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Abstract. In this paper, the problem of dissecting a plane rectilinear polygon with 
arbitrary (possibly, degenerate) holes into a minimum number of rectangles is shown 
to be solvable in O(n 3/2 log n) time. This fact disproves a famous assertion about the 
NP-hardness of the minimum rectangular dissection problem for rectilinear polygons 
with point holes. 

1. Introduction 

The following decomposition problem is well studied in computational geometry 

(see, for instance, [1], [3], [4], and [6]-[9]): Given a rectilinear polygon with 

rectilinear holes, dissect its interior into a minimum number of nonoverlapping 

rectangles. In the case of nondegenerate holes this problem can be solved in O(n 5/2) 

time, where n is the number of vertices of the polygon (see [1], [4], and [6]). Lipski 

[7], [8] and Imai and Asano [3] gave O(n 312 log n) algorithms for this minimum 

dissection problem. Both algorithms make use of the bipartite intersection graph 

of a set of vertical and horizontal line segments. 

If the holes of a rectilinear polygon can degenerate into points, the minimum 

dissection problem is asserted to be NP-hard [5]. Nevertheless, we prove below 

the solvability of this problem in O(n 3/2 log n) time in the case of arbitrary (possibly, 

degenerate) holes. In this way, we adapt the respective techniques developed in 

[3], [4], and [6]-[8], which breaks down in the case of degenerate holes. 

2. Description of Rectilinear Polygons 

Let p be a (possibly, multiply connected) bounded polygonal region in the 

Coordinate plane E. The topological boundary bd P of P is assumed to be the 
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union of a finite number of simple rectilinear contours. A polygonal contour is 

called rec t i l inear  provided all of its line segments are either horizontal or vertical. 

We assume that any two of these contours will be situated either one inside the 

other or mutually noninclusive, that they will have common vertices but no 

common line segments, and that they are not interlaced. 

As usual, a point x e E is called interior for P provided it is contained inside 

an odd number of simple contours determining bd P. All interior points of P form 

the topological interior int P. 

Inside P a finite family of c losed  line segments s 1 . . . . .  s, (either horizontal or 

vertical), and a finite family of isolated points v l , . . . ,  v t, may be situated such that 

the following conditions are fulfilled: 

(1) v I . . . . .  v t belong to int P \ ( s l  u . "  w s~); 

(2) the interior of each segment si is contained in int P; 

(3) if segments s i, s j  have a common point, then it is a vertex for both si, sj. 

The point-set union of these points and segments is called the o r n a m e n t  of P, and 

denoted by Or P. 

In order to consider the degenerate holes, we introduce a nonstandard topology 

in the plane E. Since the description of the respective constructions is sometimes 

rather formal, we use some illustrative examples. The first of them is shown in 

Fig. 1. 

Example. For  rectilinear polygon B, represented in Fig. 1, bd B is the union 

of four rectilinear contours [1, 3, 10, 11, 24, 23, 32, 30, 1], [4, 5, 13, 12, 4], 

[9, 10, 23, 22, 9], and [16, 17, 26, 25, 16]. We have 

Or B = {21} u {29} u [2, 7] w [6, 7] u [7, 8] u [7, 14] 

u [15, 20] u [18, 19] u [18, 27] w [19, 28] u [25, 31] u [27, 28]. 

Since the segments of contour [18, 19, 28, 27, 18] are defined to be in Or P, 

the interior of rectangle [18, 19, 28, 27] belongs to int B. 
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Fig. l. A rectilinear polygon in the plane. 
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Definition 1. The sets 

Bd P := Or P u bd P, Int P..= P\Bd P 

are called, respectively, the formal boundary and the formal interior of P. Any 

bounded connected component of E~Int P is named a formal hole of P, and the 

unbounded connected component of E~Int P is called the formal exterior of P. 

We write Ext P for the formal exterior of P. 

From the definitions above, it follows that Bd P, Ext P, and any formal hole 

of P are closed sets, while lnt P is open. As usual, a topolo#ical hole of P is defined 

to be a bounded connected component of E~P. Observe that topological holes 

are independent of the choice of Or P. 

Example. Polygon B in Fig. 1 has five formal holes: points 21 and 29, segment 

[t5, 20], rectilinear contour [18, 19, 28, 27, 18], and rectangle [4, 5, 13, 12]. Rect- 

angle [16, 17, 26, 25] is not a formal hole of B, because it is connected with the 

exterior of B by segment [25, 31]. B has three topological holes, namely, the 

interiors of rectangles I-4, 5, 13, 12], [9, 10, 23, 22], and [16, 17, 26, 25]. 

Now we are able to define the dissection of P into rectangles. 

Definition 2. A rectilinear polygon P is said to be dissected into rectangles 
R 1 . . . . .  Rq if and only if 

q q 

U int Ri c Int P c U Ri, int r~ c~ int Ri = ~5 for i :# j. 
i=1 i=1 

In other words, nonoverlapping rectangles RI . . . . .  Rq dissect P if their union 

coincides with P and the formal boundary Bd P belongs to the union of R 1 . . . . .  R~ 
boundaries. 

Example. A dissection into rectangles of rectilinear polygon B from Fig. 1 is 
shown in Fig. 2. 

We continue the description of rectilinear polygons. 

Definition 3. A point w is called a vertex of P in any one of the following cases: 

(1) w is a vertex of a contour forming bd P; 

(2) w is a vertex of a segment st forming Or P; 

(3) w is one of the isolated points v~ in Or P. 

The set of all vertices of P is denoted by V(P). 
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Fig. 2. A dissection of a rectilinear polygon into rectangles, 

Definition 4. A closed line segment [x, z], x # z, is called an elementary segment 

of Bd P if l'x, z] c Bd P and l,x, z] c~ V(P) = {x, z}. The set of all elementary 

segments of Bd P is denoted by S(P). 

Example. Polygon B in Fig. 1 has 32 vertices and 32 elementary segments. Note 

that l,I, 3] and [30, 32] are not elementary segments of Bd B, because they contain, 

respectively, vertices 2 and 31 in their interiors. 

From the definitions, it follows that a common point of elementary segments 

t~, t i ~ S(P) is a vertex for both segments. 

Observation 1. A rectilinear polygon P is considered to be determined if the sets 

int P, Bd P, and V(P) are known. It is easily seen that Bd P and V(P) uniquely 

determine S(P). 

3. Measure of Local Nonconvexity 

Any vertex v (if it is not an isolated point in Bd P) is the apex of at least one 

nonempty inner angle of P. Every inner angle of P with the apex v is bounded by 

two elementary segments of the form [u, v], I-v, w], and contains no other inner 

angle with the apex v. We allow the sides of an inner angle to coincide (in this 

case, the size of the angle equals 2re). Obviously, any inner angle of a rectilinear 

polygon is of size 7rk/2, k = t, 2, 3, 4. Inner angles of size 3n/2 or 2re are called 

concave. 

Definition 5. A vertex v of P is called a point o f  local nonconvexity of P provided 

it is either an isolated point in Bd P or the apex of a concave inner angle of P; 

otherwise, v is called a point of local convexity of P. 

Example. In Fig. 1, vertex 7 is the apex of four inner angles; each of the vertices 

2, 10, 18, 19, 23, 27, 28, and 31 is the apex of two inner angles; each of the vertices 
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6, 8, 14, 15, and 20 is the apex of an inner angle of size 2re. Vertices 4-6, 8, 9, 

t2-22, and 26-29 are points of local nonconvexity for B. 

Definition 6. The measure m(v) (of local nonconvexity) of a rectilinear polygon 

P at a vertex is defined as follows: 

re(v) = 0 if v is a point of local convexity of P; 

re(v) = 1 if v is a point of local nonconvexity but not an isolated point in 

Bd P; 

re(v) = 2 if v is an isolated point in Bd P. 

Let 

m(P) := ~ re(v), 

where the sum is taken over the set V(P) of all vertices of P. The number re(P) is 

called the measure (of local nonconvexity) of P. 

Example. In Fig. 1, the measure of B at each of the vertices 21, and 29 equals 

two, at each of the vertices 4-6, 8, 9, 12-20, 22, and 26-28 is equal to one, and at 

any other vertex it equals zero. Thus re(B) = 22. 

We now state two simple lemmas that will be of use later. 

Lemma 1. Any formal hole of  a rectilinear polygon P contains at least one vertex 

of local nonconvexity of  P. 

Proof. Let H by any formal hole of P. It is easily seen that any vertex v of H 

having the maximum sum X + Yof its Cartesian coordinates (X, Y) is a vertex of 

the local nonconvexity of P. []  

Lemma 2. A rectilinear polygone P has no point of  local nonconvexity if and only 

if each component of ln t  P is an open rectangle; i.e.,/fBd P divides P into rectangles. 

Proof. A rectilinear polygone P has no point of local nonconvexity if and only 

if Bd P contains no isolated point and each inner angle of P is of size rt or rr/2. 

Now, the assertion of Lemma 2 readily follows. [ ]  

4. Effective Chords 

Further we shall see that the following line segments are of significant importance 

in any dissection of a rectilinear polygon into a minimum number of rectangles. 
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Definition 7. A line segment [v, w] is called an effective chord of P if the following 

conditions are fulfilled: 

(1) [v, w] is either horizontal or vertical; 

(2) the open interval ]v, wl- with the exception of a finite (possibly, empty) set 

of points is contained in Int P; 

(3) v, w are vertices of local nonconvexity of P and each of them is either an 

isolated point in Bd P or a vertex of an elementary segment of Bd P collinear 

to [v, w]; 

(4) ifa point x ~ Bd P belongs to ]v, w[, then x is a vertex of a unique elementary 

segment of Bd P orthogonal to [v, w]. 

Example. Polygon C (see Fig. 3) with the ornament 

Or C = [1, 2] u [ 3 ,  4] u [7, 8 ]w[12 ,  13 ]u  {5} u {10} u {11} 

has the following effective chords: [2, 12], [4, 5], [5, 10], [6, 7], [9, 10], and 

[10, 11]. 

From Definition 7, it follows: 

Observation 2. Any two different effective chords of P have at most one common 

point. Any proper part of an effective chord cannot be an effective chord. 

Definition 8. A family of effective chords of a rectilinear polygon P is called 

admissible if any two mutually orthogonal chords of this family have no common 

point. The maximum number of effective chords forming an admissible family for 

P is named the effective number of P and is denoted by e(P). 

Example. Polygon C in Fig. 3 has three maximal admissible families of effective 

chords: {[2, 12], [5, 10]}, {[2, 12], [4, 5], [9, 10], [t0, 11]}, and {[4, 5], 1,6,7], 

C = 

" / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Fig. 3. Effective chords of a rectilinear polygon. 
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[9, 10], [10, 11]}. Thus e(C) = 4, and a maximal admissible family need not be a 

maximum admissible family. 

Observation 3. If two effective chords of an admissible family for P have a 

common vertex, then these two chords are collinear and their common vertex is 

an isolated point in Bd P. 

5. Addition of Segments to Formal Boundary 

Any dissection of a rectilinear polygon into rectangles can be considered as a 

repeated addition of some closed line segments to the formal boundary of the 

polygon. In this section, we study some auxiliary results regarding this addition. 

Let [x, z] c P be a closed line segment (either horizontal or vertical) such that 

the intersection of Ix, z] with Bd P is a finite (possibly, empty) set. We can say 

that the polygon P' is obtained from P by the addition of Ix, z] to Bd P provided: 

(1) Bd P ' :=  B d P w [ x , z ] ;  

(2) Int P' := lnt P \ [ x ,  z]; 

(3) V(P'):= V(P) w {x, z} w (Or P c~ Ix, z]). 

Observation 4. Segment [x, z], added to Bd P, is not, in general, an elementary 

segment of Bd P'; it is, however, a union of elementary segments of Bd P'. 

We say that the addition of a segment [x, z] c P to Bd P decreases by one the 

measure m(z) of P at a vertex z ~ V(P) if m'(z) = re(z) - 1, where m'(z) means the 

measure of P' at z. 

Example. In Fig. 3, the addition of segment I-2, 12] to Bd C decreases by one 

the measure of C at each of the vertices 2, 7, and 12, while the addition of segment 

[11, 12] to Bd C decreases the measure by one at only vertex 11. 

Lemma 3. Let  P' be a polygon obtained f rom P by the addition to Bd P o f  a 

segment [x, w ] c  P such that w ~ V(P). Then 

m ( w )  - 1 < m'(w) < re(w), 

where m'(w) denotes the measure o f  P' at w. 

Proof If w is a point of local convexity of P, then trivially re(w) = m'(w) = O. 

Assume that w is a point of local nonconvexity of P but not an isolated point in 

Bd P. Then w is the apex of a concave inner angle of P. If [X, w] does not intersect 

the interior of this angle, then re(w) = m'(w) = 1. Let Ix, w] divide this angle in 

two inner angles of P'. If one of these new angles is concave, then m(w) = in'(w) = 1. 

If both new angles are convex, then m(w) - 1 = m'(w) = O. 

Assume now that w is an isolated point in Bd P. Then w is a vertex of a unique 
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elementary segment I'u, w] e S(P') (obviously, [u, w] lies in Ix, w]). In this situation 

m ( w ) -  1 = m'(w)= 1. 

Lemma 4. Let [v, w] be an effective chord o f  a rectilinear polygon P, and let 

x l , . . . ,  x,  be all vertices of  P contained in ]v, w[. ?he addition of [v, w] to Bd P 

decreases by one the measure o f  P at each o f  the points v, w, x I . . . . .  x,.  

Proof. Each x~ is a vertex of a unique elementary segment, say [x i, zi], orthogonal 

to [v, w] (see item 4 of Definition 7). In this case, m(x~) = 1 for all i = 1 . . . . .  r. 

Denote by P' the polygon obtained from P by the addition of [v, w] to Bd P. 

Relative to P', each vertex x~ is the apex of three convex inner angles (two of them 

are of size n/2 and one is of size ~). Hence x~ is a point of local convexity of P' 

and m'(x~)=O, where m'(xi) denotes the measure of P' at xi. Hence 

m'(xi) = m(xi)  -- 1. 

If v is an isolated point in Bd P, then v is a vertex of a unique elementary 

segment of the form [v, x J  e S(P'). In this situation, m'(v) = m(v) - 1 = 1. Assume 

that v is not isolated in Bd P. Then v is a vertex of an elementary segment, 

say [u, v] ~ S(P), which is collinear to [v, w] (see item 2 of Definition 7). In this 

situation, v is a point of local convexity for P' and m'(v) = m(v) - 1 = 0. Similarly, 

m'(w) = re(w) - 1. [] 

We need the following: 

Definition 9. A line segment [x, z] is called a simple chord of P if the following 

conditions are fulfilled: 

(1) Ix, z] is either horizontal or vertical; 

(2) x, z e B d  P; 

(3) the open interval ]x, z[ is contained in Int P. 

Observation 5. From Definitions 4 and 9 it follows that if a simple chord Ix, z] 

of P is added to Bd P, then Ix, z] becomes an elementary segment for the polygon 

P' such that 

Bd P' = Bd P w [x, z], Int P' = Int P\]x ,  z[, V(P') = V(P) u {x, z}. 

I.emma 5. For any vertex v o f  local nonconvexity of  a rectilinear polygon P there 

is a simple chord [v, z] of  P whose addition to Bd P decreases by one the measure 

re(v). 

Proof. The vertex v is either an isolated point in Bd P or the apex of some inner 

concave angle of P. If v is an isolated point in Bd P, then we choose a horizontal 

segment [v, z] such that z ~ Bd P and ]v, z[ c Int P. The chord [v, z] is simple for 

P and m'(v) = 1, where m'(v) denotes the measure at v for the polygon F obtained 

from P by the addition of [v, z] to Bd P. In this case, m'(v) = m(v) - 1 = 1. 

Assume now that v is the apex of an inner concave angle of P formed by 
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elementary segments, say [u, vl, [v, w]. Choose the chord Iz, v] such that: 

(1) [z, v] is collinear to Iv, w], and v ~ ]z, x[; 

(2) z ~ Bd P and -lz, v[ c Int P. 

The chord [z, v'l is simple for P and m'(v) = m(v) - 1 = O. [] 

6. Decomposition of Supplementary Ornament 

Assume that a rectilinear polygon P is dissected into rectangles R I . . . . .  Rq (see 

Definition 2). Denote by L1 . . . . .  L~ the boundary contours of R1 , . . . ,  Rq, respec- 

tively, and put L :=  L~ u "--u Lq. 

Define W to be set of vertices of R 1 . . . . .  Rq. Then V(P) u Wdiv ides  the point-set 

union L of all R1 . . . . .  Rq sides into a family 5 ~ of closed line segments. Therefore, 

we may consider L as the formal boundary of the rectilinear polygon Po such that 

Bd Po = L, Int Po = Int P\L ,  V(Po) = V ( P ) u  W, S(Po) = 5 a. 

Note that P and Po have the same topological boundary and topological interior, 

and any connected component of Int Po is the interior of some rectangle Ri. 

As mentioned in Section 5, polygon Po can be obtained from P by the repeated 

addition of some closed line segments to Bd P. In this section we investigate the 

inverse approach: to obtain P from Po by the repeated deletion of some open line 

intervals. In this way, the "supplementary ornament" Y:= L\Bd P will be studied. 

Lemma 6. The set Y = L\Bd P can be decomposed into pairwise disjoint open line 

intervals. 

Proof Denote by Z~ the family of all maximal, with respect to inclusion, open 

intervals contained in Y. Since Y is itself an open set, we have Y = U {1: I~ £,¢}. 

Generally speaking, ~ does not satisfy the condition of Lemma 6 because it may 

contain some elements with nonempty intersection. In order to obtain the desired 

decomposition, we execute repeatedly the following: 

Segment splitting procedure. If open intervals ]x, y[, ]z, v[ in £~ have a common 

point w (in this case, ]x, y[ and ]z, v[ are orthogonal to each other), then put 

~ : =  (&a\]z, vD w {]z, w[, ]w, v]}. Since £,a is finite, the required decomposition 
exists. [] 

Example. Polygon D (see Fig. 4) with the ornament Or D = [1, 4] u [2, 3] u 

[5, 8] w {6} is dissected into four rectangles. The set Y:= L\Bd D is decomposed 

into open intervals as follows: Y = ]13, 4[u]4,  5[u]5, 6[u]6, 7[. 

Let L,e = {l 1 . . . . .  lk} be a decomposition of Y into pairwise disjoint open line 

intervals, and let l i = ]xi, zi[, i = 1 . . . . .  k. Denote by Pi the rectilinear polygon 

obtained from Po by deleting 11 u ' "  u li from L, i = 1 . . . . .  k. 

Generally speaking, the polygon Pk can be different from P because it may 

contain some new vertices (as vertex 7 of D O for polygon D in Fig. 4). At the same 
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D 

~ / / / / / / / / / / / / / / / / / / / ~  

= 3 , I s  71: 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Z  

Fig. 4. "Supplementaryornament"ofarectangulardissection. 

t ime Bd Pk = Bd P, and any vertex w ~ V(Pk)\ V(P) is a point of  local convexity 

for P. Therefore  m(PO = m(P). 

Since the set Li := L \ ( l i  w " "  w It) may  be nonclosed for 1 _< i < k, the respective 

o rnaments  of Pi  . . . . .  Pk -  1 are not  well defined (by definition, the ornament  of a 

rectilinear polygon is a union of isolated points  and closed segments). Therefore 

we cannot  directly apply to P~ the not ion of measure  of local nonconvexity. 

Nevertheless,  we can avoid this obstacle  for vertices of  P (but not for vertices of 

Pi) in the following way. 

A set Li can be nonclosed if we delete, together  with some interval lp, p <_ i, an 

endpoint  of an interval lq, q > i. Since lq n Bd P = ~ ,  this deleted vertex cannot 

be a vertex of Bd P. Hence for any vertex w in V(P), we can choose a small square 

Q (having vertical and  horizontal  sides) with center w such that  the intersection 

of  Q with L i is closed. N o w  we define the measure  m~w) of P~ at w relative to that 

par t  of  Bd P~ which belongs to Q. Since the notion of measure  is local, our 

approach  is correct. 

Definition 10. For  any decomposi t ion  of the set Y = L \ B d  P into pairwise 

disjoint open intervals Ii = ]xi ,  zi[, i = 1 . . . . .  k, define the numbers/~i(/i), i = 1, . . . ,  k, 

as follows: 

(I)  ~( ,(0 = 

(2) #,(l i)= 

(3) ~,(l,)= 
(4) ~ , , (0  = 

where mj (w) 

0 if xl 6 V(P) and zl ¢ V(P); 

mi(xi) - m i -  l(xi) if xi ~ V(P) and zi ¢ V(P); 

~ni(zi) - m i -  l(zi) if xl + 1I(1)) and z i ~ V(P); 

[rni(xi) - m i -  l (x ) ]  + [rn~(zi) - m i -  l(zi)] if xi ~ V(P) and zl ~ V(P); 

denotes the measure  of  Pj  at a vertex w ~ V(P). 

F r o m  L e m m a  3, it follows that  

0 <_ mi(xi) - mi - l (x i )  <- 1, 

Hence, f rom Definition 10, we obtain  

0 < mi(zO - mi - , ( z i )  < 1. 

Observation 6. 

(1) 0 < #~(I~) <_ 2 for all i = 1 , . . . ,  k; 

(2) #~(t~) < 1 if at  mos t  one of  x~, z~ is in V(P); 

(3) l~(li) = 0 if bo th  vertices xi, zi are not in V(P). 
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Observation 7. The values/~(l~), i = 1 . . . . .  k, depend on the order  in which the 

intervals li are considered (see example  below). 

The remainder  of this section is devoted to the p roof  of: 

Theorem 1. Let LP = {l I . . . . .  lk} be a decomposition of  the set Y = L \ B d  P into 

pairwise disjoint open line intervals. The intervals lx . . . . .  lk can be renumbered so 

that 0 < #i(li) < 1 for at least k - e of them, where e denotes the effective number 

of P. 

Before the proof  of  Theorem 1, we illustrate its s ta tement  with the help of  the 

following example.  

Example. Polygon D in Fig. 4 has only one effective chord, namely, [3, 6]. 

Hence e(D)= 1. The  set Y = L \ B d  D is decomposed  into open line intervals 

]3, 4[, ]4, 5[, ]5, 6[, and ]16, 7[. If  we put 

l~ = ]3, 4[, Iz = ]5, 6[, 13 = ]4, 5[, 14 = ]6, 7[, 

then # l ( l l )  = / 2 2 ( 1 2 )  = 2, #3(13) = 0 ,  a n d  #4(14) = 1. If we renumber  these intervals 

as 

I i = ]3 ,  4 [ ,  12 = ]4 ,  5[ ,  / 3 = ]5 ,  6[ ,  14 = ]6 ,  7[ ,  

then /x1(11) = 2 and /22(12) = #3(13) = #4(14) = 1, as required in the s ta tement  of  

Theorem 1. 

Proof of  Theorem 1. An effective chord [v, w] of P is said to  be compatible with 

provided [v, w] \  V(P) is a union of some intervals from £#. 

Denote by o ~ = {t 1 . . . . .  t:} an admissible family of  effective chords of  P 

compatible with LP and having m a x i m u m  cardinality, and put  T : =  t 1 u ' . .  u t:. 

Obviously, f_< e. 

Let P r  be the region obtained from P by the addit ion of T to Bd P; i.e., 

Bd P r  = Bd P u T, Int  Pr = Int P\T,  and V(Pr) = V(P). 

Recall that  Pi denotes the rectilinear polygon obtained from Po by deleting 

/t ~ " w l i  f rom L, i = 1 . . . . .  k. 

First renumberin9. Without  loss of  generality, we may  suppose that  the family 

{It . . . .  , lk} is renumbered  such that, exactly the intervals 11 . . . . .  lp, p < k have no 

common vertex with V(P), and all the other intervals lp+ 1 . . . . .  Ik are as follows: 

(1) each of the intervals Iv+ l . . . . .  lq, q < k, has exactly one vertex in V(P); 

(2) each of the intervals lq+ l . . . . .  s~, s < k, is not contained in T and has bo th  

vertices in V(P); 

(3) each of the intervals Ix+ 1 . . . . .  t k is contained in T; i.e., 

ls+l u ' " u l k  = T\V(P). 
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Obvious ly ,  Bd P c Bd P r  = Bd P,  for all i = 0, 1 . . . .  , s. 

Due  to  Obse rva t ion  6, 

P,(/i) = 0 for all i = 1 . . . . .  p, 

0 _ < / t , ( l , ) < l  for all i = p + l  . . . . .  q. 

Second renumberin9 

ing procedure :  

1. P u t i = q + l a n d k = 0 .  

2. I f  #i(li) _< 1, then put  k = 0 and go  to 3, elese go 

3. If  i < s, then put  i = i + 1 and  go to 2, else exit. 

4. I f k < s - i - 1 ,  then put  k = k +  1, renumber  

indices i, i + 1 . . . . .  s - 1, s, respectively, and go 

As a result we ob ta in  a renumbered  sequence lq+ 1, 

(1) 0 < #~(li) _< 1, i = q + 1 . . . . .  r, for some na tura l  

(2) /s,+ ~(l,+ 1) = 2 for any  renumber ing  of / ,+ 1 . . . . .  /~ 

is organized for intervals/q+ ~ . . . . .  l, according  to the follow- 

to 4. 

li+ 1, l~+ z , ' " ,  I~, li by the 

to  2, else exit. 

. . . .  l~ such that :  

r between q + 1 and s; 

by  the indices r + 1 . . . . .  s. 

We  are going to p rove  tha t  the family l,+ 1, - - - ,  Is is empty;  i.e., the following 

asser t ion is valid. 

L e m m a  7. r = s. 

Proof  Suppose,  on the cont rary ,  tha t  r < s. Choose  in the family 1,+ 1 . . . . .  ls a 

max imal  subfamily  ~¢ such tha t  all the intervals  of  ~¢¢ lie on a c o m m o n  line 

wi thout  segment  gaps  and no  c o m m o n  vertex of  two intervals  from Jr '  is an 

isola ted vertex in Bd PT- Wi thou t  loss of general i ty,  consider  this line to be 

hor izontal .  After an a p p r o p r i a t e  renumber ing  of  l, + 1 . . . .  , t s, we can represent  ~1/as 

the un ion  of intervals  

lr+x=]Xr+x, Zr+l[ . . . . .  l j = ] X i ,  Zj[, r + l < j  (<_s), 

such tha t  z i = x i+ l ,  i = r + 1 . . . . .  j -  1 (in the case r + 1 <j~.  

W e  invest igate some proper t ies  of the segment  [xr+ 1, zj], which are listed in 

Cla ims 1-5 below. 

C l a i m  1. N o  vertical  e lementary  segment  of  Bd P,  is incident  with a point  of 

I , + l w . . . u l  s. 

Indeed,  assume tha t  some vertical  e lementary  segment  m = [v, w] of Bd P0 has 

its vertex v in l,+ 1 u " "  u ls. Since Yc~ Bd P = ~ ,  v is not  a vertex of  P. Hence m is 

not  in Bd P;  i.e., m is con ta ined  in some interval  l i e £~'. Due  to  F i r s t  Renumbering, 

we have i < q. Hence m c~ Bd P ,  = ~ .  
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Claim 2. Each of the vertices x,+t ,  z,+~ . . . . .  zj is incident with at most  one 

vertical elementary segment of Bd P~. 

Suppose, on the contrary,  that  xr+ ~ is incident with two vertical elementary 

segments of  Bd P, (points zr+ 1 . . . . .  z j  are handled analogously). In this case, any 

interior angle of P ,+I  with the apex x,+ 1 is of size n or rt/2; i.e., x,+l  is a point of  

local convexity for P ,+I .  Hence m r + l ( x , + l ) = 0 .  Similarly, mr (x ,+1)=0 .  By 

Definition 10, /~,+1(l,+1)< 1, which is in contradiction to the condit ion 

/~r+1(/,+1) = 2, by the choice of  1,+1. 

Claim 3 Each of the vertices z,+ 1 . . . . .  z j_ ~ (in the case r + 1 < j) is incident with 

a unique vertical elementary segment of Bd Pr .  

By the choice of ~//, each of z ,  + 1 . . . . .  z j_  1 is not  isolated in Bd P r .  Hence, for 

each Zk, k = r + 1 . . . . .  j - 1, there exists at least one vertical elementary segment of  

Bd PT whose end is z k. Due to Claim 2, there exists at most  one elementary 

segment of Bd P r  whose end is z k. Since Bd P r c  Bd Pr, there exists exactly one 

elementary segment of Bd P, whose end is z k and this segment belongs to Bd P r .  

Claim 4. Each of x,+ 1, z~ is either an isolated point in Bd P r  or  a vertex of a 

horizontal elementary segment of  Bd P r .  

In order to obtain a contradiction, suppose that xr+ 1 is neither an isolated 

vertex in Bd P r  nor a vertex of a horizontal segment of Bd P T  (for z~, the 

consideration is similar). Then x,+ 1 is a vertex of a vertical elementary segment 

of Bd Pr .  Due to Claim 2, there is exactly one vertical elementary segment of 

Bd P r  incident with x~+ r 

If Bd Pr+l were to contain no horizontal elementary segment incident with 

xr+l, then the deletion of lr+l from B d P r  would keep the measure of Pr at 

x,  + 1: mr(x ,  + 1) = mr + l(xr + 1) = 1. In this case, ktr + 1(1, + 1) < 1, which is impossible 

by the choice of 1 r + i. Hence Bd P, + 1 contains a horizontal elementary segment, say 

Iv, x,+ 1]. 
By this assumption, Iv, xr+ 1] is not  in Bd Pr .  Hence Iv, x,+ 1] is contained in a 

horizontal segment li, i > r + 2. Due to the choice of J¢,  we have i > s + 1. 

Therefore, by First Renumbering,  Ii belongs to a horizontal effective chord t h E o~. 

Since l,+ 1 is not  contained in tn, x ,+l  is a vertex of t h. In this case, Xr+ 1 is either 

an isolated point  of Bd P or  a vertex of a horizontal elementary segment of Bd P 

(see Definition 7). Since there is no horizontal elementary segment of  Bd P incident 

with x, + 1, it is an isolated point in Bd P. At the same time, we have shown above 

that x,+ 1 is a vertex of  a unique elementary segment of Bd P r .  The last is possible 

only if this vertical segment belongs to T; i.e., x,÷ 1 is a vertex of some vertical 

effective chord tv ~ ~-. 

Thus we have found in ~ two or thogonal  effective chords th, tv with a c o m m o n  

vertex, which is impossible (see Definition 8). The obtained contradiction shows 

that each of x ,+  1, z j  is either an isolated point in Bd PT or a vertex of a horizontal  

elementary segment of Bd P r .  
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Claim 5. Nei ther  x,+ 1 nor  zj is a vertex of a vertical effective chord from o~. 

Consider  the vertex x,+ t- By Claim 4, xr+ 1 is either an isolated point in Bd Pr 
or  a vertex of  a horizontal  e lementary  segment  of  Bd Pr. If x,+ 1 is isolated in 

Bd P r ,  then it cannot  be a vertex of a vertical effective chord from ~-. Let x,+ 1 

be a vertex of a horizontal  e lementary segment  of Bd Pr, say [v, x,+ 1]- Assume, 

in order  to obta in  a contradict ion,  that  x,+ 1 is an end of a vertical chord tg e ~ .  

Since no two or thogonal  chords in F have a c o m m o n  point (see Definition 8), 

the segment  [v, x ,+ l ]  is not in T; i.e., [v, x,+ 1] is an elementary segment of Bd P. 

Due  to Definition 7, there is a vertical e lementary segment, say [w, x,+ 1], in Bd P. 

Thus we obta ined the existence of two vertical e lementary segments of Bd Pr 
incident with x,+ 1 (one of them is [w, x,+ 1] and another  is contained in tg), which 

is in contradict ion to Claim 2. 

N o w  we continue the proof  of L e m m a  7. Claims 1-4 mean  that  [x,  + 1, z j] is 

an effective chord of P compat ib le  with the family £,e. Due to the choice of .~, 

the chord Ix,+ 1, zj] cannot  be included in o~. Hence there is at least one vertical 

effective chord  in ,~- having a vertex in [x,+ 1, zj]. By Claim 5, no vertical effective 

chord  in ~- in incident with x, + i or  with zj. Denote  by t~ = [z'i, w~], i = 1 . . . . .  m, 

all vertical chords  of  f f  having their vertices z', . . . . .  z~, in ]x,+ 1, z j[ (see Fig. 5 for 

an example  of  [x,+ i, zj] in the case r + 1 = 3 a n d j  = 7; here unbroken  lines denote 

e lementary  segments of Bd P, wavy lines denote  vertical effective chords  of ~ ,  

and dot ted lines denote  e lementary segments of  Bd P,+ 1 which do not belong to 

Bd Pr; z,, and z 5 are isolated points  of Bd P). 

Since each of z'~, . . . ,  z" is a vertex of exactly one vertical e lementary segment 

of  Bd Pr (see Claim 3) and each chord  t'i contains no elementary segment of Bd P, 

the vertices z' 1 . . . . .  z" are isolated points in Bd P. In this situation, the chords 

[x,+, ,  z;] ,  [z;, z~] . . . . .  Da,  zj] 

are effective for P. Put  

: - '  = ( : -  u {[x,+ 1, z;] ,  [z;, zh] . . . . .  [z;,, zj])\{c, . . . . .  t;,}. 

I t  is easily seen that  Y-' is an admissible family of  effective chords of P compatible 

with .SF, and card ~ '  = card o~ + 1. The last is in contradic t ion to the choice of 

~-. The  obta ined contradict ion shows that  the assumpt ion  r < s is false. 

}z3 z, z5 :7 

Fig. S. 
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In summary,  we obtain that the Second Renumbering gives 

O~it~(ll)~< 1 for all i = q +  1 . . . . .  s. 

Third Renumbering.  It remains to renumber the intervals l~+~ . . . . .  Ik. Due to 

First Renumbering, these intervals are contained in the set T =  t~ w - . - w  ty. 

Without loss of generality, we may assume that  the intervals l,+ ~, /~+2 . . . . .  l~, 

w < k, form t~, i.e., 

]x~+ 1, z~+ l[W " '  w]x~,, z ~ , [ = t I \ V ( P  ), 

such t h a t z  i = x ~ + a , i = s +  1 . . . . .  w -  I (in the c a s e s +  1 <w) .  

From Definition 7, it follows that each of z~+ ~ . . . . .  zw_ ~ is a vertex of some 

elementary segment [zi, ui] o f B d  P or thogonal  to t 1, and each ofx~+ 1, zw is either 

an isolated point  in Bd PT or  a vertex of  a horizontal elementary segment o fBd  PT. 

It is easily seen that :z~+ 1(1~+ 1) = 2, and #i ( l l )  = 1 for all i = s + 2 . . . . .  w. 

Similarly, we renumber repeatedly ' the intervals lw+ ~, . . . ,  lk such that  for any 

chord t~, i = 2 . . . . .  f ,  there exists exactly one interval li, contained in tl and 

having the respective number  p~,(10 = 2, while/a~{lj) = 1 for all other intervals lj in 

t i • 

Since f_< e, the proof  of Theorem 1 is complete. [ ]  

7. Auxiliary Results 

In this section we continue to study the "supplementary ornament"  

Y = L \ B d  P. Let A '~ = {l~ . . . . .  lk} be a decomposit ion of Y into pairwise disjoint 
open intervals. 

Lemma 8. m(P) = pl ( l , )  + "'" + ltk(lk). 

Proof  If a vertex w ~ V(P) is not an end of  t~, then, by Definition 6, mi(w) = 

rnl- t(w). Therefore, for any i = t . . . .  , k, 

pi(li) = ~ '  [mi(w) - ml -z (w)] ,  

where the sum ~ '  is taken over the set of  all vertices of P. 

By Lemma 2, Po has no points of local nonconvexity. Hence mo(w ) = 0 for any 

vertex w of  P. In Section 6, it was mentioned that Bd P~ = Bd P. Therefore, 

ink(W) = re(w) for all w ~ V(P). Thus 

k k 

1 1 

= ~ ;  mk(w) = 2 '  m(w) = re(P). [] 
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Lemma 9. The number k o f  open intervals 11 . . . . .  lk decompos&g the set Y is 

at least k >_ m - e, where m is the measure o f  local nonconvexity o f  P, and e is the 

effective number o f  P. 

Proof. By Theorem 1, the intervals 11 . . . . .  lk can be renumbered by the 

indices 1 . . . . .  k such that /~(13<1, for at least k - e  of them. Put ~ r =  

{l/eoW:pi(13= r}, r = 0 , 1 , 2 .  Since 0 < # i ( l  3_<2 for all i =  1 . . . . .  k, we have 

~ =  ,~t~O U ~ 1 U  ~La 2 and 

#1(/1) + "'" + g/(lk) = IoWIt + 210W21. 

By the above, 1~21 < e. Now from Lemma 8, it follows that 

k -= I ~ o l  + I ~ 1  + l ~ z l  >- (I-Ce~l + 21~21) - I ~ a l  

= I~1(11) + " "  + #g(Ik)  - -  [L#21 ~ m - e. [ ]  

The next lemma contains another estimate for the number k of intervals 

l l  . . . . .  l~. 

Denote by ~o and ~1, respectively, the numbers of all vertices and all elementary 

segments of a polygon P. The respective numbers for the polygon Po are denoted 

by flo and fll (see Section 6 for the definition of Po)- 

L e m m a  10. I f  the set Y = L \Bd  P is represented as a union o f  k pairw&e-disjoint 

open intervals 11 . . . . .  li, then 

k = (/~1 - ~1) - ( %  - ~o). 

Proo f  Let us represent flo and fll as 

flo = Yo + 60,  fll = 71 + 61, 

where 7o, 71 denote, respectively, the number of Po vertices situated in Y and 

the number of Bd Po elementary segments contained in the closure ~ and let 

6o, 61 denote, respectively, the number of vertices of Po and the number of 

elementary segments of Bd Po contained in Bd P. Each interval l~ can be de- 

composed as 

l ,=]vl ,  v2[u{v2}u'"w{v,_1}w]v,_1, v,[, r > 2 ,  

where [vi, vi+ 1], i = 1 , . . . ,  r - 1, are elementary segments of bd Po, and v l , . . . ,  vr 

are vertices of Po; i.e., l i contains the interiors of r - 1 elementary segments of 

Bd Po and r - 2 vertices of Po. Hence Vl - Vo = k. 
If an elementary segment [v, w] of Bd P contains in its interior some vertices 

x I . . . . .  xq of Po, then [v, w] contains q + 1 elementary segments of Bd P0. Hence 

60 - ~o = 61 - al and 

( / h  - ~ 1 )  - ( %  - ~ o )  = (71 - 7 0 )  + [ ( 6 1  - ~ i )  - ( a o  - ~ o ) ]  = k.  E3 
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8. Generalized Euler's Relation 

The following lemma contains a generalized Euler's relation. 

Lemma 11. For a rectilinear polygon P, 

S o - e ~ + c + h ' = c ' + h ,  

where 

So is 
sl is 

c is 

c' is 

h is 

h ' i s  

the number of vertices of P, 

the number of elementary segments of Bd P, 

the number of connected components of Int P, 

the number of connected components of P, 

the number o f formal holes of  P, 

the number of  topological holes of  1>. 

Proof Consider the planar graph G, whose vertices and edges are precisely the 

vertices and the elementary segments of  P, respectively. Hence G has s o vertices 

and s~ edges. Denote  by q the number  of connected components  of E~G (in other  

words, G partit ions E into q open connected domains). A well-known assertion 

states that 

q = s l - a o + p + l ,  

where p is the number  of connected components  of G. In our  notations, q = h' + 

c + 1, where 1 stands for Ext P. 

We shall prove the equality p = c' + h by induction on h. The case h = 0 is 

trivial: p = c'. Suppose that the assertion "p = c' + h" is true for all rectilinear 

polygons with at most  h _< l - 1 formal holes (l > 1), and let P be a rectilinear 

polygon with l formal holes. Let H be any formal hole of  P. Then H is separated 

from other formal holes or  from Ext P by a connected component  Q of  Int P. It 

is possible to draw inside Q an open simple polygonal  rectilinear path Ix1 . . . . .  x , [  

such that x~ belongs to H and xm belongs either to another  formal hole or  to 

Ext P. In any case, the addit ion of  Ix1 . . . . .  xm] to Bd P reduces by one both  

numbers p and /. By inductive assumption, p - 1 = c' + l - 1 and p = c' + h. 

According to all the data  mentioned above, ao - ~ + c + h' = c' + h. [ ]  

Example. In Fig. 1, ct o = 32, ~ = 32, c = 3, c' = 1, h = 5, and h' = 3. 

9. Minimum Number of Rectangles 

The following result was announced  without proof  in [10] (see also [11]). 

Theorem 2. The minimum number of rectangles dissecting a rectilinear polygon P 
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is equal to 

m + c - h - e ,  

where 

m is the measure o f  P, 

c is the number o f  connected components o f  Int P, 

h is the number of formal holes of P, 

e is the effective number of P. 

Proof. Let r denote the minimum number of rectangles dissecting a rectilinear 

polygon P. First, we shall prove the inequality 

r < m + c - h - e .  

Suppose that e > 0, and let [xi, zi], i = 1 , . . . ,  e, be special chords of P forming 

an admissible family of maximum cardinality. Denote by P1 the polygon obtained 

from P by the addition of [x 1, zl]  to Bd P. Some vertices of P can be situated in 

]x 1, zl[ .  Denote them by vl . . . . .  v t, respectively. According to Definition 7, any 

vertex v~ is an end of some elementary segment from Bd P orthogonal to [Xl, zl]. 

Hence the [x 1, zl-I addition to Bd P leads to the following changes: 

(1) the measure of P at each of the points x l ,  vl . . . . .  v t, z I decreases by one 

(see Lemma 4); 

(2) the number h = h(P) of formal holes of P decreases by a number p (>0) 

and the number c = c(P) of connected components of Int P increases by a 

number q(>_0) such t h a t p  + q = t + 1; 

(3) the effective number e(P) decreases by at most one. 

Thus 

re(P1) = m - t - 2, c(P1)  = c + q, 

h(P1) = h - p, e(P1) >_ e -- 1, 

and 

re(P1) + c(P1) - h(Pl) - e(PO <- m + c - h - e. 

Obviously, the admissibility condition implies that chords [x/, z/J, i = 2 , . . . ,  e, 

remain effective for P1. 

After repeated additions of the chords [xi, zJ ,  i = 2 . . . . .  e, to Bd P1, we obtain 

a rectilinear polygon Pe such that 

Bd Pe= Bd P u (  O [x" z '])  V(Pe) = V(P). 
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As before, 

m ( P  e) + c(Pe) - h(P~) - e(P~) < m + c - h - e. 

We claim that e(P~) = 0. Indeed, if there were at least one effective chord,/ ,  of 

Pc, then, according to Definition 7, their family {/, [x i, zi], i = 1 . . . .  , e} would be 

an admissible family of cardinality e + 1 for P, which is impossible. Hence 

m(Pe)  + c(Pe) - h (P , )  <_ m + c - h - e. 

Assume that m(Pe)  > 0. Then some point u of local nonconvexity of Pe exists. 

By Lemma 5, there is a simple chord [u, w] of P,  whose addition to Bd P,  decreases 

by one the measure re(u) of P~. Denote by P' the polygon obtained from/De by 

the addition of [u, w] to Bd Pe" The addition of [u, w] to Bd Pe  decreases by one 

the measure of Pe at u. Also, this addition either decreases by one the number 

h(Pe) or increases by one the number c(Pe). So 

m(P' )  + c(P' )  - h(P' )  <_ m + c - h - e. 

After repeated application of the above procedure of a simple chord addition, 

we obtain some rectilinear polygon /3 without points of local nonconvexity; 

i.e., re(P) = 0. By Lemma 1, h(P)  = 0. Similarly to the above, 

c(P)  = re(P) + c(P)  - h(P)  < m + c - h - e. 

Due to Lemma 2, each connected component of Int P is an open rectangle. 

The closures of these open rectangles dissect P (and P) into c(P) rectangles. 

Therefore 

r <_ c (P)  <_m + c - h - e .  

Now we prove the opposite inequality. Let Q be a polygon obtained from P 

by the addition of some line segments to Bd P such that Bd Q divides Int Q into 

rectangles. Denote, respectively, by Yo and ~1 the number of vertices and ele- 

mentary segments of the polygon Q. By Lemma 11, 

~ o - O q  + c + h ' = c '  + h ,  

Yo -- ~l + c(Q) + h'(Q) = c'(Q) + h(Q), 

for polygons P and Q, respectively. It is easily seen that 

h(O) = O, c'(Q) = c',  h ' (Q) = h'. 

Therefore 

c ( Q )  = c - h + [(~,~ - ~ )  - ( ~ o  - ~ o ) ] -  
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Lemmas 9 and 10 give 

(Vl - ~ 1 ) -  (V0 - ~o)  = (k) > m - e. 

Thus 

c(Q) > c -  h + rn - e. 

As Q has no points of local nonconvexity, and connected component of Int Q 

is an open rectangle (see Lemma 2). The closures of these open rectangles dissect 

Q (and P) into c(Q) rectangles. Hence any dissection of P contains at least 

m + c - h - e rectangles. In particular, r > m + c - h - e. [] 

10.  O p t i m u m  D i s s e c t i o n  A l g o r i t h m  

Theorem 2 not only gives a formula for a minimum number of dissecting 

rectangles, but also contains an informal description of a dissection algorithm 

which yields a minimum number of rectangles. Below, we describe this algorithm 

more precisely and show that its computational complexity is at most  O(n 3/2 log n). 

Let P be any rectilinear polygon in the plane E. We assume that the set S(P) 

of all elementary segments of P is given by two linear arrays forming, respectively, 

the topological boundary bd P and the ornament Or P. Any vertex v of P is given 

by its Cartesian coordinates (X, Y). Denote by n the number of vertices of P. 

O P T I M U M  D I S S E C T I O N  A L G O R I T H M :  

1. Find the family Jg of all effective chords of P. 

2. Select in ~ some admissible family J¢ = {sl . . . . .  Se} of maximum 

cardinality. 

3. Form the polygon Pro, adding M .'= U~= 1 si to Bd P. 

4. Dissect PM into rectangles by drawing, in any order, inside PM some 

simple chords which remove the local nonconvexity of P,, at each of 

its vertices. 

We discuss each of Steps 1-4 separately. 

1. The construction of the family ~ is organized for horizontal and vertical 

chords apart. 

Procedure for f inding effective horizontal chords: 

(a) Form the family ocg of all horizontal chords [x, z] such that x, z e V(P) 

and Ix, z[ c Int P (see [2]). 

(b) Delete repeatedly from any chord Ix, z] for which two vertical elementary 

segments of the form [x, v], Ix,w] exist in Bd P. 

(c) Delete repeatedly from Jg each pair of chords [x, v], [v, w] for which the 

vertex v is not an isolated point in Bd P and include [x, w] in ~ .  
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(d) Delete repeatedly from ~ any chord [x, z] such that at least one of x, z is 

not an isolated vertex of Bd P or a vertex of a horizontal elementary segment 

of Bd P. 

From Definition 7, it follows that the repeated execution of (a)--(d) yields the 

family ~ = {ll . . . . .  lp} of all horizontal effective chords of P. 

The family ~ = {m 1 . . . . .  mq} of all vertical effective chords of P is constructed 

similarly. 

In both cases a sweep-line technique is used. Hence the family ~ . -=  ~ w ~e" 

can be found in O(n log n) time. 

2. For the selection of some admissible family of maximum cardinality in he, 

we use the appropriate O(n 3/2 log n) algorithm from [3]. In [3], the family A ° is 

supposed to have the following property: no two collinear chords in he have a 

common point. However, in our case some two collinear chords in Aa may have 

a common point (see Observation 3). Hence for the implementation of step 2 in 

the dissection algorithm, we do the following: 

(1) Transform (one-to-one) the family .W of effective chords of P into a family 

.W' of segments such that: 

(i) a chord [x, z] ~ L~' is horizontal (vertical) if and only if the correspond- 

ing segment [x', z'] ~ cj, is horizontal (vertical); 

(ii) any two orthogonal chords [x, z], I-u, v] e .W' have a common point 

if and only if the corresponding segments Ix', z'], [u', v'] ~ .W' have a 

common point; and 

(iii) no two collinear segments in he' have a common point. 

(2) Select in he' an admissible family J / '  = {s ' t , . . . ,  s'e} of maximum cardinality 

(using [3]), 

(3) Obtain in he the corresponding family ~ / / =  {s 1 . . . . .  se} of special chords of 

P, using the inverse transformation he' ~ he. 

Now we describe the he ~ he' transformation. Let 

l ,=  [x,, v.O, i = 1  . . . . . .  p, m~= [u~, w~], j = l  . . . . .  q, 

be, respectively, all the horizontal and vertical chords in Le. 

Procedure o f  .LP --* .5~' transformation: 

(a) Find a real number e > 0 such that tlx - Y[I > 2e for any two different points 

x, y in the set 

XI, . . . ,  Xp~ t ~ l , . . . ,  Up, U l , . . . ,  Uq, W 1 , . . . ,  Wq}, 

where IIIb denotes the Manhattan metric in E. 

(b) For any horizontal chord li = [x i, vi] e .W with the ends 

xt = (X, Y), vi = (Z, IT), X < Z, 
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put l'~ = [x;, v;] ~ Z/" with the endpoints 

x ~ = ( X - e ,  Y + 6 3 ,  v ' i = ( Z + e ,  Y +  33, 

where 61 := ei/(p + q + ), i = t . . . . .  p. 

(c) For any vertical chord m~ = [u j, wj] ~ .W with the ends 

u~= (X, Y), w : =  (X, Z), Y < Z ,  

put m) = [u), w)] ~ .L~" with the endpoints 

u ~ = ( X + 3  i, Y -  e), w ~ = ( X + b ~ , Z + e ) ,  

where c~j:= ej/(p + q + 1),j = 1 . . . . .  q. 

Example. For family L~ a represented in Fig. 6(a), the corresponding family ~ '  is 

shown in Fig. 6(b). 

Because of the O(n log n) time complexity of A a --, Aa, and L~ a' ~ L# transforma- 

tions, we have the O(n 3/2 log n) time complexity of step 2 in the dissection 

algorithm. 

3. Step P --, PM has O(n log n) time complexity (see I2] for technique details). 

4. The dissection of PM into rectangles can be organized in the following 

manner: 

(a) For each point x of the local nonconvexity of PM, which is either an isolated 

point in Bd P u  or a vertex of some horizontal segment of Bd Pn, draw 

inside Pn a horizontal simple chord [x, z] (Ix, z[ c Int PM and z e Bd PM). 

(b) Form the polygon PT, adding to Bd PM all the chords obtained in (a). 

(c) For each vertex x of the local nonconvexity of Pr ,  draw inside Pr  a vertical 

simple chord Ix, v] (Ix, v[ c Int Pr  and v ~ Bd PT). 

The computational complexity of step 4 is equal to O(n log n) [2I. According 

to all the data mentioned above, the dissection algorithm has at most O(n 3/2 log n) 

time complexity. 

Z~ 

Z I 

I ..... ........ iI IIiI    iiiiiii 
(a) (b) 

Fig. 6. An L,e --, L,e' transformation. 
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