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Abstract—A precoder based on the exact optimization of the
minimum Euclidean distance dmin between signal points at the
receiver side is proposed for MIMO-OFDM systems using a
16-QAM modulation. Assuming that channel state information
(CSI) can be made available at the transmitter, the channel
is diagonalized and a precoder can be derived. A numerical
approach shows that the precoder design depends on the chan-
nel characteristics, leading to 8 different precoder expressions.
Comparisons with maximum signal-to-noise ratio (SNR) strategy
and other precoders based on criteria, such as water-filling
(WF), minimum mean square error (MMSE), and maximization
of the minimum singular value of the global channel matrix,
are performed to illustrate the significant bit-error-rate (BER)
improvement of the proposed precoder. In order to make its
implementation easier, it is shown that it can be expressed by
only two ways without significant performance degradation.

I. INTRODUCTION

The future generation of mobile broadband wireless systems
will probably be based on the association of Multiple Input
Multiple Output (MIMO) and Orthogonal Frequency Division
Multiplex (OFDM) techniques because of the large gains
in spectral efficiency, capacity and quality they can achieve
compared with single antenna or single carrier links [1], [2].
In order to fully exploit the presence of multiple antennas
and add resiliency against ill-conditioning, the linear precoding
proposes to adapt the transmitted signal to the channel.

Assuming that the channel state information (CSI) is avail-
able at the transmitter, linear precoders can be designed in
order to optimize a pertinent criterion such as beamforming,
waterfilling (WF), minimum mean square error (MMSE) [3],
quality of service (QoS), or maximization of the minimum
eigenvalue (max−λmin). Those solutions lead to power al-
location with diagonal solutions based on the singular value
decomposition.

On the other hand, the precoder in [4] maximizes the
minimum Euclidean distance of the received constellation
(max−dmin). The exact solution for two transmit symbols and
4-QAM modulation is given and is not a diagonal solution.
Performances in terms of BER are significantly enhanced.
However, it is difficult to give a general form of this precoder
because of the complexity of the optimization. Indeed, the
problem depending on the number of symbols, the modulation,
and the channel matrix, is still open [5]. A heuristic suboptimal

precoder based on the exact solution max−dmin was derived
in [6] and allows to increase the number of transmit symbols
with a complexity trade-off.

In this paper, we propose the exact solution of the maxi-
mization of dmin with two 16-QAM symbols. In Section II,
the system model is described with the matrix notation and
the eigenmode representation, before the optimization method
is exposed. Section III presents the max−dmin solution for
two 16-QAM symbols. Performances in terms of minimum
distance and BER compared to diagonal precoders are pre-
sented in Section IV. In order to reduce the complexity, a
simplification of the precoder is also proposed in Section V.
Our conclusions are drawn in Section VI.

II. OPTIMIZATION OF THE MINIMUM DISTANCE

A. Channel model

When CSI is available at the transmitter, it was shown
that every MIMO system can be simplified and virtually
diagonalized. Let us consider a MIMO system with nR receive
and nT transmit antennas over which we want to achieve b
independent data streams. The received signal can then be
expressed as

y = GDHvFDs + GDνv (1)

where s is the b × 1 vector of transmitted symbols, Hv =
GvHFv is the virtual channel matrix of size b× b, νv = Gvν
is an additive white Gaussian noise vector of size b × 1 and
FD and GD are b× b matrices, representing respectively the
precoder and decoder that maximize dmin.

The virtual channel matrix Hv is

Hv = diag(σ1, ..., σb) (2)

where σi stands for every subchannel gain (sorted by decreas-
ing order).

The power constraint can be expressed as

trace{FDF∗
D} = p0 (3)

where p0 is the mean available transmit power. As only an
ML detection is considered in the rest of the paper, the
decoder matrix GD has no impact on the performance and
is consequently assumed to be GD = Ib, with Ib the identity
matrix of size b× b.
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B. Minimum Euclidean distance

Let us denote S the set of all possible transmitted vectors
s. The precoder matrix maximizing the minimum Euclidean
distance dmin of the received constellation under the power
constraint has to be determined. dmin can be expressed as

d2
min = min

sk,sl∈S,sk �=sl

‖HvFD(sk − sl)‖2 (4)

Let us define a difference vector x̆ = sk − sl with sk �= sl.
The reduced set X̆ contains difference vectors x̆ without any
redundancy. The minimum distance can then be expressed as

d2
min = min

x̆∈X̆
‖HvFDx̆‖2 (5)

Determining the precoder matrix FD which maximizes dmin

is difficult for two reasons: the solution depends on the symbol
alphabet and the space of solutions is large. To simplify, the
proposed technique is only derived for b = 2 virtual channels
using cosine function. Let us remark that b ≤ rank(H) ≤
min(nT , nR).

C. Reduction of optimization space

Considering this bi-dimensional virtual system, the virtual
channel matrix can be expressed as

Hv =
(
σ1 0
0 σ2

)
= ρ

(
cos γ 0

0 sin γ

)
(6)

where ρ =
√
σ2

1 + σ2
2 and γ = arctan σ2

σ1
stand respectively

for the channel gain and the channel angle. Since σ1 ≥ σ2 > 0,
we have 0 < γ ≤ π/4.

The precoder matrix can be simplified as in [4]:

FD =
√
p0

(
cosψ 0

0 sinψ

)(
cos θ sin θ
− sin θ cos θ

)(
1 0
0 eiϕ

)
(7)

Considering all symmetries in usual constellations, the influ-
ence of the angles on the Euclidean distance has to be studied
only for 0 ≤ ϕ ≤ π/2 and 0 ≤ θ ≤ π/4, 0 ≤ ψ ≤ π/2.
The angles θ and ϕ correspond to scaling and rotation of the
received constellation, respectively. When both are equal to 0,
the matrix FD is diagonal and leads to the power allocation.
The angles corresponding to the optimal precoder with the
dmin criterion can now be determined.

D. Optimal max−dmin precoder for a QPSK modulation

Firstly, if a QPSK modulation with b = 2 data streams is
considered, the symbols belong to the set

SQPSK =
1√
2
{(1 + i), (1 − i), (−1 + i), (−1 − i)} (8)

It was shown in [4] that this QPSK solution is rather simple,
with only two precoder expressions

i) 0 ≤ γ ≤ γ0

FD = Fr1 =
√
p0

(√
3+

√
3

6

√
3−√

3
6 ei π

12

0 0

)
(9)

ii) γ0 ≤ γ ≤ π/4

FD = Focta =
√
p0

2

(
cosψ 0

0 sinψ

)(
1 ei π

4

−1 ei π
4

)
(10)

where

⎧⎨
⎩

ψ = arctan
√

2−1
tan γ

γ0 = arctan
√

3
√

3−2
√

6+2
√

2−3
3
√

3−2
√

6+1
≈ 17.28◦

The parameter ψ is linked to the power allocation, and the
constant threshold γ0 allows the precoder to use one or two
sub-channels. γ0 is obtained when considering that the two
precoders give the same minimum Euclidean distance dmin.
This one depends on ρ and γ and is expressed as

dmin =

⎧⎪⎨
⎪⎩

√
p0ρ
√

1 − 1√
3

cos γ if 0 < γ ≤ γ0

√
p0ρ

√
(4−2

√
2) cos2 γ sin2 γ

1+(2−2
√

2) cos2 γ
if γ0 < γ ≤ π/4

(11)

III. EXTENSION OF max−dmin PRECODER FOR A 16-QAM
MODULATION

In the case of a 16-QAM modulation, the symbols belong
to the following set

S =
1√
10

{(±1 ± i), (±1 ± 3i), (±3 ± i), (±3 ± 3i)} (12)

A numerical search on ψ, θ and ϕ to maximize the Eu-
clidean distance for every angle γ leads to eight different
expressions. If γ stays under γ0, then only the best sub-channel
is used as in the max-SNR strategy and the precoder will
be denoted Fr1. On the other hand, if γi < γ < γi+1, the
precoder leads to a 256-points constellation on both receivers,
and it will be denoted as FTi

, respectively.

A. Expression of Fr1 precoder

For every γ ≤ γ0, the numerical maximization of dmin

gives an angle ψ = 0, meaning that only the best virtual sub-
channel is used (i.e. the first one, since σ1 ≥ σ2). A received
constellation on this subchannel is represented on Fig.1 (for
ψ = 0 and arbitrary θ and ϕ). The points denoted from 1 to
256 correspond to the 256 received symbols.
dmin is optimized such that nearest neighbors have the same

distance. On Fig.1, the optimized solution can be obtained with
d12,16 = d16,29 = d29,12 corresponding to the 3 difference
vectors

x̆1 =
1√
10

(
0
2

)
, x̆2 =

1√
10

(
2
−6

)
, x̆3 =

1√
10

(
2

−6 + 2i

)
(13)

The corresponding distances lead to the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2
x̆1

= cos2 γ
10 × (4 − 4 cos2 θ)

d2
x̆2

= cos2 γ
10 × (−32 cos2 θ − 24 cos θ. sin θ. cosϕ+ 36)

d2
x̆3

= cos2 γ
10 × (−8 cos θ. sin θ. sinϕ− 36 cos2 θ

+40 − 24 cos θ. sin θ. cosϕ)
(14)
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Fig. 1. First virtual subchannel constellation for ψ = 0

whose resolution gives{
ϕ0 = arctan 1

6+
√

3
≈ 7.3693◦

θ0 = arctan(2 sinϕ0) ≈ 14.3877◦
(15)

The received constellation looks like a 256-QAM con-
stellation rotated by 7.369 ◦. This solution is close to the
max-SNR strategy, but leads to a little higher dmin. The
optimization of dmin is always obtained by the difference

vector x̆1 = 1√
10

(
0
2

)
and the distance obtained by Fr1 is

then

d2
r1 = p0ρ

2 2 sin2 θ0
5

. cos2 γ (16)

B. Expression of FTi
precoders

For every γ0 < γ ≤ γ1, the angles θ et ϕ are fixed.
Moreover, ψ depends on γ, allowing a power allocation over
the two virtual subchannels. The minimum Euclidean distance
of FT1 is obtained when θ = 45◦ and ϕ = 45◦. The precoder
FD is now expressed as a function of ψ

FT1 =
√
p0

(
cosψ 0

0 sinψ

)
1
2

( √
2 1 + i

−√
2 1 + i

)
(17)

When γ is explored from 0◦ to 45◦, the value of ψ
maximizing dmin is obtained with the 2 difference vectors

ă1 = 1/
√

10
(

2
−2 + 2i

)
and b̆1 = 1/

√
10
(

4 + 4i
−6

)
.

If we denote respectively dă1 and db̆1
the minimum Eu-

clidean distance linked respectively to the difference vectors
ă1 and b̆1, the optimum precoder is obtained when dă1 = db̆1⎧⎪⎪⎨
⎪⎪⎩

d2
ă1

= 1
10 (6 + 4

√
2 + 12 cos2 γ. cos2 ψ − 6 cos2 ψ

−6 cos2 γ − 4
√

2 cos2 ψ − 4
√

2 cos2 γ)
d2

b̆1
= 1/10 × (34 + 24

√
2 − 68 cos2 γ. cos2 ψ − 34 cos2 ψ

−34 cos2 γ − 24
√

2 cos2 ψ − 24
√

2 cos2 γ)
(18)

Considering dă1 = db̆1
, we get ψ as a function of γ

tan(ψ1) =
5
√

2 − 7
tan γ

(19)

The precoder FT1 is then obtained by substituting ψ1 in
equation (17), and the corresponding distance is finally given
by

d2
T1

= p0ρ
2 20 − 14

√
2

5
sin2 γ

tan2 γ + (5
√

2 − 7)2
(20)

Using the same process and exploring all possible values
of ψ, θ and ϕ, it is possible to obtain the six other precoders
FTi

, i = 2 . . . 7. The corresponding angles ψi, θi and ϕi are
summarized in Tab. I (α = 1 + 6√

34
). To obtain a precoder

design depending only on the channel angle γ, these values
or expressions have to be injected in (7). Every FTi

precoder
allows the use of both subchannels and consequently the power
allocation at the transmitter. As an example, the received
constellation using FT7 is given by Fig.2.
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Fig. 2. Received constellation for precoder FT7
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C. Evolution of the minimum distance

Previously obtained optimal distances are only dependent
on the parameter γ representing the channel. In order to
choose between all the precoders and obtain the corresponding
thresholds, we have to search for γ0 such that dr1 = dT1 and
γi such that dTi

= dTi+1 with i ≥ 1 (Fig.3).
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Fig. 3. Evolution of dmin as a function of γ for a 16-QAM modulation

For example, let us solve the equation dr1 = dT1 to obtain
γ0. These distances are given by{

d2
r1 = p0ρ

2 2 sin2 θ0
5 . cos2 γ

d2
T1

= p0ρ
2 20−14

√
2

5
sin2 γ

tan2 γ+(5
√

2−7)2

(21)

Considering dr1 = dT1 , we get

γ0 = arctan
√

M0

1 −M0
(5
√

2 − 7)2 ≈ 5.128◦ (22)

where M0 = sin2 θ0

10−7
√

2
. The other thresholds γi are obtained

using the same process and are expressed in Tab. I.

IV. COMPARISON TO OTHER PRECODERS

Minimum Euclidean distances for every precoder are shown
on Fig. 4 in the case of a 16-QAM modulation. The dotted
black curve represents the upper bound of Fdmin , meaning
that its expression is selected among Fr1 and FTi

, i = 1..7
depending on the value of γ.

When γ ≤ γ0, performances of max−dmin and Beam-
forming are very close with the same difference. The light
advantage of Fdmin is due to the rotation of 7.36◦. These two
precoders are the only ones whose dmin remains different from
0 when γ reaches small values.

When γ increases, the max(λmin) solution is better than
MMSE, WF, QoS 3dB, and WF solutions in terms of dmin,
but it is really outperformed by the max−dmin precoder.

Due to this considerable improvement of dmin, a signifi-
cant increase of BER performance of the Fdmin is expected
compared to the diagonal precoders.

This is confirmed by Fig. 5 representing BER with respect
to the SNR for a MIMO-OFDM system using a 16-QAM
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Fig. 4. Minimum Euclidean distance of precoders for a 16-QAM modulation

modulation, nT = 4 transmitters, nR = 2 receivers, 128
subcarriers and a Rayleigh channel. The max−dmin precoder
proposes a gain of 3 dB compared to diagonal precoders for
a BER = 10−5, which clearly demonstrates its interest when
an ML receiver is used (this gain will even be higher if the
number of antennas increases).
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Fig. 5. Comparison of precoders in terms of BER for a MIMO-OFDM system
using a 16-QAM modulation, nT = 4 transmitters, nR = 2 receivers, 128
subcarriers and a Rayleigh channel

V. SIMPLIFICATION OF THE PRECODER

The Fdmin precoder can be simplified in order to implement
it in a easier way. Indeed, if we look again at Fig. 3, we
observe that some precoders are useful for a very small range
of γ (e.g., γ1 − γ0 = 0.84◦), and may be canceled. Two sets
of precoders are represented in terms of minimum distance on
Fig. 6 for only two (Fr1 and FT7 ) and four (Fr1 , FT3 , FT5

and FT7) different expressions.
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Precoder ψ (in degrees) ϕ (in degrees) θ (in degrees) γ (in degrees)

Fr1 0 7.37 14.39 γ0 ≈ 5.128

FT1 ψ1 = arctan 5
√

2−7
tan γ

45 45 γ1 ≈ 5.96

FT2 45 ϕ2 = arcsin 1
2 cos 2γ

45 γ2 ≈ 6.81

FT3 ψ3 = arccos
√

α−α. cos2 γ
α−2 cos2 γ

ϕ3 = arctan 3
5

45 γ3 ≈ 9.45

FT4 45 ϕ4 = arctan
cos2 2γ+1−

√
6 cos2 2γ−3

2−cos2 2γ
θ4 = 1

2
arctan 1

cos ϕ4−sin ϕ4
γ4 ≈ 10.35

FT5 ψ5 = arctan

√
10/

√
14−1√

10/
√

14+1×tan γ
ϕ5 = arctan 1

3
θ5 = 1

2
arctan

√
10
2

γ5 ≈ 17.53

FT6 45 ϕ6 = arcsin 1
2 cos 2γ

45 γ6 ≈ 22.50

FT7 ψ7 = arctan
√

2−1
tan γ

45 45

TABLE I
ANGLE VALUES FOR dmin PRECODER
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Fig. 6. Simplification of Fdmin precoder

The corresponding BERs for the same communication
system as in Section IV are represented on Fig. 7. The
simplest version of the precoder, max−dmin−v2, offers very
good performances and remains very close to the other sets
max−dmin − v4 and max−dmin − v8.
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Fig. 7. BER performance of the different sets of precoders for a MIMO-
OFDM system using a 16-QAM modulation, nT = 4 transmitters, nR = 2
receivers, 128 subcarriers and a Rayleigh channel

VI. CONCLUSION

A new exact solution of the maximization of the minimum
Euclidean distance between received symbols has been pro-
posed for two 16-QAM modulated symbols. This precoder
shows an important enhancement of the dmin compared to
diagonal precoders which leads to a significant BER improve-
ment. For a MIMO-OFDM system using nT = 4 transmitters,
nR = 2 receivers, 128 subcarriers and transmitting b = 2 data
streams over a Rayleigh channel, it outperforms traditional
precoding strategies such as waterfilling, beamforming, or
minimizing the mean square error by over 3 dB at BER =
10−5.

This new strategy selects the best precoding matrix among
eight different expressions, depending on the value of the
channel angle γ. In order to decrease the complexity, other
sets of precoders have been proposed and the performances of
the simplest one, composed only of Fr1 and FT7 remain very
close to the optimal in terms of BER.
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