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Minimum-dissipation models are a simple alternative to the Smagorinsky-type ap-

proaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently

derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation

(AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015)], which has many desirable

properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately

switches off in laminar and transitional flows, and it is consistent with the exact subfilter

stress tensor on both isotropic and anisotropic grids. In this study, an extension of this

approach to modeling the subfilter scalar flux is proposed. The performance of the AMD

model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer

flow with a constant and uniform surface scalar flux. The simulation results obtained from

the AMD model show good agreement with well-established empirical correlations and

theoretical predictions of the resolved flow statistics. In particular, the AMD model is

capable of accurately predicting the expected surface-layer similarity profiles and power

spectra for both velocity and scalar concentration.

DOI: 10.1103/PhysRevFluids.1.041701

I. INTRODUCTION

Large-eddy simulation (LES) is the state-of-the-art numerical technique for the study of turbulent

transport of momentum and scalars in high-Reynolds-number turbulent flows [1,2]. In LES, all

turbulent structures larger than the filter scale are resolved and the contribution of the unresolved

small-scale eddies is parameterized. A common formalization of LES reduces the range of scales

in a simulation by applying a spatial filter to the Navier-Stokes equations as well as the transport

equation for scalar concentration. This gives

∂i ũi = 0, ∂t ũi + ∂j (ũi ũj ) = −∂i p̃ + ∂j (ν∂j ũi) − ∂jτij , (1)

∂t θ̃ + ∂i(ũi θ̃) = ∂i(D∂i θ̃ ) − ∂iqi, (2)

where the tilde represents a spatial filtering, τij = ũiuj − ũi ũj is the subfilter stress tensor, and

qi = ũiθ − ũi θ̃ is the subfilter scalar flux. A common parametrization strategy in LES consists of

computing the deviatoric part of the subfilter stress tensor with an eddy-viscosity model

τ d
ij = τij − 1

3
δijτkk = −2νeS̃ij (3)

and the subfilter scalar flux with an eddy-diffusivity model

qi = −De∂i θ̃ , (4)

where S̃ij = (∂i ũj + ∂j ũi)/2 is the resolved strain-rate tensor, νe is the eddy viscosity, and De is the

eddy diffusivity. Here De is related to νe by the subfilter Schmidt number Sce such that De = νeSc−1
e .

One possible approach to define the subfilter eddy viscosity is to use the mixing length

approximation, which yields the well-known Smagorinsky model [3]. In this approach the eddy
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viscosity is modeled as νe = (Cs�)2|S̃|, where |S̃| =
√

2S̃ij S̃ij and Cs is the Smagorinsky coefficient.

Likewise, the subfilter eddy diffusivity is modeled as De = �2C2
s Sc−1

e |S̃|, where C2
s Sc−1

e is a lumped

coefficient. In the standard (nondynamic) Smagorinsky model (SSM), the model coefficients are

assumed to be constant independent of time, space, and scales. This assumption raises important

concerns in the simulation of fluid flows. For instance, the model inappropriately yields eddy

dissipation for laminar and transitional flows. In addition, in the context of high-Reynolds-number

turbulent boundary layers, in which the viscous sublayer is not resolved, a wall-damping function is

needed to account for the local reduction in the subfilter mixing length close to the surface [4]. Hence,

in practice, the standard approach would require detailed calibrations of the model coefficients to

yield acceptable results [5,6].

The dynamic procedure proposed by Germano et al. [7] and Moin et al. [8] provides an alternative

for determining an appropriate local value of the model coefficients without any ad hoc tuning. In this

approach, the model coefficients, which are time and space dependent, are obtained by comparing

the eddy dissipation at different scales. A key assumption in the dynamic Smagorinsky model (DSM)

is that the model coefficients are scale invariant. To account for scale effects in the DSM, Porté-Agel

et al. [5,9] introduced the scale-dependent DSM to compute the value of the model coefficients

dynamically, while allowing for scale dependence of the coefficients. The DSM has improved

subfilter dissipation characteristics with respect to the SSM and switches off for the laminar and

transitional flows. However, the major disadvantage of the DSM is its increased computational

complexity compared to the SSM and the need for averaging and clipping to attain numerical

stability [10,11].

An alternative approach to define the subfilter eddy viscosity is provided by the minimum-

dissipation models. They is a new class of subfilter models that provide the minimum eddy dissipation

required to dissipate the energy of the subfilter scales. The first minimum-dissipation eddy-viscosity

model is the QR model, which was developed by Verstappen et al. [12,13] for the isotropic grids.

The QR model is based on the invariants of the resolved rate-of-strain tensor and has many desirable

practical and theoretical properties compared to the Smagorinsky-type models. In particular, it appro-

priately switches off for laminar and transitional flows, has low computational complexity compared

to the DSM, and is consistent with the exact subfilter stress tensor on isotropic grids. Recently,

Rozema et al. [14] proposed a minimum-dissipation model that generalized the desirable properties

of the QR model to anisotropic grids. The anisotropic minimum-dissipation (AMD) model has been

successfully applied in simulations of decaying grid turbulence on an isotropic grid and in simulations

of a temporal mixing layer and turbulent channel flow on anisotropic grids. Since the turbulent scalar

transport is a key component of many environmental and engineering turbulent flows, an extension

of the AMD approach to modeling the subfilter scalar flux is valuable and is the focus of this study.

In this paper an AMD turbulent eddy-diffusivity model is proposed and, accompanied by the

AMD eddy-viscosity model, implemented in the simulation of a high-Reynolds-number rough-wall

boundary-layer flow with a constant passive scalar flux at the surface. The derivation of the AMD

model is provided in Sec. II. The LES framework and the numerical setup are described in Sec. III.

In Sec. IV the LES results are presented. A summary and conclusions are provided in Sec. V.

II. ANISOTROPIC MINIMUM-DISSIPATION MODEL

A minimum-dissipation model imposes that the energy of the subfilter scales of the LES solution

does not increase:

∂t

∫

�b

1

2
ũ′

i ũ
′
idx � 0, ũ′

i = ũi −
1

|�b|

∫

�b

ũidx (5)

and

∂t

∫

�b

1

2
θ̃ ′θ̃ ′dx � 0, θ̃ ′ = θ̃ −

1

|�b|

∫

�b

θ̃ dx,
(6)
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where ũ′
i and θ̃ ′ are the subfilter scales corresponding to the filter box with domain �b applied to

the LES solution and x ∈ �b [14]. For a rectangular filter box �b, with dimensions of δ1, δ2, and

δ3, an upper bound for the subfilter energy can be obtained using the Poincaré inequality. There

are different formulations of the Poincaré inequality, otherwise known as the Poincaré-Wintinger

inequality:
∫

�b

1

2
ũ′

i ũ
′
idx �

∫

�b

1

2
(∂̂i ũj )(∂̂i ũj )dx (7)

and
∫

�b

1

2
θ̃ ′θ̃ ′dx �

∫

�b

1

2
(∂̂i θ̃ )(∂̂i θ̃ )dx, (8)

where ∂̂i = Ciδi∂i is the scaled gradient operator, Ci is a modified Poincaré constant, and

(∂̂i ũj )(∂̂i ũj )/2 and (∂̂i θ̃ )(∂̂i θ̃ )/2 are the scaled velocity and scalar-concentration gradient energy,

respectively. The modified Poincaré constant is independent of the size of the filter box and its

magnitude only depends on the accuracy of the discretization method (i.e., order of accuracy) for

each direction [14].

The Poincaré inequality indicates that the energy of the subfilter scales can be confined by

imposing a bound on the scaled velocity and scalar-concentration gradient energy. If the eddy

viscosity, the eddy diffusivity, and the filter widths are assumed to be constant in the filter box �b,

then the evolution equations for the scaled velocity and scalar-concentration gradient energy density

can be expressed as

∂t

[
1
2
(∂̂i ũj )(∂̂i ũj )

]
= −(∂̂kũi)(∂̂kũj )S̃ij − (ν + νe)∂̂k(∂i ũj )∂̂k(∂i ũj ) + ∂ifi (9)

and

∂t

[
1
2
(∂̂i θ̃)(∂̂i θ̃ )

]
= −(∂̂kũi)(∂̂k θ̃)∂i θ̃ − (D + De)∂̂k(∂i θ̃)∂̂k(∂i θ̃ ) + ∂igi, (10)

where fi and gi are the fluxes of velocity and scalar-concentration gradient energy, respectively.

Upon spatial integration over the filter box �b, the divergence terms ∂ifi and ∂igi can be rewritten

to a boundary integral. Boundary integrals express transport of the velocity and scalar-concentration

gradient energy instead of production or dissipation and are therefore ignored in the derivation of

the AMD model.

The dissipation at the scale of a filter box can be approximated by application of the Poincaré

inequality
∫

�b

(∂i ũj )(∂i ũj ) �

∫

�b

∂̂k(∂i ũj )∂̂k(∂i ũj )dx (11)

and
∫

�b

(∂i θ̃)(∂i θ̃ ) �

∫

�b

∂̂k(∂i θ̃)∂̂k(∂i θ̃ )dx. (12)

As a result, the eddy-viscosity and the eddy-diffusivity models give sufficient eddy dissipation to

cancel the production of scaled velocity and scalar-concentration gradient energy, respectively, if

the following inequalities hold:
∫

�b

−(∂̂kũi)(∂̂kũj )S̃ijdx � νe

∫

�b

(∂i ũj )(∂i ũj )dx (13)

and
∫

�b

−(∂̂kũi)(∂̂k θ̃ )∂i θ̃dx � De

∫

�b

(∂i θ̃)(∂i θ̃ )dx.
(14)
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Taking the minimum eddy dissipation that satisfies these conditions gives

νe =
∫
�b

−(∂̂kũi)(∂̂kũj )S̃ijdx
∫
�b

(∂l ũm)(∂l ũm)dx
(15)

and

De =
∫
�b

−(∂̂kũi)(∂̂k θ̃ )∂i θ̃dx
∫
�b

(∂l θ̃)(∂l θ̃ )dx
. (16)

By approximating the integrals over the filter box using the midpoint rule for integration, the AMD

eddy-viscosity and eddy-diffusivity model can be written as

νe =
−(∂̂kũi)(∂̂kũj )S̃ij

(∂l ũm)(∂l ũm)
(17)

and

De =
−(∂̂kũi)(∂̂k θ̃ )∂i θ̃

(∂l θ̃)(∂l θ̃ )
. (18)

Worth noting here is that the computational complexity of the AMD model is comparable to the

computational complexity of the SSM. However, unlike the SSM, the AMD model switches off in

the laminar and transitional flows and does not need any ad hoc near-wall treatments. In addition,

the AMD model for subfilter turbulent fluxes is consistent with the exact subfilter stress tensor and

scalar flux on both isotropic and anisotropic grids. Taylor expansion of the subfilter turbulent fluxes

gives

τij = ũiuj − ũi ũj = (∂̂kũi)(∂̂kũj ) + O
(
δx4

i

)
(19)

and

qi = ũiθ − ũi θ̃ = (∂̂kũi)(∂̂k θ̃ ) + O
(
δx4

i

)
. (20)

Thus, the eddy dissipation of the exact subfilter turbulent fluxes is

−τij S̃ij = −(∂̂kũi)(∂̂kũj )S̃ij + O
(
δx4

i

)
(21)

and

−qi∂i θ̃ = −(∂̂kũi)(∂̂k θ̃)∂i θ̃ + O
(
δx4

i

)
. (22)

As shown in these equations, the leading-order terms of these expansions are proportional to the

terms in the numerator of the AMD model.

In practical applications of the AMD model, the size of the filter box is set equal to a grid cell

(δi = �i) and the corresponding Poincaré constant is chosen depending on the accuracy of the

discretization method for each direction [14]. In particular, the Poincaré constant is 1/
√

12 for a

spectral method [12] and is equal to 1/
√

3 for a second-order accurate scheme [15]. In addition, to

ensure numerical stability, the eddy viscosity and eddy diffusivity are restricted to have non-negative

values to avoid local kinetic energy transfer from unresolved to resolved scales. In particular, the

negative values of the eddy viscosity and eddy diffusivity are set to zero at locations where the local

eddy dissipation is negative. It should be mentioned that, in the current simulations (and also in the

previous implementation of the AMD model in simulation of decaying grid turbulence and turbulent
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channel flow [14,15]), the clipping does not lead to anomalies in the instantaneous dynamics of the

flow (see the Appendix).

III. NUMERICAL SIMULATION

A numerical solution of Eqs. (1) and (2) is obtained by discretizing the computational domain

into Nx , Ny , and Nz uniformly spaced grid points with the resolution of �x , �y , and �z in

the streamwise, spanwise, and wall-normal directions, respectively. The horizontal directions are

discretized pseudospectrally, while the wall-normal direction is discretized with a second-order

accurate method. Hence, in the AMD model, we adopt Cx = Cy = 1/
√

12 and Cz = 1/
√

3 for

the modified Poincaré constant. The nonlinear terms are dealiased in Fourier space using the 3/2

rule [16]. The time advancement is based on a second-order-accurate Adams-Bashforth scheme.

In the streamwise and spanwise directions, periodic boundary conditions are applied. The upper

boundary conditions are a zero-stress zero-flux condition and zero vertical velocity. For the bottom

surface, the standard wall-stress formulation based on the Monin-Obukhov similarity theory is

employed [17].

To test the performance of the AMD model, a high-Reynolds-number boundary-layer flow with a

constant surface scalar flux q
3
|w = u∗θ∗ is simulated. The wall-normal height of the computational

domain is set to H = 1000 m and the horizontal domain spans are Lx = Ly = 2πH . The boundary

layer is driven by an imposed uniform pressure gradient −u2
∗/H in the streamwise direction. Friction

velocity u∗ and aerodynamics surface roughness z0 are set to 0.45 m/s and 0.1 m, respectively, which

is a setup similar to that used in previous studies [9,18,19]. The simulations are carried out with

resolutions of 48 × 48 × 48, 72 × 72 × 72, and 96 × 96 × 96.

IV. RESULTS

Figure 1(a) shows the mean velocity profile obtained from the AMD model with different spatial

resolutions. The averaged nondimensional streamwise velocity gradient 
M = (κz/u∗)(d〈ũ1〉/dz)

is also plotted, in Fig. 1(b), as a function of normalized height. For the homogeneous surface, the

mean velocity is expected to be logarithmic in the surface layer, following U/u∗ = (1/κ) ln(z/z0),

which occupies the bottom 10%–20% of the simulation domain. Also, the 
M predicted by the

similarity theory is expected to have a constant value in the surface layer [20]. As can be seen in this

figure, the AMD model can accurately predict the log-law profile for the mean streamwise velocity.

FIG. 1. (a) Normalized streamwise mean velocity profiles in semilogarithmic scale and (b) vertical profiles

of the 
M function.
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FIG. 2. (a) Vertical profiles of the 
θ function and (b) the subfilter Schmidt number.

For the scalar concentration, since a constant surface flux is imposed as the boundary condition,

it is more common to evaluate the averaged nondimensional scalar concentration gradient 
θ =
(κz/θ∗)(d〈θ̃〉/dz) instead of the actual value of the scalar concentration. For a passive scalar under

neutral stratification, 
θ has been reported to be equal to 0.74 [1,20] in the surface layer. The

vertical profile of 
θ is presented in Fig. 2(a). The values obtained from the AMD model show

the expected behavior and compare well with the reported trends using the scale-dependent DSM

implementation [9,18,21]. The vertical distribution of the subfilter Schmidt number is also shown in

Fig. 2(b). This is obtained by dividing the eddy viscosity and eddy diffusivity, followed by averaging

in horizontal space and time. In most LESs with a passive scalar, the subfilter Schmidt number is

chosen to be a fixed constant value between 0.33 and 0.7 [4,22,23]. As shown in this figure, the

obtained value for the subfilter Schmidt number is consistent with those reported in previous studies.

In addition, the results show very little sensitivity to the grid resolution.

Figure 3 depicts the total and partial (resolved and subfilter) values of the shear stress and

wall-normal scalar flux, respectively. In the absence of viscous effects and under quasi-steady-state

conditions, the divergence of the total shear stress must balance the imposed pressure gradient. Also,

the divergence of the total scalar flux must balance the rate of change in the scalar concentration.

In this study, the boundary-layer flow is driven by a constant streamwise pressure gradient and a

FIG. 3. (a) Vertical profiles of the normalized (by u2
∗) total and partial shear stress and (b) the normalized

(by q
3
|w) total and partial wall-normal scalar flux.
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FIG. 4. (a) Normalized resolved streamwise velocity spectra and (b) normalized resolved scalar concentra-

tion spectra, obtained from 963 simulation. Normalized height z/H increases from 0.005 to 0.5.

constant scalar flux is imposed at the surface. Therefore, the total shear stress and wall-normal scalar

flux are both expected to have linear mean profiles [5,9,18]. As shown in these figures, the AMD

model reproduces the linear profiles of the total turbulent fluxes, which can serve as a confirmation

of stationarity, and momentum and scalar flux conservation of the scheme [19]. The influence of

spatial resolution is also observed in these figures. As expected, the contribution of the resolved

turbulent fluxes increases as the spatial resolution increases.

In a high-Reynolds-number turbulent boundary-layer flow, it is well known that the velocity

and scalar spectra follow the Kolmogorov −5/3 power law in the inertial subrange (k1z > 1,

where k1 is the streamwise wave number and z is the distance to the wall) [24,25]. In addition,

in the energy-production range (k1z < 1), the velocity spectrum is expected to follow a slope of

−1 [26–28]. Figure 4 shows the normalized spectra of the simulated streamwise velocity and scalar

concentration, respectively. As demonstrated in these figures, for the small scales (k1z > 1), the

normalized spectra show the expected collapse and follow the theoretical inertial subrange scaling

with a slope of −5/3. For scales larger than the distance to the wall (k1z < 1), the slope of the

velocity spectra is smaller and close to the expected value of −1. It is worth mentioning that, as

reported in several studies, the SSM yields spectra that decay much faster and have higher slopes at

the smallest resolved scale [5,6,19,23]. In contrast, the slopes of the power spectra obtained from the

DSM are too flat with an unrealistic pileup for the scalar fluctuations at high wave numbers [9,18].

The obtained results indicate the ability of the AMD model to accurately predict the transfer of

energy from the resolved scales to the subfilter scales at the proper rate.

V. CONCLUSION

The AMD model is a simple alternative to the Smagorinsky-type models to parametrize the

subfilter turbulent fluxes. It is more cost effective than the DSM, appropriately switches off in laminar

and transitional flows, and its subfilter models are consistent with the exact subfilter stress tensor

and scalar flux. In this study an AMD model for the subfilter scalar flux was proposed. This model,

accompanied by the AMD model for the subfilter stress tensor, was implemented in the simulation of

a high-Reynolds-number boundary-layer flow with a constant surface scalar flux. Simulation results

obtained from the AMD model reveal good agreement with well-established empirical formulations

and theoretical predictions of different flow statistics in a neutral boundary-layer flow. Specifically,

the AMD model produces mean velocity and scalar concentration profiles that are in good agreement

with similarity theory in the surface layer. In addition, the AMD model is capable of reproducing

the expected power-law energy spectra for both velocity and scalar concentration. Future research
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FIG. 5. (a) Instantaneous contours of the locations where νe = 0 (black diamonds) and (b) the normalized

streamwise velocity ũ1/u∗ at a height of z/H = 0.1 from the surface, obtained from 963 simulation.

should focus on extending the validation of the AMD model in simulation of high-Reynolds-number

boundary-layer flows including the effect of thermal stratification.
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APPENDIX

In order to evaluate the effect of clipping procedure in the AMD model on the flow filed, a

sample of instantaneous results is shown in Fig. 5. Shown are contour plots of the locations where

the eddy viscosity is zero and the streamwise velocity in a horizontal x-y plane at z/H = 0.1. As

shown in this figure, the locations where the clipping occurs are widely distributed throughout the

domain and no clear correlation is observed. It should be mentioned that, in the current simulations,

the clipping procedure does not cause havoc in computation of the flux derivatives. In particular,

the magnitude and the spatial distribution of the flux derivatives obtained from the AMD model are

similar to the ones obtained from the DSM (not shown here). In addition, the clipping procedure dose

not lead to anomalies in the instantaneous dynamics of the flow. As shown in Fig. 5(b), elongated

structures with high-speed and low-speed regions are evident. These coherent streamwise-elongated

structures are ubiquitous in turbulent boundary flows and have been repeatedly observed in previous

numerical [29,30] and experimental studies [31,32]. This results also show that the locations of zero

eddy viscosity are not modulated by the presence of the coherent structures (and vice versa).
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