2.7) is

Schur-convex (see [26]). The disparities (2.1) with Schur-convex functions ϕ possess
some, but not all, the nice properties of ϕ-divergences.

Some properties of ϕ-divergences hold for all ϕ-disparities. For example, the in-
equality

Dϕ(p; q) � 0,
with the sign of equality if and only if p = q, remains true for every ϕ ∈ Φdisp.
�	�����	��. Recall that by a stochastic vector we mean in this paper a

vector with nonnegative coordinates the sum of which is one. If the components

of this vector are random, but nonnegative and summing up to one, then we speak
about a random stochastic vector. Unless otherwise explicitly stated, m is in the

sequel assumed to be fixed and all convergences and asymptotic relations including
o(1) and op(1) are considered for n → ∞. If a sequence of random variables Zn

satisfies the asymptotic relation Zn = op(1), i.e. if P (|Zn| > ε) = o(1) for any ε > 0,
then we say that Zn tends stochastically to zero.

Theorem 2.3. Let pn = (pn1, . . . , pnm) be a sequence of random stochastic

vectors. If

(2.11) Dϕ(pn; q) = op(1)

for a fixed stochastic m-vector q with all coordinates positive and for ϕ ∈ Φ, then
‖pn − q‖2 tends stochastically to zero with at least the same rate as Dϕ(pn; q) or,
more precisely,

(2.12) ‖pn − q‖2 � 2
ϕ′′(1)

Dϕ(pn; q) + op(Dϕ(pn; q)).
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��		
. (I) First we prove that (2.11) implies

(2.13) ‖pn − q‖ = op(1).

Let U ⊂ (0,∞) be an open neighbourhood of 1 where ϕ is twice continuously differ-
entiable and where the infimum

α = inf
t∈U

ϕ′′(t)

is positive. We can assume without loss of generality ϕ′(1) = 0 so that ϕ is unimodal
with the unique mode at t = 1. This together with α > 0 implies

β = inf
t/∈U

ϕ(t) > 0.

Define random variables

Zn =
m∑

j=0

I

{
pnj

qj
/∈ U

}
and Wn =

m∏

j=0

I

{
pnj

qj
∈ U

}
,

where I{·} denotes the indicator of an event. If ϕ ∈ Φ then the Taylor theorem
implies for all t from the neighbourhood of 1

(2.14) ϕ(t) =
1
2
ϕ′′(t∗)(t− 1)2,

where t∗ is between 1 and t. By (2.1), (2.5) and (2.14),

Dϕ(pn; q) � Znβ min
0�j�m

qj +WnαD3(pn; q).

Hence (2.11) implies Zn = op(1) and, since Wn �= 1 takes place only if Zn � 1, also
Wn = 1+ op(1). Using this one obtains that (2.11) implies D3(pn; q) = op(1) which,

by virtue of the inequality

(2.15) D3(pn; q) � ‖pn − q‖2,

implies (2.13).

(II) It follows from (2.1) and (2.14) that under (2.13) we have

Dϕ(pn; q) =
ϕ′′(1)
2

D3(pn; q) + ‖pn − q‖2op(1),

and (2.12) follows from here and from (2.15). �
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3. Discrete models

Consider a theoretical discrete model p(θ) = ((p1(θ), . . . , pm(θ)), θ ∈ Θ), Θ ⊂ Rs,
and independent random data (xi : 1 � i � n) taking on values 1, . . . ,m with

probabilities p1(θ0), . . . , pm(θ0). Here θ0 ∈ Θ is a true parameter. Let pn be the
vector of relative frequencies of 1, . . . ,m defining an empirical discrete model,

(3.1) pn =

(
pnj =

1
n

n∑

i=1

I{j}(xi) : 1 � j � m

)
.

Further, consider ϕ ∈ Φdisp and the disparity Dϕ(pn; p(θ)) for ϕ ∈ Φdisp—a disparity
between the empirical and theoretical models.

If a Θ-valued statistics θϕ,n = θϕ,n(x1, . . . , xn) asymptotically minimizes the
ϕ-disparity Dϕ(pn; p(θ)) in the sense that

(3.2) P
{
Dϕ(pn; p(θϕ,n)) �= inf

θ∈Θ
Dϕ(pn; p(θ))

}
= o(1),

then it is called a ϕ-disparity estimator of θ0 (briefly, ϕ-estimator).

Let θ̂n be the MLE in the discrete model under consideration. As is easy to
see, then (3.2) with ϕ(t) = t ln t holds for θϕ,n replaced by θ̂n. Thus θ̂n is the

minimum information divergence estimator θϕ1,n (cf. the family {ϕa : a ∈ R} ⊂ Φdiv
introduced in Example 2.1). Birch [3] formulated regularity assumptions for the

model under which the MLE is for this model efficient in the sense made precise in
Theorem 3.1 below (it is the so-called first order efficiency in the sense of Rao [15],

considered throughout the paper unless otherwise explicitly stated).

Special ϕ-disparity estimators can be found in many papers and books, e.g. in [7],
[5], [13], [21], [15], [18], [20], [9], [1], [2] and [14]. By using the relative deviations

δnj(θ) =
pnj − pj(θ)

pj(θ)
, 1 � j � m,

of data from the models (the residuals of Lindsay [9]), one can transform the criterion

function Dϕ(pn; p(θ)) from (3.2) into the form

(3.3) Mn(θ) =
m∑

j=1

pnj	(δnj(θ)),

where

	(t) =
ϕ(1 + t)
t+ 1

, t > −1, with 	(0) = 0

447



is continuous and (when assuming that ϕ is convex with ϕ′(1) = 0) decreas-

ing on (−1, 0] and increasing on [0,∞). This displays certain affinity with the
M -estimators of mathematical statistics. The estimators which minimize the crite-
rion function (3.3) have been studied by Lindsay [9]. He argued that these estimators

are robust if the function ϕ is bounded.
Next we introduce the regularity assumptions of Birch [3] in a slightly modified

form, more convenient for the purpose of the present paper.
(R1) The true θ0 is in the interior of Θ and all coordinates of p(θ0) are positive.

(R2) The gradient matrix G(θ) = (∂/∂θ1, . . . , ∂/∂θs)p(θ)t exists in the neighbour-
hood of θ = θ0 and is continuous there.

Under (R1) and (R2) also the matrix function A(θ) = diag p(θ0)−1/2G(θ) exists in
the neighbourhood of θ = θ0 and is continuous there. Note that for any k-vector p

and mapping ψ : R �→ R, diagψ(p) in this paper denotes the diagonal (k×k) matrix
with the entries ψ(p1), . . . , ψ(pk) at the diagonal.

(R3) The matrix A(θ0) is of rank s and s < m.
(R4) The mapping θ �→ p(θ) is one-one on Θ.

Under (R1)–(R3) the matrix

(3.4) I(θ) = A(θ)tA(θ) =

( m∑

j=1

1
pj(θ)

∂pj(θ)
∂θk

∂pj(θ)
∂θ�

)s

k,�=1

is well defined, continuous and positive definite in the neighbourhood of θ = θ0. It

is the Fisher information matrix of the model (p(θ) : θ ∈ Θ).

Theorem 3.1. If the model (p(θ) : θ ∈ Θ) under consideration and the true
parameter θ0 fulfil (R1)–(R4) then the estimators θϕ,n, ϕ ∈ Φdisp, defined by (3.2)
are efficient in the sense that they satisfy the asymptotic relation

(3.5) θϕ,n = θ0 + (pn − p(θ0)) diag p(θ0)
−1/2A(θ0)I(θ0)

−1 + op(n
−1/2),

and they are also asymptotically normal in the sense that

(3.6)
√
n(θϕ,n − θ0)

w−→ N
(
0, I(θ0)

−1).

��		
. For ϕ from the subclass Φdiv ⊂ Φdisp of divergence-generating functions
the relations (3.5) and (3.6) were proved in Theorem 3 of [12]. By inspecting the
arguments used there one can see that the reference to Proposition 9.49 in [20], which

is sufficient for ϕ ∈ Φdiv, can in the case ϕ ∈ Φdisp be replaced by the reference to
the present Theorem 2.3. The remaining steps are based on the local properties of

ϕ(u) ∈ Φdiv in the neighbourhood of u = 1, which are assumed for ϕ ∈ Φdisp as well.
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4. Continuous models with deterministic partitions

The results of the previous section are easily extended to the models (p(y, θ) :
θ ∈ Θ) defined by (1.2) with Θ ⊂ Rs. Let the observations (xi : 1 � i � n) be i.i.d.

on R with the common distribution function F (x, θ0) assumed in (1.2) and let

Fn(x) =
1
n

n∑

i=1

I[xi,∞)(x), x ∈ R

be the empirical distribution function on R. Define an empirical probability vector

(4.1) pn(y) = (pnj(y) = Fn(yj)− Fn(yj−1) : 1 � j � m)

for y given by (1.3) and consider Dϕ(pn(y); p(y, θ)) for ϕ ∈ Φdisp and θ ∈ Θ.
Obviously, pn(y) can formally be defined by (3.1) with xi replaced by the new

random variables

x̃i = x̃i(y, xi) =
m∑

j=1

jI[yj−1,yj)(xi)

taking on values from the sample space {1, . . . ,m} and indicating the random events
yj−1 � xi < yj . Obviously, (x̃1, . . . , x̃m) are sufficient statistics of the samples

(x1, . . . , xn) for the quantized continuous models (p(y, θ) : θ ∈ Θ).
A Θ-valued statistics θϕ,n = θϕ,n(x1, . . . , xn) satisfying the condition

(4.2) P
{
Dϕ(pn(y); p(y, θϕ,n)) �= inf

θ∈Θ
Dϕ(pn(y); p(y, θ))

}
= o(1)

is called a ϕ-disparity estimator of θ0 (briefly, ϕ-estimator). Since the random func-
tion Dϕ(pn(y); p(y, θ)) of the variable θ ∈ Θ figuring in (4.1) depends only on the
sample statistic (x̃1, . . . , x̃m), the estimator θϕ,n is in fact a function of this statistics
as well, i.e. θϕ,n = θϕ,n(x̃1, . . . , x̃m).

The quantized continuous model (p(y, θ) : θ ∈ Θ) under consideration is a partic-
ular case of the discrete model (p(θ) : θ ∈ Θ), Θ ⊂ Rs, of Section 3. For this model

the Birch regularity conditions (R1)–(R4) reduce with help of the notation

(4.3) F (y, θ) = (F (y1, θ), . . . , F (ym−1, θ))

as follows.

(B1) The true θ0 is in the interior of Θ and the partition vector y of (1.3) satisfies
the condition F (yj , θ0) �= F (yj−1, θ0) for all 1 � j � m.

(B2) The gradient matrix Γ(y, θ) = (∂/∂θ1, . . . , ∂/∂θs)F (y, θ)t exists in the neigh-
bourhood of θ0 and is continuous there.
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Under (B1), (B2) also the matrix functions G(y, θ) = (∂/∂θ1, . . . , ∂/∂θs)p(y, θ)t

and A(y, θ) = diag q−1/2G(y, θ) exist and are continuous in the neighbourhood of
θ = θ0.

(B3) The matrix A(y, θ0) is of rank s and s < m.

(B4) The mapping θ �→ F (y, θ) is one-one on Θ.

Obviously, (B1)–(B3) imply (R1)–(R3) for p(θ) = p(y, θ), θ ∈ Θ. The validity of
the implication (B4) ⇒ (R4) for this particular model will be proved with help of
the following lemma.

Lemma 4.1. Let ∆ = (∆j : 1 � j � m) be the vector of the partial sums

∆j =
j∑

k=1

δk

of coordinates of any vector δ = (δj : 1 � j � m) ∈ Rm. Then

‖δ‖
2

� ‖∆‖ � m‖δ‖.

��		
. Define ∆0 = 0 and consider any 1 � j � m. Since

(δj + 2∆j−1)2 = δ2j + 4δj∆j−1 + 4∆2j−1 = 2[(δj +∆j−1)2 +∆2j−1]− δ2j

is nonnegative, we have

δ2j � 2∆2j +∆2j−1.

Therefore
m∑

j=1

δ2j � 4
m∑

j=1

∆2j

so that ‖δ‖ � 2‖∆‖. Further, by the Jensen inequality,

(
1
j

j∑

k=1

δk

)2
� 1
j

j∑

k=1

δ2k � 1
j
‖δ‖2,

so that ∆2j � j‖δ‖2. Therefore

‖∆‖ �
√
m(m+ 1)
2

‖δ‖ � m‖δ‖,

which completes the proof. �
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Corollary 4.1. For arbitrary vectors y, ỹ of the type (1.3) and arbitrary θ0,

θ ∈ Θ,

‖p(y, θ0)− p(ỹ, θ)‖
2

� ‖F (y, θ0)− F (ỹ, θ)‖ � m‖p(y, θ0)− p(ỹ, θ)‖.

��		
. Clear from Lemma 4.1 if we put

δj = p(y, θ0)− pj(ỹ, θ)

so that
∆j = F (yj , θ0)− F (ỹj , θ).

�

The implication (B4) ⇒ (R4) now follows from Corollary 4.1 used for ỹ = y.

Indeed, we see that, for any y considered in (1.3) and θ1, θ2 ∈ Θ,

F (y, θ1)− F (y, θ2) �= 0 if and only if p(y, θ1)− p(y, θ2) �= 0.

Since (B1)–(B4) imply (R1)–(R4) for the model p(θ) = p(y, θ), the following result

can be deduced from Theorem 3.1. In this result we use the Fisher information matrix

(4.4) I(y, θ) = A(y, θ)tA(y, θ) =

( m∑

j=1

1
pj(y, θ)

∂pj(y, θ)
∂θk

∂pj(y, θ)
∂θ�

)m

k=1,�=1

of the model (p(y, θ) : θ ∈ Θ), which is under (B1)–(B3) well defined and positive
definite in the neighbourhood of θ = θ0.

Theorem 4.1. If the quantized continuous model (p(y, θ) : θ ∈ Θ) and the true
parameter θ0 fulfil (B1)–(B4) then the estimators θϕ,n, ϕ ∈ Φdisp, defined by (4.2)
are efficient in the sense that

(4.5) θϕ,n = θ0+(pn(y)−p(y, θ0)) diag p(y, θ0)−1/2A(y, θ0)I(y, θ0)−1+op

(
n−1/2

)

and asymptotically normal in the sense that

(4.6)
√
n(θϕ,n − θ0)

w→ N(0, I(y, θ0)
−1).

The estimation method characterized by Theorem 4.1. is applicable to an arbitrary
continuous model

(4.7) P = (F (x, θ) : θ ∈ Θ), Θ ⊂ Rs.
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It consists in the quantization of the observation space by y from (1.3) and a sub-

sequent application of the ϕ-disparity estimator. In the rest of the section we study
the efficiency of this method in the model (4.7). As is well known, if this model
satisfies certain regularity assumptions in the neighbourhood of θ = θ0 then a posi-

tive definite Fisher information s× s matrix J (θ) exists in this neighbourhood and
the efficient estimators of θ0 in this model achieve the asymptotic covariance matrix

J (θ0)−1. Thus the trace
trJ (θ0)−1 =

1
trJ (θ0)

characterizes the least asymptotic variance achievable in a reasonably wide class of

possible estimators of θ0 in the model (4.7). Theorem 4.1 shows that, under an ap-
propriate regularity, all ϕ-disparities estimators of θ0 in the quantized version (1.2) of

the model (4.7) achieve the asymptotic variance tr I(y, θ0)−1. Therefore the quantity

S(y, θ) = tr(J (θ)− I(y, θ))

can serve as a measure of subefficiency at θ ∈ Θ of the estimation method studied
in this section.

In the sequel we explicitly denote the dependence of the information (4.4) on the

partition size m by writing Im(y, θ) and Sm(y, θ) instead of I(y, θ) and S(y, θ). For
simplicity we restrict ourselves to the univariate parameters θ, i.e. we assume that
Θ ⊂ R and, consequently,

(4.8) Im(y, θ) =
m∑

j=1

ṗj(y, θ)2

pj(y, θ)
and Sm(y, θ) = J (θ) − Im(y, θ),

where ṗj(y, θ) = dpj(y, θ)/dθ.

Our regularity conditions (B1)–(B4), guaranteeing the existence of informations

Im(y, θ0) for vectors y of (1.3), do not imply the existence of the information J (θ0).
The first question is, therefore, when the informations J (θ), θ ∈ Θ, exist and whether
J (θ0) is always greater than the information Im(y, θ0) in the quantized models (1.2).
We shall consider conditions for the existence of the Fisher information J (θ0),

θ0 ∈ Θ, in the model (4.7) introduced in [19] (condition C2 on p. 280 ibid.), namely
that the densities f(x, θ) = dF (x, θ)/dx and their derivatives ḟ(x, θ) = df(x, θ)/dθ
exist at θ0 for almost all x, and for some ε > 0 (possibly depending on θ0)

(4.9)
∫

sup
|θ−θ0|<ε

(
f(x, θ)− f(x, θ0)
(θ − θ0)f(x, θ0)

)2
f(x, θ0) dx <∞.
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Under this condition

(4.10) J (θ0) =
∫
ḟ(x, θ0)2

f(x, θ0)
dx <∞

is finite—it is the Fisher information in the continuous model (4.7).

������� 4.1. Let (4.7) be the location family with F (x, θ) defined by the
densities

f(x, θ) = f0(x− θ) for x, θ ∈ R.

If

f0(x) =
1√
2�
e−x2/2

is the standard normal density then ḟ(x, θ) is continuous in the variables x, θ ∈ R

and (4.10) implies that J (θ0) = 1 for all θ0 ∈ Θ. Similarly, for the logistic model of
location with

f0(x) =
ex

(1 + ex)2

we obtain the continuity of ḟ(x, θ) and J (θ0) = 1 for all θ0 ∈ Θ. On the other hand,
the doubly exponential model of location with

f0(x) =
1
2
e−|x|

does not satisfy the standard continuous differentiability assumption but satis-

fies (4.9) and ḟ(x, θ) exists for all x �= θ0. Thus, by (4.10), J (θ0) = 1 for every
location θ0 ∈ R.

By Theorem 3 in [19], if J (θ0) is finite then

J (θ0)− Im(y, θ0) � 0

for all models (4.7) satisfying the conditions considered above and all y considered

in (1.3).

In what follows we are interested in special y = y0 = y0(θ0) with the coordi-
nates y0j defined as the quantiles of the sample distribution F (x, θ0) of orders j/m,

1 � j � m− 1, i.e. with

(4.11) y0j = F−1(j/m, θ0) for F−1(τ, θ) = inf{x : F (x, θ) � τ}.
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Obviously, y0 is one of the vectors (1.3) which is uniquely specified by θ0 and the

partition size m > 1. If all densities {f(x, θ) : θ ∈ Θ} are positive on a common
interval of support then Theorem 4 in [19] implies that the relation

Sm(y0, θ0) = J (θ0)− Im(y0, θ0) = o(1)

holds asymptotically for m = rk, any integer r > 1, and k →∞.
Now we present heuristic argument leading to a more universal and precise as-

ymptotic formula for the subefficiency at y0, namely

(4.12) Sm(y0, θ0) = O

(
1
m2

)
as m→∞.

The argument is valid under appropriate regularity of the model (4.7) assumed in
addition to (B1)–(B4).

In order to obtain (4.12), let us suppose that the densities f(x, θ) and their deriv-
atives ḟ(x, θ) considered in (4.10) exist and that f(x, θ) is positive and ḟ(x, θ) con-

tinuous in the variable x ∈ R for every θ ∈ Θ. For fixed θ0, θ ∈ Θ let us introduce
the function

ϕ(τ) = F (F−1(τ, θ0), θ), τ ∈ (0, 1),

with the derivative

(4.13) ϕ′(τ) =
f(F−1(τ, θ0), θ)
f(F−1(τ, θ0), θ0)

,

and the functions

ψτ (x) = ϕ(τ + x)− ϕ(τ − x)

of the variable x from the neighbourhood of 0. If ϕ′′′(τ) = d3ϕ(τ)/dτ3 exists and is
continuous on (0, 1) then, by the Taylor theorem,

(4.14) ψτ (x) = 2ϕ
′(τ)x +

ϕ′′′(τ∗)
3

x3 for τ − x < τ∗ < τ + x.

For 1 � j � m put

τj =
2j − 1
2m

.

Since
j

m
= τj +

1
2m

and
j − 1
m
= τj −

1
2m

,

we have

pj(y0, θ) = ϕ

(
j

m

)
− ϕ

(
j − 1
m

)
= ψτj

(
1
2m

)
.
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By (4.14), this implies

pj(y0, θ) = ϕ′(τj)
1
m
+
ϕ′′′(τ∗j)
24

1
m3

=
f
(
F−1(τj , θ0), θ

)

f
(
F−1(τj , θ0), θ0

) 1
m
+
ϕ′′′(τ∗j)
24

1
m3

(cf. 4.13).

It follows from here that, under an additional regularity of the function ϕ′′′(τ),

ṗj(y0, θ0) =
ḟ
(
F−1(τj , θ0), θ0

)

f
(
F−1(τj , θ0), θ0

) 1
m
+O

(
1
m3

)
as m→∞.

By (4.11), pj(y0, θ0) = 1/m so that (4.8) implies for densities f(x, θ) with appropriate
properties

Im(y0, θ0) = m
m∑

j=1

ṗj(y0, θ0)2

=
1
m

m∑

j=1

(
ḟ
(
F−1(τj , θ0), θ0

)

f
(
F−1(τj , θ0), θ0

)
)2
+O

(
1
m2

)

=
∫ 1

0

(
ḟ
(
F−1(τ, θ0), θ0)

f
(
F−1(τ, θ0), θ0

)
)2
dτ +O

(
1
m2

)
as m→∞.

Finally, the substitution x = F−1(τ, θ0) transforms the last integral into the Fisher
information (4.10). Thus under suitable regularity (4.12) holds.

On the basis of what has been said above, we can make several important conclu-
sions. First of all, the optimal partition of any given size m is independent of the

disparity function ϕ used to estimate the true parameter θ0, and it is defined by the
condition

(4.15) yopt = argmaxy Im(y, θ0),

where the maximization extends over all vectors y of (1.3) satisfying, together
with θ0, the conditions (B1)–(B4). Further, under the weak regularity of the basic

continuous model (4.7) guaranteeing the existence of the Fisher information (4.10),
the suboptimality Sm(yopt, θ0) of the optimal partition is finite and tends to zero for

m→∞. Under the stronger regularity of the model (4.7) guaranteeing the validity
of (4.12), the suboptimality Sm(yopt, θ0) tends to zero at least as fast as 1/m2 for

m→∞. Finally, the number

(4.16) ηm(y, θ0) =
Sm(y, θ0)
J (θ0)

· 100
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characterizes in % the relative asymptotic inefficiency of all minimum ϕ-disparity

estimators of θ0 using the partition y in the continuous model (4.7). The num-
ber ηm(yopt, θ0) characterizes the relative asymptotic inefficiency of the estimation
method of the present section in the continuous model (4.7). Unfortunately, this in-

efficiency is rarely practically achievable because the partition yopt usually depends
on the true θ0 which is a priori unknown. However, as we shall see in the next

section, the inefficiency ηm(y0, θ0) for y0 given by (4.11) is practically achievable for
all θ0 ∈ Θ and all models satisfying regularity assumptions slightly stronger than
(B1)–(B4). Under (4.12) this inefficiency is negligible for large m, tending to zero
with the rate 1/m2 for m→∞.
������� 4.2. Table 4.1 presents for selected m the values of Im(y0, θ0),

Sm(y0, θ0), ηm(y0, θ0) and Im(yopt, θ0), Sm(yopt, θ0), ηm(yopt, θ0) in the normal and
logistic models of location studied in Example 4.1. These values, as well as the

corresponding Fisher informations

J (θ0) = 1 and J (θ0) = 1/3

do not depend on the location θ0 ∈ R. The partition vectors y0 and yopt correspond-

ing to θ0 = 0 are presented in Table 4.1, too. Since their coordinates are symmetric
about 0, we show only the nonnegative ones.

5. Continuous models. Random partitions

In this section we consider the vector λ = (λ1, . . . , λm−1) introduced in (1.5),

the vector yn of sample quantiles defined by (1.4), further the vector y0 =
(y01, . . . , y0m−1) of theoretical quantiles

(5.1) y0j = F−1(λj , θ0), 1 � j � m− 1,

and the stochastic vector q = (q1, . . . , qm) one-one related to λ by the formula

(5.2) qj = λj − λj−1, 1 � j � m.

We see that y0 of the present section is more general than that of Section 4. It

coincides with y0 defined by (4.11) if the distribution q is uniform, i.e. if the quantile
orders are equidistant.

By θ̃ϕ,n = θ̃ϕ,n(x1, . . . , xn) we denote the Θ-valued statistics satisfying the asymp-
totic relation

(5.3) P
(
Dϕ(p(yn, θ̃ϕ,n); q) �= inf

θ∈Θ
Dϕ(p(yn, θ); q)

)
= o(1).
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Family I. E.C. m = 5 m = 10 m = 15 m = 20

y0
0.280
0.842

0.000
0.320 0.640
0.961 1.281

0.115
0.346 0.577
0.808 1.039
1.270 1.501

0.000 0.183
0.365 0.548
0.731 0.913
1.097 1.279
1.462 1.645

Im(y0, θ0) 0.897 0.959 0.976 0.984

Sm(y0, θ0) 0.103 0.041 0.024 0.016

Normal ηm(y0, θ0) 10.298 4.063 2.377 1.631

yopt
0.382
1.244

0.000
0.405 0.834
1.325 1.968

0.137
0.414 0.703
1.013 1.360
1.776 1.344

0.000 0.208
0.420 0.637
0.866 1.111
1.381 1.690
2.068 2.593

Im(yopt, θ0) 0.920 0.977 0.989 0.994

Sm(yopt, θ0) 0.080 0.023 0.011 0.006

ηm(yopt, θ0) 7.994 2.294 1.074 0.621

Logistic

y0 ≡ yopt
0.405
1.386

0.000
0.405 0.847
1.386 2.197

0.133
0.405 0.693
1.012 1.386
1.872 2.639

0.000 0.201
0.405 0.619
0.847 1.099
1.386 1.735
2.197 2.944

Im(yopt, θ0) 0.320 0.330 0.332 0.332

Sm(yopt, θ0) 0.013 0.003 0.001 0.001

ηm(yopt, θ0) 4.000 1.000 0.444 0.250

Table 4.1. Information and efficiency characteristics (I.E.C.) considered in Example 4.2.
All values are rounded off to three decimals. The relative inefficiencies, given in
percents, are printed in bold.

It is the ϕ-estimator of θ0 in the model (4.6) with the observation space quantized
by the sample quantiles (1.4).

If the sample space R is quantized by the sample quantiles yn from (1.4) then
the observation space is Rm−1 and the true distribution functions Gθ in this space

depend on the size of the sample (xi : 1 � i � n) in the original model (4.7). Namely,
for the true θ0 we have

Gθ0(y) = Gn,θ0(y) = P (yn < y), y ∈ Rm−1.

This leads to quite complicated expressions for the families G = (Gn,θ : θ ∈ Θ).
Fortunately, it will be sufficient to use the asymptotic formula

(5.4) ‖Fn(y0) + F (yn, θ0)− 2λ‖ = op(n−1/2)
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proved in Theorem 1 of [4] under the assumption that the function x �→ F (x, θ0) is

continuous and increasing in the neighbourhood of x = y0j for every 1 � j � m− 1.
Employing Corollary 4.1, one obtains from (5.4) a useful relation

(5.5) ‖pn(y0) + p(yn, θ0)− 2q‖ = op(n−1/2).

Assumptions (A1)–(A5) that follow are analogues of (B1)–(B4) for the re-
duced models (p(y, θ) : θ ∈ Θ) of Section 4 with y from the neighbourhood of y0

given by (5.1). In particular, as is easy to see, these assumptions imply (B1)–(B4)
for the model (p(y0, θ) : θ ∈ Θ).
(A1) ≡ (B1) for y = y0.
(A2) In the neighbourhood of (y0; θ0), F (y; θ) is continuous, and also the gradient

matrix Γ(y; θ) = (∂/∂θ1, . . . , ∂/∂θs)F (y, θ)t exists and is continuous.
Under (A2) also the function p(y, θ) is continuous and continuously differentiable

in θ at all points (y; θ) from the neighbourhood of (y0; θ0). Under (A1) it has all co-
ordinates in this neighbourhood positive, due to the similar property of p(y0, θ0) = q

assumed in (A1). Thus, in particular, we can consider in this neighbourhood the
(m× s) matrix functions

(5.6) G(y, θ) = (∂/∂θ1, . . . , ∂/∂θs)p(y, θ)t and A(y, θ) = diag q−1/2G(y, θ).

(A3) The matrix A = A(y0, θ0) is of the rank s and s < m.
The (s× s) matrix

(5.7) I = AtA

is under (A3) positive definite. Due to the continuity assumed in (A2), also I(y, θ) =
A(y, θ)tA(y, θ) is positive definite in the neighbourhood of (y0; θ0). Obviously, (5.7)

is the Fisher information matrix of the reduced statistical model (p(y0, θ) : θ ∈ Θ)
at the point θ0.

The continuity of F (y, θ) assumed in (A2) implies in particular that, for all θ
from the neighbourhood of θ0, the functions x �−→ F (x, θ) are continuous in the

neighbourhood of y0j , 1 � j � m− 1. At θ = θ0 we assume an additional property
of F (x, θ).

(A4) F (x, θ0) is increasing in the neighbourhood of x = y0j for every 1 � j � m−1.
This assumption implies that F (y, θ0) is invertible in the neighbourhood of y = y0.

Combining this with the monotonicity of F (x, θ0) in the variable x ∈ R, one obtains
for any sequence yn the implication

(5.8) ‖F (yn, θ0)− λ‖ = o(1) =⇒ ‖yn − y0‖ = o(1).
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Lemma 5.1. If (A1)–(A4) hold then

‖yn − y0‖ = op(1)(5.9)

and

n1/2(p(yn, θ0)− q)
w−→ N(0, diag q − qtq).(5.10)

��		
. As stated above, (A1)–(A4) imply (5.4) and (5.5). Using the inequality∣∣‖a‖ − ‖b‖
∣∣ � ‖a− b‖ valid for all vectors a, b, one obtains from (5.4)

(5.11) ‖Fn(y0)− λ‖ = ‖F (yn, θ0)− λ‖+ op(n−1/2)

and from (5.5)

(5.12) ‖pn(y0)− q‖ = ‖p(yn, θ0)− q‖+ op(n−1/2).

Since n1/2(Fn(y0) − λ))
w−→ N(0,λt(1 − λ)), (5.9) follows from (5.11) and (5.8).

Further, since pn(y0)− q = n−1(Zn −nq) where Zn is the multinomially distributed
random vector with parameters n and q, we conclude

(5.13) n1/2(pn(y0)− q)
w−→ N(0, diag q − qtq).

Relations (5.12) and (5.13) imply (5.10). �

The following result has been proved for ϕ = ϕ3 from Example 2.1, i.e. for the
minimum Pearson divergence estimator θ̃ϕ3,n, by Bofinger [4].

Lemma 5.2. If θ̃ϕ,n is consistent and (A1)–(A4) hold then θ̃ϕ,n is efficient in

the model (p(y0, θ) : θ ∈ Θ) in the sense

(5.14) θ̃ϕ,n = θ0 + (pn(y0)− q) diag q−1/2AI−1 + op(n−1/2)

and asymptotically normal in the sense

(5.15)
√
n(θ̃ϕ,n − θ0)

w−→ N(0, I−1),

where A is the matrix figuring in (A3) and I is the Fisher information matrix defined
by (5.7).

��		
. By the assumptions concerning Φdisp, let ϕ(1) = ϕ′(1) = 0 and let us
introduce an auxiliary function

v(y, θ) =

(
q
1/2
j ϕ′

(
pj(y, θ)
qj

)
: 1 � j � m

)
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of the vector variables (y; θ) from the neighbourhood of (y0; θ0). It follows from (5.3)

that
P{v(yn, θ̃ϕ,n)A(yn, θ̃ϕ,n) �= 0} = o(1)

where A(y, θ) is defined in (5.6). If we apply the Taylor formula to

v(yn, θ0)− v(y0, θ0) and v(yn, θ)− v(yn, θ0)

and use the fact that ϕ′(1) = 0 implies v(y0, θ0) = 0, then we get the equation

v(yn, θ̃ϕ,n)A(yn, θ̃ϕ,n) = (p(yn, θ0)− q)Bn + (θ̃ϕ,n − θ0)Cn

where

Bn = diag
(
ξ
−1/2
nj ϕ′′

(
ξnj

qj

)
: 1 � j � m

)
A(yn, θ̃ϕ,n)

and

Cn = A(yn, τn)
t diag

(
ϕ′′

(
pj(yn, τn)

qj

)
: 1 � j � m

)
A(yn, θ̃ϕ,n)

for ξn = (ξn1, . . . , ξnm) “between” q and p(yn, θ0) and τn = (τn1, . . . , τns) “between”
θ0 and θ̃ϕ,n. Obviously,

(5.16) Bn
p−→ ϕ′′(1) diag q−1/2A and Cn

p−→ ϕ′′(1)AtA.

If

(5.17) (p(yn, θ0)− q)Bn + (θ̃ϕ,n − θ0)Cn = 0

then the relation ‖p(yn, θ0)−q‖ = Op(n−1/2) obtained from (5.10) and the regularity

of AtA following from (A3) imply ‖θ̃ϕ,n− θ0‖ = Op(n−1/2). Therefore (5.14) follows
from (5.16) and (5.17).

Relation (5.17) follows from (5.13) and (5.14), or from (5.10) and (5.17), by using
the formula

At diag q−1/2(diag q − qtq) diag q−1/2A = AtA

deducible from the fact that q diag q−1/2A = q diag q−1G(y0, θ0) is the zero s-vector

of sums of the columns of the gradient G(y0, θ0). �

It remains to formulate an appropriate consistency condition for the estimators
θ̃ϕ,n, ϕ ∈ Φ. To this end we need an identifiability condition for the true θ0 in the
model under consideration, similar to (B4) in the model (p(y0, θ) : θ ∈ Θ). Bofinger
[4] in Theorem 2 formulated an identifiability condition denoted there by (i), which is

equivalent to (B4). Note that (A1)–(A4) are equivalent to the remaining conditions
(ii)–(iv) of the mentioned theorem, and to the conditions formulated at other places

of that paper. The next example demonstrates that (B4) is under (A1)–(A4) not
sufficient for consistency.
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������� 5.1. Let Θ = (0, 1) and let for all (x; θ) ∈ [0,∞)× (0, 1)− S and for

the square S = [0, 0.6)× (0.4, 1)

F (x, θ) = min{θx, 1}.

If (x; θ) ∈ S then we put

F (x, θ) =
0.4
0.6
(1− θ)x+ (θ − 0.4)

( x

0.6

)(θ−0.4)/(1−θ)
.

The function F (x, θ) is continuous on [0,∞)× (0, 1), and also coordinatewise linear
on [0, 1]× (0, 1)− S, as seen from Fig. 5.1. Let θ0 = 0.2 and m = 2, so that λ = λ

is a scalar from (0, 1) and similarly y0 = y0 = F−1(λ, θ0) is a scalar from (0, 1).

If λ = 0.12 then y0 = F−1(λ, θ0) = 0.6. In the neighbourhood (0, 1) × (0, 0.4] of
(y0; θ0) = (0.6; 0.2), F (x, θ) is linear and increasing in both variables x and θ. Also

F (0.6, θ) is linear and increasing in θ on the whole parameter space (0,1). Hence
(A1)–(A4) as well as (B4) hold. On the other hand, the sample quantiles of order

λ = 0.12,
yn = F−1n (0.12),

tend in probability to y0 = 0.6. Since F (x, θ) is for every x ∈ (0, 0.6] continuous
in θ ∈ (0.4, 1), it takes on all values between F (x, 0.4) = 0.4x and F (x, 1) = 0
(cf. Fig. 5.1). Since the solution of the equation 0.4x = 0.12 is x = 0.3, we obtain

that
yn ∈ (0.3, 0.6) =⇒ F (yn, θ̃n) = 0.12 for some θ̃n ∈ (0.4, 1).

Finally, in this example we have p(yn, θ) = (F (yn, θ), 1 − F (yn, θ)) and q =

(0.12, 0.88). Consequently, (2.5) implies for the Pearson divergence the formula

D3(p(yn, θ); q) =

(
1
0.12

+
1
0.88

)
(F (yn, θ)− 0.12)2.

Therefore if yn ∈ (0.3, 0.6) then D3(p(yn, θ̃n); q) = 0 for some θ̃n ∈ (0.4, 1). But the
sample quantiles yn take on values in (0.3, 0.6) with probability �n tending to 1/2
for n→∞. This means that the minimum Pearson divergence estimator θ̃n attains

values outside the neighbourhood (0, 0.4] of θ0 = 0.2 with probability at least 1/2
when n→∞.

The insufficiency of the assumptions (A1)–(A4), (B4) of Bofinger [4] for the consis-

tency of minimum Pearson divergence estimators θ̃ϕ3,n demonstrated in Example 5.1
motivates the following condition.

(A5) For each y from the neighbourhood of y0, θ �→ F (y, θ) is a one-one mapping
on Θ.
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Figure 5.1. F (x, θ) for x ∈ (0, 1) and θ ≡ y ∈ (0, 1).

We shall see that (A1)–(A4), (B4) are sufficient for the consistency of all disparity
estimators θ̃ϕ,n if the continuity of F (y, θ), assumed in (A2), is replaced by the

following stronger property.
(A6) The system of functions {F (y, θ) : θ ∈ Θ} is equicontinuous at y = y0.

Lemma 5.3. If (A1)–(A5) hold then all estimators θ̃ϕ,n, ϕ ∈ Φ, are consistent.
This statement remains true with (A1)–(A5) replaced by (A1)–(A4), (B4) and (A6).

��		
. (I) Obviously,

0 � Dϕ(p(yn, θ̃ϕ,n); q) � Dϕ(p(yn, θ0); q).

Using the Taylor expansion of ϕ(t) around t = 1 one obtains from (2.1) and (5.10)

that Dϕ(p(yn, θ0); q) = Op(n−1). Consequently also

Dϕ(p(yn, θ̃ϕ,n); q) = Op(n−1).

This together with Theorem 2.3 implies ‖p(yn, θ̃ϕ,n)− q‖ = Op(n−1/2). We will use

only the weaker relation

(5.18) ‖p(yn, θ̃ϕ,n)− q‖ = op(1).
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Let us assume that (A6) holds, i.e.

(5.19) sup
θ∈Θ

‖F (y, θ)− F (y0, θ)‖ −→ 0 as y → y0.

Then (5.9) implies

(5.20) sup
θ∈Θ

‖F (yn, θ)− F (y0, θ)‖ = op(1).

It follows from here and from Corollary 4.1 with ỹ = yn and θ = θ0 that

(5.21) sup
θ∈Θ

‖p(yn, θ)− p(y0, θ)‖ = op(1).

By the triangle inequality,

‖p(y0, θ̃ϕ,n)− q‖ � ‖p(yn, θ̃ϕ,n)− p(y0, θ̃ϕ,n)‖+ ‖p(yn, θ̃ϕ,n)− q‖.

Therefore (5.21) and (5.18) imply

‖p(y0, θ̃ϕ,n)− p(y0, θ0)‖ = ‖p(y0, θ̃n)− q‖ = op(1)

and, by virtue of the right-hand inequality in Corollary 4.1 with y = ỹ = y0 and
θ = θ̃ϕ,n,

(5.22) ‖F (y0, θ̃ϕ,n)− F (y0, θ0)‖ = op(1).

The continuity of the mapping θ �→ F (y0, θ) in an open neighbourhood U of θ0 and

the one-one property assumed in (B4) imply that the inverse mapping τ �→ Ψ(τ ),
defined for all τ = (τ1, . . . , τm−1) from the domain D = {F (y0, θ) : θ ∈ Θ} ⊂ Rm,

is continuous on the subdomain S = {F (y0, θ) : θ ∈ U}. (B4) also implies that the
image F (y0, θ) of θ /∈ U is not in S. Since S is open and contains λ = F (y0, θ0),

there exists ε > 0 such that

(5.23) ‖F (y0, θ)− λ‖ < ε =⇒ θ ∈ U.

Thus (5.22) implies that the probability of θ̃n /∈ U tends to zero. Since

θ̃n ∈ U =⇒ Ψ(F (y0, θ̃ϕ,n)) = θ̃ϕ,n

and Ψ(F (y0, θ0)) = θ0, the desired result

(5.24) ‖θ̃ϕ,n − θ0‖ = op(1)

follows from (5.22) by the continuity of Ψ(τ ).
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(II) If instead of (B4) and (A6) one assumes (A5) then the proof is simpler. One

obtains the same implication as in (5.23) with y0 replaced by y from a closed ball
V ⊂ Θ centered at y0, but with ε = ε(y) possibly depending on y. However, due to
the compactness of V ,

inf
y∈V

ε(y) > 0.

By (A5), the neighbourhoods V and U can be chosen such that the mapping F (y, θ)
is invertible on V × U , with the inverse ϕ(τ ) defined and continuous for τ from

the neighbourhood of λ = F (y0, θ0). Finally, (5.18) means that ‖p(yn, θ̃ϕ,n) −
p(y0, θ0)‖ = op(1). By the right-hand inequality in Corollary 4.1 this implies

‖F (yn, θ̃ϕ,n)− F (y0, θ0)‖ = op(1).

(5.4) follows from this relation in the same way as it followed above from (5.22), by

using the identities

ϕ(F (yn, θ̃ϕ,n)) = θ̃ϕ,n, ϕ(F (y0, θ0)) = θ0

and the continuity of ϕ. �

Condition (A5) does not seem to be weaker than the conjunction of (B4) and

(A6), and vice versa. If we consider for simplicity only (A5) then the results of the
previous three lemmas can be summarized as follows.

Theorem 5.1. If (A1)–(A5) hold then all estimators θ̃ϕ,n, ϕ ∈ Φ, are efficient
in the sense of (5.14) and asymptotically normal in the sense of (5.15).

We see from Theorem 5.1 that if the continuous model (4.7) satisfies for the true
θ0 ∈ Θ and for y0 given by (4.11) the regularity assumptions (A1)–(A5) then all

minimum disparity estimators θ̃ϕ,n, ϕ ∈ Φdisp achieve under the random partition
by the sample quantiles yn of the equidistant orders j/m, 1 � j � m − 1, the
same asymptotic variances as the estimators θϕ,n, ϕ ∈ Φdisp under the deterministic
partitions y0 of (4.11). Therefore in this case Sm(y0, θ0) from Section 4 (defined

by (4.8) if Θ ⊂ R) characterizes the subefficiency of the estimation procedure of
the present section in the model (4.7). Or, equivalently, ηm(y0, θ0) defined by (4.16)

characterizes in % the asymptotic inefficiency of the present procedure in the original
model (4.7). As was indicated in Example 4.2, ηm(y0, θ0) is for largerm only slightly

below the minimal asymptotic inefficiency ηm(yopt, θ0) achievable by the partitions
of size m. If the models (4.7) satisfy an additional regularity condition, then the

inefficiency ηm(y0, θ0) tends to zero for m → ∞ with the rate 1/m2. Thus the
efficient estimation in sufficiently regular models (4.7) can be practically achieved
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by any of the estimators θ̃ϕ,n, ϕ ∈ Φdisp, and by taking a partition of size m large
enough. This estimation is at the same time robust in the sense of Lindsay [9]
whenever the used disparity function ϕ is bounded.
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