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Abstract— Precoding is a well-known method to reach the
promised performance and capacity of multiple-input multiple-
output (MIMO) systems. Recent investigations, when the trans-
mitter has the channel-state information (CSI), have revealed
several precoding techniques. Minimum distance based precoders
outperform precoders based on other criteria such as maximizing
signal-to-noise ratio (SNR), minimizing the mean square error
and maximizing the minimum singular value of the equivalent
channel. On the other hand, when the CSI is not available at the
transmitter, one resorts to limited feedback precoding methods.
Previously, unitary matrices for precoding have been derived
from subspace packing in the Grassmann manifold. In this paper,
we use the same set of unitary matrices and enhance them by
defining the precoder matrix to have a general form not unitary
only. We extract the precoding parameters by applying the
minimum-distance approach. Although in this case the number
of feedback parameters is increased, the performance results
are accordingly impressive. The optimality of quantization of
feedback parameters is also presented.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems increase
the capacity of communication systems significantly [1]. Pri-
mary schemes for exploiting multiple antennas at the transmit-
ter and/or receiver are based on maximizing the capacity by
spatial multiplexing [2], or increasing the diversity order by
space-time coding [3]. A common assumption on the design
of space-time codes is that due to the availability of pilots
or training sequences, the channel gains are known to the
receiver but not to the transmitter. However, in communication
systems that experience a slow fading environment, complete
or partial knowledge of the channel information is available
at the transmitter.

One way to exploit the channel information at the transmit-
ter is precoding. The optimum precoder can be obtained if full
channel state information (CSI) is available at the transmitter,
since this allows the transmitted signal to be formed based on
the eigen structure of the channel matrix [4]. There are several
criteria that have been used for MIMO system optimization
and lead to different precoding techniques. One criterion is the
well-known water-filling solution, which aims to maximize the
output capacity. Other designs using the weighted minimum
mean square error (MMSE) criterion and the maximization of
the minimum singular value of the channel matrix have been
proposed in [5]. The optimal precoding scheme proposed in
[6] is based on maximizing the minimum receive Euclidean

distance and is shown to outperform the precoders designed
based on other criteria, e.g. [7].

Due to the bandwidth constraints on the feedback channel,
however, full CSI is not available at the transmitter. Therefore,
precoding techniques using limited feedback of CSI are of
interest [8]. Reference [8] designs a set of suboptimum unitary
matrices for precoding. Depending on the receiver, optimal
codebook designs are shown to be subspace packings in the
Grassmann manifold using either the projection two-norm or
the Fubini-Study distance. The codebook is known to both
transmitter and receiver and the only feedback parameter is
the index of the appropriate matrix.

In this paper, we propose to use a general structure precoder
rather than a unitary one, for limited feedback systems, to
improve the performance of codebooks proposed in [8]. We
use the minimum distance-based method presented in [6] (for
complete CSI case) to obtain the design parameters. The pro-
posed scheme needs more feedback parameters than previous
work, but the system performance is improved. Since the new
feedback parameters are continuous, appropriate quantization
is also discussed.

II. SYSTEM MODEL

In a narrow-band, flat fading, multiple antenna system with
Nt transmit and Nr receive antennas, when there are M data
substreams (M � min (Nt, Nr)) that are mapped to a signal
constellation with unit average energy, and then precoded to
be sent over the channel, the received vector will be

r =
√

ρ

M
HFs + v (1)

where r ∈ CNr is the complex received vector, s ∈ CM is
the transmitted vector, v ∈ CNr is the additive noise vector
H ∈ CNr×Nt is the channel matrix and F ∈ CNt×M is the
precoder matrix.

We assume all elements in v and H are independent and
identically distributed with complex Gaussian distribution,
with zero mean and unit variance, which guarantees ρ to be
the received signal-to-noise ratio (SNR) for each transmitted
signal. The factor 1√

M
also assures that the total transmitted

power in each channel use is ρ. We assume that H is
changed after each transmission. For each channel realization,
the precoder matrix F is constructed based on the feedback
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parameters, received from an error-free zero-delay feedback
channel.

In this paper, (·)∗, ‖·‖, Ex{·} and �·� denote the Hermitian
(transpose-conjugate), Frobenius norm, expectation over x,
and ceil function, respectively. b̄ represents

√
1 − b2 for the

scalar b. All singular value decompositions are decreasingly
ordered on the diagonal part. U is a unitary matrix if U∗U = I
and I denotes the identity matrix.

III. UNITARY PRECODING

By singular value decomposition (svd) of the channel ma-
trix, H = VLΣV∗

R, where VL and VR are unitary matrices
and Σ is an ordered diagonal matrix (σi > σi+1), it is shown
[5] that if F is limited to be a unitary matrix, the optimum
precoder is V̄R=VR(: , 1:M ), i.e. a matrix constructed by the
first M columns of VR. Since for limited feedback systems, it
is impossible to send back V̄R, in [8] a set (W) of suboptimum
unitary matrices has been proposed.

The pairwise error probability (PEP) that vector e is de-
tected instead of the transmitted vector s is

P(s → e|HF) = Q

(√
‖HF(s − e)‖2 × ρ

2M

)
. (2)

By using the Rayleigh-Ritz inequality [9] we have

λ2
min(HF)‖x‖2 � ‖HFx‖2 � λ2

max(HF)‖x‖2 (3)

where x = s − e, and λmin and λmax are the minimum
and maximum singular values of HF respectively. Thus, for a
given H, the best selected precoder from W is obtained from

WI = arg max
Wi∈W

λmin(HWi) (4)

where the only feedback parameter is I. By defining the
distortion effect of suboptimal precoding as

EH

{
λmin(HV̄R) − λmin(HWi)

}
(5)

and using the properties of Grassmannian subspace packing,
it is shown [8] that (5) is minimized when the minimum
projection two-norm distance between any pair matrices of
W is maximized. The projection two-norm distance is defined
as

dproj(Wi,Wj) = ‖WiW∗
i − WjW∗

j‖2

=
√

1 − λ2
min(W∗

i Wj). (6)

Although several unitary matrix structures have been proposed
in literature for differential unitary space-time modulation and
precoding [10], in this paper, for simulations and comparisons,
we use the unitary matrix structure proposed in [11] and opti-
mized in [8] based on pairwise projection two-norm distance.

IV. MINIMUM DISTANCE BASED PRECODING

To improve the unitary precoding, we propose to use a
general precoder rather than unitary one, for limited feedback
systems. The precoder matrix F, in general case can be written
as F = ULAU∗

R, where UL and UR are unitary matrices
and A is a diagonal matrix. The optimal UL,opt = V̄R is not

available at the transmitter due to limited feedback channel.
We propose to use UL = WIŨL, where WI ∈ CNt×M

is obtained from (4) and ŨL ∈ CM×M is a unitary matrix.
Therefore, the feedback parameters are I and parameters
describing ŨL, A and U∗

R, that are all M × M matrices.
Since for M > 2, the number of feedback parameters are too
many but for M = 2 are tolerable (it will be shown), and also
this case seems to be the most practical case, we focus on
finding the optimum precoder for M = 2, while Nt and Nr

are arbitrary and the routine is the same for higher dimensions.

A. Channel Diagonalization

When WI is determined (4), by considering the svd of
HWI = WLDW∗

R and since WL is known to the receiver,
we can multiply (1) by W∗

L to obtain

y =
√

ρDW∗
RŨLAU∗

Rs + z (7)

where z has the same characteristics as v and the factor 1/
√

M
is absorbed in A as a power distributer matrix.

To determine the feedback matrices, we use the exact
minimum distance of transmitted vectors:

dmin = min
x

‖DW∗
RŨLAU∗

Rx‖ (8)

where x = s−e for all possible transmitted vectors. It is shown
[6] that dmin is maximized when W∗

RŨL is a diagonal matrix
(clearly a diagonal unitary matrix).

Any 2 × 2 unitary matrix U can be parameterized as (see
Appendix)

U = U1BU2

=
[
1 0
0 e−jα12

] [
b b̄
b̄ −b

] [
ejα21 0

0 ejα22

]
(9)

where b ∈ [0, 1], b̄ =
√

1 − b2 and αij ∈ [0, 2π]. Therefore,
WR can be written as WR = UL1BLUL2. Clearly, W∗

RŨL

will be a diagonal matrix if

ŨL = UL1BL

=
[
1 0
0 e−jαL

] [
bL b̄L

b̄L −bL

]
. (10)

Since UL1 and BL are determined by αL and bL respec-
tively, the equivalent channel matrix is diagonalized by only
two parameters. Now, if we assume UR = UR1BRUR2 then

dmin = min
x

‖DU∗
L2AU∗

R2B
∗
RU∗

R1x‖
= min

x
‖DABRU∗

R1x‖ (11)

since both UL2 and UR2 are unitary and diagonal. Therefore,
the equivalent channel and precoder model can be summarized
as follows

ŝ =
√

ρ
√

ρd

[
d 0
0 d̄

]
︸ ︷︷ ︸

D

[
a 0
0 ā

]
︸ ︷︷ ︸

A

[
bR b̄R

b̄R −bR

]
︸ ︷︷ ︸

BR

[
1 0
0 ejαR

]
︸ ︷︷ ︸

U∗
R1

s (12)

where a, d ∈ [0, 1], ρd = d2
1 +d2

2, d = d1/
√

ρd, and d1 and d2

are diagonal terms of D. Here a is the only parameter of A
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to allocate the power between sub-channels so that the total
transmitted power is ρ. To find the remaining parameters in
(12), we should first choose the signal constellation and then
for all possible transmitted vectors, we should maximize (11)
by simulations or maximize the minimum distance between
any pairs of ŝ (12) geometrically.

B. Optimum Parameters for Binary Constellation

In binary case, the transmitted vector s and consequently
ŝ have four different points in the complex plane. It can
be shown that the minimum distance between these four
points is maximized when a = 1, bR = 1/

√
2 and αR =

π/2, independent of the channel parameter d. Therefore, the
feedback parameters are I, αL and bL. The equivalent system
model in (12) is reduced to

ŝ =

√
ρ d 2

1

2

[
1 j
0 0

]
s . (13)

Eq. (13) shows clearly that for binary case, the equivalent
optimum channel depends on d1 which is the λmax(HWI).
Therefore, the optimum precoder should be selected by the
following optimization problem rather than (4):

WI = arg max
Wi∈W

λmax(HWi) . (14)

C. Optimum Parameters for QPSK Constellation

When the transmitted symbols are from a QPSK constel-
lation, there are 42 transmitted vectors or equivalently 42

precoded points (ŝ) in the complex plane. It can be shown
[6] that the precoder parameters depend on d. Therefore, the
feedback parameters are I, αL, bL and d. When d � 0.955,

the optimum parameters are a = 1, bR =
√

(3 +
√

3)/6 and
αR = π/12, independent of the channel parameter d. In this
case, (12) is reduced to

ŝ =
√

ρ d 2
1

[√
3+

√
3

6

√
3−√

3
6 ej π

12

0 0

]
s . (15)

When d � 0.955, the optimum parameters are bR = 1/
√

2,
αR = π/4 and

a =

√
1 − d 2

1 − 2(
√

2 − 1)d 2
.

and the equivalent system model will be

ŝ =
√

ρ ρd

2

[
d a 0
0 d̄ ā

] [√
2 +(1 + j)√
2 −(1 + j)

]
s . (16)

V. SIMULATION RESULTS AND COMPARISONS

In this section, a MIMO system with Nt = 4 transmit
antennas, Nr = 3 receive antennas and M = 2 substreams
for multiplexing is considered (MIMO(4,3,2)) as an example
to demonstrate the pros and cons of the proposed limited
feedback precoder. A set of 26 unitary precoders derived in [8]
is used for simulations which requires 6 bits of feedback for
I. Since other precoding parameters are continuous, an appro-
priate quantizing method should be adopted to maximize the
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Fig. 1. The approximate pdf of feedback parameter ’d’.

accuracy of the quantization and also the conveyed information
per assigned bits.

A. Quantization of Feedback Parameters

Information theoric approach to quantization requires the
quantized values to have the same probability of occurrence.
Therefore, the first step for quantization is to evaluate the
probability density function (pdf) of feedback parameters. The
first feedback parameter is αL. Computer simulation shows
that the pdf of αL is uniform, U(0, 2π). Therefore, for a given
Nb bits of feedback for αL, the quantized index iαL

and the
regenerated value α̂L will be

iαL
=

⌈αL

π
2Nb−1

⌉
, α̂L = π

2 iαL
− 1

2Nb
.

The pdf of bL obtained from simulation is

fbL
(x) = 2x , 0 � x � 1

and consequently for a given Nb bits of feedback for bL, the
quantized index ibL

and the regenerated value b̂L will be

ibL
=

⌈
b2
L2Nb

⌉
, b̂L =

√
2 ibL

− 1
2Nb+1

.

Finally, Fig. 1 shows the pdf of feedback parameter d. The
lines show the nonlinear quantization thresholds and the
diamonds on the x−axis are the regenerated values d̂ assigned
to each region, for 3 bits of feedback for parameter d.

B. Performance Comparisons

Fig. 2 and Fig. 3 show the performance of MIMO(4,3,2)
system with binary and QPSK signallings. In both figures,
the performance of unitary precoding [8] with 6 bits of
feedback for I, the performance of optimal precoding with
perfect knowledge of the channel at the transmitter [6] and
the performance of our proposed method with the knowledge
of exact feedback parameters, are included. Fig. 2 shows the
performance of the proposed method in BPSK signalling when
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Fig. 2. Performance of binary signalling in MIMO(4,3,2) with different
precoding techniques.
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Fig. 3. Performance of QPSK signalling in MIMO(4,3,2) with different
precoding techniques.

6,2 and 2 bits of feedback are assigned to I, αL and bL

respectively. In Fig. 3, the assigned feedback bits are 6,3,3
and also 2 bits for parameter d. The results show that by
adopting the proposed method which requires more bits of
feedback, the performance of unitary precoding is improved,
significantly for BPSK signalling. Also the figures show that
the effect of quantization is relatively small.

APPENDIX

In general case, a 2× 2 unitary matrix U can be written as

U =
[
b11e

jθ11 b12e
jθ12

b21e
jθ21 b22e

jθ22

]

where θij ∈ [0, 2π), and bij ∈ [0, 1] satisfy the following
conditions:

b2
11 + b2

21 = 1 (A-1)

b2
21 + b2

22 = 1 (A-2)

By factorizing angles of the first row, we have

U =
[

b11 b12

b21e
−jθ1 b22e

jθ2

] [
ejθ11 0

0 ejθ12

]
where θ1 � θ11−θ21 and θ2 � θ22−θ21. Now, by factorizing
the angles of the first column we have

U =
[
1 0
0 e−jθ1

]
︸ ︷︷ ︸

�U1

[
b11 b12

b21 b22e
jθ

]
︸ ︷︷ ︸

�B

[
ejθ21 0

0 ejθ22

]
︸ ︷︷ ︸

�U2

(A-3)

where θ � θ2 +θ1. Since U, U1 and U2 are unitary matrices,
the matrix B should be a unitary matrix, requiring to satisfy
(A-1), (A-2) and the following condition:

b11b12 + b21b22e
jθ = b11b12 + b21b22 cos θ + jb21b22 sin θ

= 0 (A-4)

(A-4) requires b21b22 sin θ=0 which has four solutions. Three
solutions related to b21 =0, b22 =0 and θ=0 result in specific
forms for unitary matrix B. The acceptable solution is θ =π
which requires

b11 = b22 � b , b ∈ [0, 1] (A-5)

b21 = b12 =
√

1 − b2. (A-6)

The final parametrization of U is presented in (9).
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