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1 Introduction

Empirical analysis often involves using incorrectly measured data that complicates identification

of the behavioral parameters and testing of economic hypothesis.1 The problem is acute in cross-

section and survey data when errors in data collection and reporting are inevitable and new esti-

mation methods continue to be developed. The literature on measurement error in time series data

is smaller but the problem is no less important. The real time estimates which underlie economic

decisions can differ from the revised estimates that researchers used for analysis. We do not observe

variables such as the state of economy, potential output, or natural rate of unemployment, and fil-

tered series are often used as proxies. Except by coincidence, the latent processes will not be the

same as the constructed ones with differences that can be correlated over time. Orphanides and van

Norden (2002) and Orphanides and Williams (2002) find that misperceptions or measurement errors

can be quite persistent. Ermini (1993) shows that allowing for serially uncorrelated measurement

errors changes the measure of persistence in consumption growth. Falk and Lee (1990) suggest that

measurement errors can explain rejections of the permanent income hypothesis. Nalewalk (2010)

shows that the income (GDI) and product (GDP) side of output growth exhibit rather different

fluctuations over the past 25 years and that the GDI shows a steeper downturn in 2007-2009 than

GDP. Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2013) find that the series filtered from

GDP and GDI are less volatile but more persistent than the two contaminated measures. Sargent

(1989) allows the data collected to have serially correlated errors and shows that identification of

the deep parameters of an accelerator model is affected by how the data are reported.

This paper is concerned with dynamic models that can generically be represented by

yt = W ′tγ + Vt, (1)

where yt is a scalar dependent variable, Wt is a vector of observed regressors that may include lags

of the dependent variable, and Vt is a latent disturbance term. The crucial feature of the model is

that some components of Wt are mismeasured which causes Wt and Vt to become correlated. In

consequence, the model (1) contains the regression parameters of interest γ as well as the nuisance

parameters δ. The correlation between Vt and Wt can sometimes be mitigated by resorting to

instrumental variables (IVs), such as in purely static models in which measurement errors are

known to be uncorrelated over time. More often than not, however, lags of Wt cannot be used as

instruments. This is the case for distributed lag models with autocorrelated measurement errors,

and also true of dynamic panel models in which fixed effects are eliminated by demeaning the

observables. Not only is the least squares estimator (OLS) biased, but so is the instrumental

variable estimator (IV) because the lagged variables are no longer valid instruments.

1Wilcox (1992) discusses the issues in consumption measurements especially at the monthly level.
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The goal of this paper is to show that identification of γ is still possible when external in-

struments are unavailable or that the validity of lagged variables as instruments is in doubt. The

possibility of using internal information to turn an unidentified problem into an identifiable one

was noted in Goldberger (1972) and Hsiao (1977). Our main insight is that the least squares (OLS)

bias depends on the nuisance parameters δ that characterize Wt. While OLS does not consistently

estimate γ, there is in general enough information in the serially correlated regressors and the least

squares residuals about the measurement error process to permit identification of γ. Persistence

in the regressors is important here because the least squares residuals will be serially correlated if

the regressors are serially correlated. In a way, our approach is to combine information in several

sample estimates whose bias is magnified by persistence of the regressors.

Specifically, we propose to identify θ = (γ′, δ′)′ from a vector of auxiliary statistics ψ̂(θ) that

includes the OLS estimates and moments formed from the least squares residuals. The role of the

auxiliary statistics ψ̂(θ) is to provide a mapping from the parameter space of θ to the parameter

space of an auxiliary model. We study the probability limit of ψ̂(θ) as the sample size grows to

infinity. Following Gourieroux, Monfort, and Renault (1993), the mapping ψ : θ → ψ(θ) will be

referred to as the binding function. Local identifiability of θ requires that the binding function is

locally one-to-one. A sufficient (though not necessary) condition for the latter is that the matrix of

partial derivatives ∂ψ/∂θ is of full column rank. The parameter θ is globally identifiable over the

entire parameter space Θ whenever ψ is invertible on ψ(Θ). In this case, a natural estimator for θ

is obtained as θ̂ = ψ−1(ψ̂).

In simple models where the mapping between θ and the auxiliary statistics can be derived

analytically, we have a classical minimum distance (CMD) estimator that is
√
T consistent and

asymptotically normal, where T is the sample size. Our CMD estimator is similar in the spirit to

the ones proposed in Lewbel (2012) and Erickson (2001) who considered identification of parameters

in a linear regression model without additional instruments. Lewbel (2012) uses the fact that

under heteroskedasticity of the errors, the product of the regression and measurement error are

uncorrelated with an exogenous variable. Erickson (2001) considered identification using higher

order moments. Schennach and Hu (2013) also considered identification without side information,

but their focus is non- and semi-parametric models. Our emphasis is on combining individually

biased estimators without making assumptions about normality or homoskedasticity in a linear

regression setting.

In more complex models such as when lags of the dependent variable and the regressors are

involved, the binding function will not be tractable. We use Monte-Carlo methods to approximate

this mapping. The resulting simulated minimum distance (SMD) estimator is consistent to the

extent that the simulator can reconstruct those variations in the contaminated regressors that are
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orthogonal to the measurement errors. Our simulation estimator differs from the ones considered in

Smith (1993), Gourieroux, Monfort, and Renault (1993), and Gallant and Tauchen (1996). These

estimators treat the predictors as exogenous which can be held fixed in the simulations. The

exogeneity assumption is not appropriate in measurement error models because the parameters in

the marginal distribution of the covariates and those of the conditional model are not variation

free in the sense of Engle, Hendry, and Richard (1983). Thus, even though the correctly measured

predictors could have been held fixed, the mismeasured ones cannot. Our SMD estimator is designed

to use limited information from the joint distribution of the data to simulate the model.

The paper proceeds as follows. After stating the assumptions for analysis, Section 2 uses the

simple regression model to motivate the choice of auxiliary statistics. Section 3 turns to autoregres-

sive distributed lag models with possibly serially correlated measurement errors. Section 4 extends

the analysis to dynamic panel models. Classical minimum distance estimation is not feasible in

models with more general dynamics as the model-implied moments do not have closed form expres-

sions. This motivates the need for simulation estimation, which is presented in Section 5. The same

section presents Monte Carlo simulation evidence and a Phillips-curve application. Last section

concludes. Technical proofs are relegated to an Appendix.

As a matter of notation, we use Γx(j) ≡ E[xtxt−j ] to generically denote the autocovariance

of a covariance stationary mean-zero time series xt. We use Γxy(j, k) ≡ E[xt−jyt−k] to denote

the covariance between xt and another mean-zero covariance stationary process yt. If E(xt) = 0,

E(x2
t ) = σ2

x ≡ Γx(0), and Γx(j) = 0 for j ≥ 1, then xt is a white noise. In this case, we write

xt ∼WN(0, σ2
x).

2 The Econometric Framework

Consider the autoregressive distributed lag ADL(p,q) model with scalar predictor xt:

α(L)yt = β(L)xt + ut, (2)

where α(L) = 1−
∑p

i=1 αiL
i, β(L) =

∑q
i=0 βiL

i, and L is the lag operator. Instead of xt, we only

observe a contaminated variable Xt:

Xt = xt + εt. (3)

Now let α = (α1, . . . , αp)
′, β = (β0, β1, . . . , βq)

′ and γ = (α′, β′)′. In the context of the general

dynamic model in (1), Wt = (yt−1, . . . , yt−p, Xt, Xt−1, . . . , Xt−q)
′, and the error term becomes

Vt = ut − β(L)εt.
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As is well known, identification in these models is impossible without further assumptions when

the predictors are serially uncorrelated or normally distributed.2 But as Goldberger (1972, p.996)

pointed out, measurement errors in the exogenous regressors need not destroy identification pro-

vided that the model is overidentified. One approach is to use additional information from N

variables. Bai and Ng (2010) assume that there are mismeasured indicators (X1t, . . . , XNt)
′ of the

latent predictor xt, each characterized by Xit = πixt + εit with cov (εit, xt) = 0, and N is large.

The IV approach makes use of N = 2 variables: one X1t to replace xt and a second one X2t that

is correlated with X1t but uncorrelated with ε1t. A second approach is to drop the normality as-

sumption. Pal (1980), Dagenais and Dagenais (1997), Lewbel (1997) and Spierdijk and Wansbeek

(2011) exploit heteroskedasticity, excess skewness and kurtosis for identification without relying on

instruments. Our approach falls in the third category of exploiting the bias in the sample estimates.

Assumptions on the latent variables of the model, ut, εt, and xt, are as follows.

Assumption A .

(a) {(xt, εt)′} is covariance stationary with E(xt) = 0, E(εt) = 0, E(xtετ ) = 0 for every (t, τ).

(b) ut ∼WN(0, σ2
u). For every (t, τ), E(utxτ ) = 0 and E(utετ ) = 0.

(c) The covariance matrix of (yt−1, . . . , yt−p, xt, xt−1, . . . , xt−q) is nonsingular.

(d) Measurement error autocovariances Γε(1), . . . ,Γε(q
∗) are well approximated by σ2

ε f(φ) where

f(·) is a function parameterized by φ = (φ1, . . . , φm)′.

We assume in (a) that the model is dynamically correctly specified and that ut is serially

uncorrelated. The latent regressor xt and measurement error εt are assumed to have zero mean.

The intercept is therefore suppressed in (2). The measurement error εt is assumed to be classical,

i.e. orthogonal to the latent regressor xt at all leads and lags. The true regressor xt is observed

with error whenever σ2
ε 6= 0. The measurement error εt is allowed to be serially correlated. The

model disturbance ut in (b) is assumed to be white noise and orthogonal to both xt and εt. Serial

correlation in ut and its correlation with xt can be seen as due to the omission of relevant lags of yt

and xt in (2). Thus (b) subsumes that all the relevant regressors have been included in the model.

Assumption (c) is standard for least squares analysis. Note however that this condition involves

latent variables xt, . . . , xt−q. As we shall demonstrate next, the dynamics of Vt depends on the lag

order q which affects the identifiability of α and β. For q = 0, identification can be established by

leaving the dynamic structure of εt unspecified. For values q ≥ 1, however, this approach leads to a

2See Reiersøl (1950) and Aigner, Hsiao, Kapteyn, and Wansbeek (1984, p.1324) for an overview of identification
conditions in measurement error models. Gillard (2010) presents an overview of approaches to handle the errors-in-
variables (EIV) problem from different fields.
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proliferation of nuisance parameters in the model. In those cases, we reparameterize the model as

in (d). While this assumption does not parametrically specify the dynamic structure of εt explicitly,

we require that its first q∗ autocorrelations can be parsimoniously approximated by m parameters,

where both m and q∗ depend on the choice of auxiliary statistics and will be further discussed.

An implication of the presence of measurement error is that E(VtXt−j) 6= 0 for 0 6 j 6 q.

Moreover, V̂t is generally serially correlated even if εt is white noise. Let δ denote the nuisance

parameters characterizing Vt. In the case of white noise measurement errors, δ = (σ2
u, σ

2
ε )
′. When εt

is serially correlated, δ = (σ2
u, σ

2
ε ,Γε(1), . . . ,Γε(q

∗))′ where q∗ depends on auxiliary statistics used.

The parameters of the model are θ = (α′, β′, δ′)′. The objective of the exercise is to identify and

consistently estimate θ from suitable choice of auxiliary statistics. While α and β are the parameters

of interest, joint identification of δ makes it possible to assess the severity of measurement errors.

IV estimators work around the attenuation bias and can only be silent about the properties of εt.

The idea behind our proposed estimator is to exploit the bias in the OLS estimator for identi-

fication of θ. Specifically, if plim T→∞γ̂ − γ = bias(θ) is non-degenerate and

V̂t = yt −W ′t γ̂ = Vt −W ′tbias(θ),

then moments formed from V̂t must also be a function of the bias and hence depend on θ. We will

be specifically interested in Γ̂
V̂

(j) = 1
T

∑T
t=j+1 V̂tV̂t−j and Γ̂

V̂ X
(j, 0) = 1

T

∑T
t=j+1 V̂t−jXt. Their

probability limits as T →∞ are, respectively,

Γ
V̂

(j) = ΓV (j)−
(

ΓVW (j, 0) + ΓVW (0, j)

)′
bias(θ) + bias(θ)′ΓW (j)bias(θ) (4)

Γ
V̂ ,X

(j, 0) = ΓV X(j, 0)− ΓWX(j, 0)′bias(θ). (5)

Observe that these moments use V̂t instead of Vt and plim Γ̂
V̂

(0) 6= ΓV (0), plim Γ̂
V̂

(1) 6= ΓV (1),

and plim Γ̂
V̂ X

(1, 0) 6= ΓV X(1, 0). The biased sample estimates are functions of least squares bias

and thus useful for identification of θ. To layout the framework for analysis, we use the simple

regression model with no lagged dependent variables to motivate the choice of auxiliary statistics.

It will be shown that θ is identified whether or not measurement errors are serially correlated. We

then extend the analysis to allow for lagged dependent variables.

2.1 The Simple Regression Model

The scalar regression model

yt = xtβ + ut

with Xt = xt + εt and Vt = ut − βεt is well studied under the assumption that xt and εt are

iid. We consider this model in a time series context when xt is serially correlated, and under
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different assumptions about εt. In the case when εt is white noise, it holds, as in the iid case, that

ΓX(0) = Γx(0) + σ2
ε . The parameters of this model are

θA ≡ (β, σ2
u, σ

2
ε )
′. (6)

The least squares estimator has attenuation bias given by

plim T→∞(β̂ − β) = − βσ2
ε

ΓX(0)
≡ biasA(θ).

Our estimator exploits two features of time series data. The first is the relation between the auto-

covariance of Xt (observed) and xt (latent). Even though Xt and xt have different autocorrelations,

they have the same autocovariance at lag j ≥ 1. That is, if εt is white noise,

ΓX(j) = Γx(j) for all j > 1.

The second is the properties of the least squares residuals V̂t = yt −Xtβ̂ = Vt −X(β̂ − β). By (4),

the autocovariances for this model are given by

plim T→∞Γ̂
V̂

(j) = ΓV (j)− biasA

(
ΓV X(0, j) + ΓV X(j, 0)

)
+ biasA(θ)2ΓX(j).

With white noise measurement error, ΓV (j), ΓV X(0, j) and ΓV X(j, 0) are zero for j = 1. However,

biasA(θ) 6= 0 and ΓV X(0, 0) = −βσ2
ε . Thus, even though Vt is serially uncorrelated when εt is white

noise, V̂t has non-zero autocovariances whenever Xt is serially correlated. A researcher who is not

aware of the presence of measurement error might estimate a model with additional lags of Xt.

The ability to identify σ2
ε can lead to the choice of a more appropriate dynamic model.

Consider identifying θA from a vector of three auxiliary statistics:3

ψ̂A ≡

 β̂

Γ̂
V̂

(0)

Γ̂
V̂

(1)

 p−→

 β + biasA(θ)
σ2
u + β2σ2

ε + biasA(θ)βσ2
ε

biasA(θ)2ΓX(1)

 ≡ ψA(θ). (7a)

As pointed out in Spierdijk and Wansbeek (2011), ΓX(0),ΓY (0) and ΓXY (0, 0) are needed to identify

θA. The proposed ψ̂A is implicitly a function of these moments. Its choice is guided by the fact

that β̂ is a sufficient statistic for β in the absence of measurement error, and the properties of V̂t

are completely characterized by its second moments. A useful way to think about ψ̂A is that its

components β̂, Γ̂
V̂

(0) and Γ̂
V̂

(1) are biased for β,ΓV (0) and ΓV (1), and we exploit the biases to

identify θ. This contrasts with the IV estimator which works around the correlation between Xt

and yt and cannot identify σ2
ε .

3Note that biasAθΓX(0) = −βσ2
ε . Thus, Γ̂V̂ (0)

p−→σ2
u + β2σ2

ε + 2biasA(θ)βσ2
ε + biasA(θ)2ΓX(0) = σ2

u + β2σ2
ε +

biasA(θ)βσ2
ε .
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Substituting in biasA(θ) = −β σ2
ε

ΓX(0) , the binding function simplifies to

ψA(θ) =

ψA1

ψA2

ψA3

 =


β − β σ2

ε
ΓX(0)

σ2
u + β2σ2

ε −
(βσ2

ε )2

ΓX(0)(
βσ2

ε
ΓX(0)

)2

ΓX(1)

 . (7b)

Given that (7b) is a system of three equations and three unknowns, the parameters are locally

identified if the matrix of partial derivatives ∂ψA/∂θA has a non-zero determinant. To establish

global identifiability of θA, we need to show that the mapping θA 7→ ψA(θA) is invertible.

Lemma 1 Suppose yt = xtβ + ut, Xt = xt + εt, Assumptions A(a)-(c) hold, and εt ∼WN(0, σ2
ε ).

Then:

(a) (β = 0, σ2
u) is globally identified from ψA.

(b) (β 6= 0, σ2
u) is globally identified from ψA if and only if ΓX(1) 6= 0.

(c) θA = (β, σ2
ε , σ

2
u) is globally identified from ψA if and only if (i) β 6= 0 and (ii) ΓX(1) 6= 0.

Lemma 1, proved in the Appendix, gives the necessary and sufficient conditions for global

identification. If β alone is of interest, global identification only requiresXt to be serially correlated.4

But β 6= 0 is necessary to also identify σ2
ε because the regression residuals would have no information

about β if Xt has no role in the regression model. Identification strength is determined by ΓX(1),

which measures the persistence of the mismeasured regressor Xt.

The question then arises as to whether θA can be identified at β = 0 when the nuisance

parameter δA = σ2
ε is not identifiable. This is possible with additional restrictions on the dynamic

structure of the latent process xt. For example, suppose that

Γx(j) = φjΓx(0)

for two consecutive values of j ≥ 1, a condition that holds if xt has an autoregressive structure.

Since εt is white noise, it also holds that ΓX(j) = φjΓx(0) for j ≥ 1. From φ = ΓX(2)
ΓX(1) when j = 2

and ΓX(0) = Γx(0) + σ2
ε , we have

σ2
ε = ΓX(0)− ΓX(1)2

ΓX(2)
.

We can use σ2
ε to assess the severity of measurement error prior to any regression analysis. The

result is specific to the fact that εt is a white noise process.

4This contrasts with Reiersøl (1950), Pal (1980), Erickson, Jiang, and Whited (2014) in which the identification
results exclude the important special case of β = 0. The reason is that they consider identification of the entire
parameter vector θA = (β, σ2

u, σ
2
ε )′, while parts (a) and (b) of our result apply to (β, σ2

u) alone.
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2.2 Correlated Measurement Errors

The above analysis for the simple regression model with εt ∼WN(0, σ2
ε ) highlights the possibility of

combining several biased estimators for identification. Nonetheless, Xt−k could have been used as

instrument under the assumptions of the analysis for k > q. The practical interest of our approach

is in situations when lags of Xt may not be valid instruments. In such cases we will need to augment

θA and ψ̂A with additional parameters and statistics. We now show how this can be achieved when

xt in the simple regression model above is contaminated by a serially correlated measurement error.

Serial correlation in the measurement error has the important implication that Xt−1 is no longer

a valid instrument. Though longer lags could be valid, they will likely have weak correlation with

Xt. To begin, we define

plim T→∞β̂ − β = −β σ2
ε

ΓX(0)
≡ biasB(θB)

to distinguish it from biasA(θA) even though least squares bias is numerically identical whether or

not εt is serially correlated. This distinction is important because θB will be of higher dimension

when εt is correlated as we shall now show.

When εt is serially correlated, the autocovariance of the least squares residuals V̂t = yt −Xtβ̂

is affected by the dynamics of εt in two ways. First, Vt = ut − βεt is serially correlated because

εt is serially correlated. As a consequence, ΓV X(0, 1) = E(ut − βεt)(xt−1 + εt−1) = −βΓε(1) 6= 0.

Second, with εt serially correlated we now have

ΓX(j) = Γx(j) + Γε(j), j ≥ 1

instead of ΓX(j) = Γx(j). It follows from (4) that

plim T→∞Γ̂
V̂

(1) = β2Γε(1) + 2βΓε(1)biasB(θB) + biasB(θB)2ΓX(1).

Serial correlation in εt thus introduces the additional nuisance parameter Γε(1), leading to

θB ≡
(
β, σ2

u, σ
2
ε ,Γε(1)

)′
. (8a)

Since there is an additional parameter compared to θA, an additional auxiliary statistic is required.

We consider

plim T→∞Γ̂
V̂ X

(1, 0) =
1

T

T∑
t=1

(
Vt−1 − (β̂ − β)Xt−1

)
Xt

p−→− βΓε(1)− biasB(θ)ΓX(1),

because its probability limit depends on the same parameters as the limit of Γ
V̂

(0) and Γ̂V (1).5

The auxiliary statistic

ψ̂B ≡
(
β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂V X(1, 0)

)′
5An alternative is Γ̂V̂ X(0, 1) which in this case has the same probability limit as Γ̂V̂ X(1, 0).
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has binding function given by

ψB(θB) =


β + biasB(θ)

σ2
u + β2σ2

ε + biasB(θ)βσ2
ε

β2Γε(1) + 2βΓε(1)biasB(θ) + biasB(θ)2ΓX(1)
−βΓε(1)− biasB(θ)ΓX(1)

 (8b)

Lemma 2 Consider the model yt = xtβ + ut, Xt = xt + εt. Under Assumptions A(a)-(c):

(a) (β = 0, σ2
u) is globally identified from ψB;

(b) (β 6= 0, σ2
u) is globally identified from ψB if Γx(1) 6= 0;

(c) θB = (β, σ2
u,Γε(0),Γε(1)) is globally identified from ψB if (i) Γx(1) 6= 0 and (ii) β 6= 0.

The proof, given in the Appendix, involves inverting the binding function and showing that a

unique solution exists. Serial correlation in the latent regressor xt is needed. Note that when εt is

white noise, as was the case in the previous section, then Γx(1) = ΓX(1) and the condition reduces

to that in Lemma 1. It is worth pointing out that Γx(1) 6= 0 is sufficient to globally identify β and

σ2
u, irrespective of whether or not β = 0. However, Γε(0) and Γε(1) can only be identified if β 6= 0.

As in the case when εt is white noise, the only way we can learn about the measurement error is

by looking at the regressor Xt.

The assumption that Γx(1) 6= 0 is not directly testable. However, when β = 0, we can use the

fact that ΓX(1) = Γx(1) + Γε(1). An IV estimator with Xt−1 as instrument has

plim β̂IV = β

(
1− Γε(1)

ΓX(1)

)
= β

Γx(1)

ΓX(1)

which is zero if and only if Γx(1) = 0. Indirect evidence of whether the latent regressor is correlated

can be gleaned from the IV estimate, even though it is biased for β.

3 Autoregressive Distributed Lag Models

The idea of using the OLS biases to achieve identification extends to more general models. The

ADL(p,q) model expressed in terms of the observables is

(1− α1L− . . .− αpLp)yt = (β0 + β1L+ . . .+ βqL
q)Xt + Vt.

The error term Vt = ut − β0εt − . . . − βqεt−q is generally serially correlated. For instance, even if

εt is white noise, Vt is an MA(q) process. This serial correlation can confound the determination

of the lag orders p and q.6 Furthermore, any Xt−j for j 6 q is an invalid instrument because it

6We assume that yt is observed without error. ARMA models when yt is observed with error is studied in Komunjer
and Ng (2014).
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is correlated with εt−j . Serial correlation in εt makes it even more difficult to find instruments

that are both strong and relevant. While Xt−q+1 and further lags are valid instruments, they may

only be weakly correlated with the regressors if they are stationary and ergodic as assumed. We

consider estimation that does not directly involve internal or external instruments, beginning with

the ADL(1,0) model.

3.1 ADL(1,0) model

The ADL(1,0) model is represented by yt = αyt−1 + βxt + ut, and we observe Xt = xt + εt. Here,

γ = (α, β), Wt = (yt−1, Xt)
′. Assuming that ΓW (0) is nonsingular, the least squares bias is given

by

plim T→∞γ̂ − γ =

 β
σ2
εΓyX(1,0)

Γy(0)ΓX(0)−ΓyX(1,0)2

−β σ2
εΓy(0)

Γy(0)ΓX(0)−ΓyX(1,0)2

 = biasC(θ).

The parameters of the model are θC = (α, β, σ2
u, σ

2
ε (0),Γε(1))′, and the auxiliary statistics are

ψ̂C =
(
α̂, β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂

V̂ X
(1, 0)

)′
. Identification requires invertibility of the probability limit

ψC(θC) of ψ̂C(θC). The analysis can be simplified by noting that σ2
u will identified from Γ

V̂
(0).

Thus, we only need to consider identification of

θ−C = (γ,Γε(0),Γε(1))

from

ψ̂−C = (α̂, β̂, Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

As before, θ−C is globally identified from ψ−C if the binding function ψ−C (θ−C ) is invertible. Consider

then the system of equations ψ−C (θ−C ) = ψ−C to solve: by plugging the first two equations into the

last two, and pre-multiplying the first two equations by the nonsingular matrix ΓW (0), this system

is equivalent to:

ΓWy(0, 0) = ΓW (0)

(
ψ−C1

ψ−C2

)
ΓWy(0, 0)ΓW (0)−1ΓWy(1, 0) =

(
ψ−C1 ψ−C2

)
ΓW (1)

(
ψ−C1

ψ−C2

)
− ψ−C3 (9)

ΓyX(1, 0) = ψ−C4 +
(
ψ−C1 ψ−C2

)
ΓWX(1, 0)

The system of 4 equations in 4 unknowns in (9) has the important feature that only the left-

hand side of (9) depends on θ. The right hand side consists either of (ψ−C1, . . . , ψ
−
C4) or the elements

in ΓW (0) and ΓW (1) for which sample estimates are available. Global identifiability of θ−C from ψ−C

holds if it can be established that the system (9) has a unique solution in θ−C .

Lemma 3 Consider the model yt = αyt−1 + βxt + ut, Xt = xt + εt. Under Assumptions A(a)-(c):
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(a) (α, β = 0) is globally identified from ψ−C ;

(b) (α, β 6= 0) is globally identified from ψ−C if (i) Γx(1) 6= 0 and (ii) ψ−C3 + ψ−C2ψ
−
C4 6= 0;

(c) θ−C = (α, β,Γε(0),Γε(1)) is globally identified if from ψ−C if (i) Γx(1) 6= 0, (ii) ψ−C3 +ψ−C2ψ
−
C4 6=

0, and (iii) β 6= 0.

Compared to the assumptions in Lemma 2, the additional restriction that ψ−C3 + ψ−C2ψ
−
C4 6= 0

is needed. To understand this restriction, note that

ψ−C3 + ψ−C2ψ
−
C4 = Γ

V̂
(1) + (plim T→∞β̂)Γ

V̂ X
(1, 0).

The restriction ψ−C3 + ψ−C2ψ
−
C4 6= 0 ensures that there is independent information in Γ

V̂
(1) and

Γ
V̂ X

(1, 0).

3.2 An Order Condition for the ADL(p,q) Model

For the ADL(p,q) model, γ = (α1, . . . , αp, β0, . . . , βq) and Wt = (yt−1, . . . , yt−p, Xt, . . . , Xt−q). The

parameters of the model are

θC = (γ, σ2
u,Γε(0), . . . ,Γε(q + k))′,

The OLS estimator has asymptotic bias

plim T→∞γ̂ − γ = ΓW (0)−1ΓVW (0, 0) ≡ biasC(θC)

and the auxiliary statistics are ψ̂C(θC) = (γ̂, Γ̂
V̂

(0), . . . , Γ̂
V̂

(k), Γ̂
V̂ X

(1, 0), . . . , Γ̂
V̂ X

(k, 0))′.

Exact global identification requires inverting the binding function ψC(θ) = plim T→∞ψ̂C(θC)

and establishing that it has a unique solution. This is already a nontrivial problem for the ADL(1,0)

model. For the ADL(1,1), there are six nonlinear equations in six unknowns to be solved. However,

we can still provide a useful order condition.

The parameters entering biasC(θC) are those appearing in the covariances Γ
V̂ X

(0, i) for 0 6

i 6 q. Since Xt = xt + εt and Vt = ut − β0εt − . . . − βqεt−q, the parameters Γε(i) with 0 6 i 6 q

will appear in the probability limit of the moments. This implies that in addition to the p+ q + 2

parameters of (γ, σ2
u) in the ADL(p,q) model, there are now q + 1 nuisance parameters. At least

(p+ q+ 2) + (q+ 1) auxiliary statistics are needed. The OLS estimator provides p+ q+ 1 statistics;

the variance of the OLS residuals Γ̂
V̂

(0) provides another. But we still another need q+ 1 auxiliary

statistics. By construction of the least squares estimator, we have Γ̂
V̂ X

(0, i) = 0, 0 6 i 6 q. So the

moments left to consider are Γ̂
V̂ X

(k, 0), Γ̂
V̂

(k), and Γ̂
V̂ X

(0, q + k) for k ≥ 1. The last one is less

desirable unless Xt is strongly persistent. Thus we focus on Γ̂
V̂ X

(k, 0) and Γ̂
V̂

(k).
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To determine k, observe that in the ADL(p,q) model, Γ̂
V̂ X

(1, 0) and Γ̂
V̂

(1) depend on pa-

rameters of ADL(p,q) ie. (γ, σ2
u), nuisance parameters already appearing in the OLS bias ie.

(Γε(0), . . . ,Γε(q)), and a new nuisance parameter, Γε(q + 1). Thus, when k = 1, the inclu-

sion of two auxiliary statistics Γ̂
V̂ X

(1, 0) and Γ̂
V̂

(1) increases the nuisance parameters by one.

This suggests the following simple rule: compare the total number of auxiliary statistics (2k)

Γ̂
V̂ X

(1, 0), . . . , Γ̂
V̂ X

(k, 0) and Γ̂
V̂

(1), . . . , Γ̂
V̂

(k), with the total number of nuisance parameters

Γε(0), . . . ,Γε(q) and Γε(q + 1), . . . ,Γε(q + k) (q + 1 + k). The first has to be larger than the

second, i.e. 2k ≥ q + 1 + k. Setting

k = q + 1

satisfies the rule. The condition works for the simple ADL(0,0) model with correlated errors.

Indeed, we have defined θB = (β, σ2
u,Γε(0),Γε(1)) and ψ̂B =

(
β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂V X(1, 0)

)
which

corresponds to k = 1 for that model. The same condition holds for the ADL(1,0). We have used

ψ̂C ≡
(
α̂, β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂V X(1, 0)

)
with θC = (α, β, σ2

u,Γε(0),Γε(1)).

For higher order ADL(p,q), letting k = q + 1 rapidly leads to a large number of new nuisance

parameters to include. For example, even in the ADL(1,1) model we would need to identify θ =

(α, β0, β1, σ
2
u,Γε(0),Γε(1),Γε(2),Γε(3)) from ψ̂ = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂

V̂
(1), Γ̂

V̂
(2), Γ̂

V̂ X
(1, 0), Γ̂

V̂ X
(2, 0)).

But a large number of nuisance parameters would make estimation difficult. To avoid proliferation

of nuisance parameters, we use Assumption A(d) which requires that Γε(1), . . . ,Γε(q
∗) are well

approximated by φ1, . . . , φm. Thus consider the ADL(p,q) model with p+ q + 1 parameters γ and

nuisance parameters δ =
(
σ2
u σ2

ε φ
)′

, where φ = (φ1, . . . , φm)′ characterizes Γε(1), . . . ,Γε(q
∗). If

Assumption A(d) holds, a necessary condition for

θD = (γ′, δ′)′

to be identified from

ψ̂D = (γ̂, Γ̂
V̂

(0), . . . , Γ̂
V̂

(k), Γ̂
V̂ X

(1, 0), . . . , Γ̂
V̂ X

(k, 0))′ (10)

is

k ≥ (m+ 1)/2.

Now q∗ depends on the choice of auxiliary statistics. Since the residual autocovariances and cross-

covariances Γ̂
V̂

(0), . . . , Γ̂
V̂

(k), Γ̂
V̂ X

(1, 0), . . . , Γ̂
V̂ X

(k, 0)) depend on Γε(1), . . . ,Γε(k + q) in addition

to (γ, σ2
u, σ

2
ε ), we need q∗ = k + q.

For example, in the ADL(1,1) model, if we consider k = 2 and include Γ̂
V̂ X

(2, 0) among others

in our auxiliary statistics, we have q∗ = 3 autocovariances of εt to consider. However, if we use

the same auxiliary statistics as in the simple regression model with correlated measurement errors,
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k = 1 so q∗ = 2. Assumption A(d) then requires that Γε(1) and Γε(2) are well approximated by

m = 2k − 1 = 1 parameter, φ. This would be consistent with εt being an AR(1) or an MA(1)

process. This suggests the following general rule: choose an order k in (10). Set

m = 2k − 1 (11)

and require that k + q autocovariances of ε, Γε(1), . . . ,Γε(k + q), be well approximated by m

parameters φ1, . . . , φm.

We should point out that neither of the above order conditions are strictly necessary for iden-

tification since additional information relating to heteroskedasticity and skewness of εt can also

be exploited. In the spirit of Pal (1980), Dagenais and Dagenais (1997), Lewbel (1997), Spierdijk

and Wansbeek (2011), and Erickson and Whited (2000, 2002), higher order moments of εt or

of Xt can also be used to achieve identification. For example, the third moment of xt is re-

lated to that of Xt by sX = sx + sε. From Vt = ut − βεt, we have sV = σ3
usu − β3σ3

ε sε and

Γ̂
V̂ X2(0, 0) = 1

T

∑T
t=1 V̂tX

2
t

p−→sX · bias(θ)− βsε.
Once the order condition is established, we can proceed with a local identification analysis by

evaluating the rank of the ∂ψC(θ)
∂θ . Numerical evaluation of the Jacobian matrix reveals the not-

so-surprising result that θD is not identified when β0 or β1 = 0, and xt is not serially correlated.

In the ADL(1,1) model, θD can be identified even when xt is not serially correlated provided that

β0 6= 0 or β1 6= 0. The reason is that serial correlation in V̂t can also come from autocorrelation in

yt and Vt.

4 Dynamic Panel Models

The least squares bias in the ADL(p,q) model is due solely to the measurement error in Xt because

E(Vtyt−j) = 0 for j = 1, . . . , p. This will no longer be the case in the dynamic panel model. Let N

and T be the number of units and time periods. Consider a panel AR(1) model (or equivalently a

PADL(1,0) model) with a scalar exogenous regressor and additive fixed effects:

yit = ηi + αyi,t−1 + βxit + uit, (12)

for i = 1, . . . , N and t = 1, . . . , T . Nickell (1981) showed that θ̂N,T is inconsistent as N →∞ with

T fixed. Estimates can be obtained by either by using instruments or by explicitly correcting for

the small T bias.7 Kiviet (1995) showed that these bias-corrected estimators tend to have smaller

root mean-squared error (RMSE) than the IV estimators. However, the bias corrections are model

specific and are invalid when there are additional covariates or lagged independent variables.

7Kiviet (1995), Bun and Carree (2005), and Phillips and Sul (2007) approximate the biases using large N asymp-
totics. Large N and T approximations has been used by Hahn and Kuersteiner (2002) to obtain b∞,∞(·).
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As is well documented, measurement errors in survey and longitudinal data are prevalent.8

Existing work identifies the parameters from the covariance between the errors in the equations

and the measurement errors, or higher order moments of the data.9 Erickson and Whited (2012)

compare high-order moment estimators with dynamic panel estimators and estimators that use lags

of the mismeasured regressor. They find that all estimators perform well under correct specification

but are biased under misspecification. We suggest a new approach of combining biased estimators.

Let the ideal regressor xit be possibly contaminated by serially uncorrelated classical measure-

ment errors:

Xit = xit + εit.

In terms of observables, the dynamic panel model becomes:

yit = ηi + αyi,t−1 + β′Xit + Vit, Vit = uit − βεit (13)

so the composite error Vit is correlated with Xit, and E(VitXit) = −βσ2
ε .

Assumption P For all s, t = 1, . . . T and for all i = 1, . . . N :

(a) uit is iid across i and t with E(uit) = 0, E(u2
it) = σ2

u, E(uityi0) = 0, E(uitxis) = 0, and

E(uitηi) = 0.

(b) εit is iid across i and t with E(εit) = 0, E(ε2it) = σ2
ε , and E(εitxis) = 0, and E(εituis) = 0.

The disturbances uit are iid across both time and individuals, and uncorrelated with the initial

observations yi0. While uit is orthogonal to the individual fixed effect ηi as well as to all values of

the explanatory variable xit, the correlation between ηi and xit is left unspecified. The measurement

error is iid and classical, and uncorrelated with uit. Thus, Vit = uit − βεit and ΓV (0) = σ2
u + β2σ2

ε

and ΓV (j) = 0 for j ≥ 1.

As is standard in panel data model with fixed effects, the within-transformation is used to elim-

inate the unobserved individual effects ηi in (13). For a generic variable z, let z̃it = zit− 1
T

∑T
s=1 zis

denote its demeaned value. We use the notation y−1 to denote the lagged dependent variable and

ỹi,t−1 = yi,t−1 − 1
T

∑T
s=1 yi,s−1 its demeaned version. The sample autocovariance of order j of vari-

able z is defined as Γz̃(j) = plim N→∞Γ̂z̃(j) where Γ̂z̃(j) = 1
N(T−1)

∑N
i=1

∑T
t=1+j z̃itz̃

′
i,t−j . The cross

8The problem appears to be particularly important in investment data. See Erickson and Whited (2000) and
Eberly, Rebelo, and Vincent (2009) among others.

9Erickson and Whited (2002), Erickson, Jiang, and Whited (2014) exploit non-normality of the data to identify
the parameters of the model. See also Biorn (2008), Wansbeek and Koning (1991), Meijer, Spierdijk, and Wansbeek
(2012), and Spierdijk and Wansbeek (2011) for discussion of choice of moments.

14



covariance between generic variables z1 and z2 is Γ̂z̃1z̃2(u, v) = 1
N(T−1)

∑N
i=1

∑T
t=max{u,v} z̃1,i,t−uz̃

′
2,i,t−v

and Γz̃1z̃2(u, v) is its probability limit as N tends to ∞.

The PADL(1,0) model written in demeaned data form becomes

ỹit = αỹi,t−1 + βX̃it + Ṽit, Ṽit = ũit − βε̃it.

Though its structure is similar to the ADL(1,0) model, there is one fundamental difference: the

within-transformation induces serial correlation in variables that are initially uncorrelated. This,

in particular, will be the case for Ṽit.

Now let W̃it = (ỹi,t−1, X̃it)
′ and assume the covariance matrix Γ

W̃
(0) is full rank. The least

squares dummy variable (LSDV or fixed effect) estimator for γ = (α, β)′ is the pooled OLS estimator

in a regression of ỹit on X̃it. It has the property that

plim N→∞γ̂ − γ = Γ
W̃

(0)−1Γ
W̃ Ṽ

(0, 0) ≡ biasP (θP ), (14)

where

Γ
W̃ Ṽ

(0, 0) =

(
−σ2

uhT (α)
−βσ2

ε

)
, hT (α) =

T (1− α)− 1 + αT

T (T − 1)(1− α)2
.

The fixed-T -Nickell bias is represented by hT (α) and is present even in the absence of measurement

error.10 This is in contrast with the ADL(1,0) model considered before where E(yt−1Vt) = 0. Mea-

surement error introduces a new source of bias to the dynamic panel model because of E(XtVt) 6= 0.

However, the measurement error bias and the small-T bias are opposite in sign. Thus, as noted

in Biorn (1992), measurement error can alleviate the effect of heterogeneity; estimators that are

sensitive to heterogeneity can be more robust to measurement errors.

The LSDV residuals V̂it = ỹit− γ̂′W̃it are serially correlated even if Ṽit is uncorrelated over time.

The error Ṽit is correlated with the demeaned regressors ỹit, X̃it, and their lags in a nontrivial

manner because of the interaction between the fixed effect bias and measurement error bias. Direct

computations show that the autocovariances of V̂it have probability limits (as N →∞) given by

Γ
V̂

(0) = Γ
Ṽ

(0)− biasP (θP )′Γ
W̃

(0)biasP (θP ) (15)

Γ
V̂

(1) = Γ
Ṽ

(1) + biasP (θP )′Γ
W̃

(1)biasP (θP )−
(
Γ
W̃ Ṽ

(1, 0) + Γ
W̃ Ṽ

(0, 1)
)′

biasP (θP ) (16)

with

Γ
Ṽ

(0) = σ2
u + β2σ2

ε , Γ
Ṽ

(1) = − 1

T

[
σ2
u + β2σ2

ε

]
,

Γ
W̃ Ṽ

(1, 0) =

(
−σ2

u [(T + 1)hT (α)− 1]
1
T βσ

2
ε

)
, Γ

W̃ Ṽ
(0, 1) =

(
−σ2

u

[
(T − 1)hT (α) + T−2

T hT−1(α)
]

1
T βσ

2
ε

)
.

10The above expressions then reduce to equation (12) in Bun and Carree (2005).
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The expression for Γ
V̂

(0) reduces to that derived in Bun and Carree (2005) when no measurement

errors are present. The lagged autocovariance reflects the cumulated fixed effect bias arising from

the correlation between ỹi,t−1 and Ṽit as well as Ṽi,t−1. Note that Γ
W̃ Ṽ

(0, 1) does not vanish even

as T →∞ which we can exploit for identification.

The parameters of the PADL(1,0) model are

θP = (α, β, σ2
u, σ

2
ε )
′,

and we consider the auxiliary statistics

ψ̂P (θP ) =
(
α̂ β̂ Γ̂

V̂
(0) Γ̂

V̂
(1)
)′
,

whose binding function ψP (θP ) = plim N→∞ψ̂P (θP ) is given by equations (14)-(16). As before, θP

is identified from ψP is the mapping θP 7→ ψP (θP ) is invertible. To examine invertibility, we first

transform the system of equations ψP (θP ) = ψP into:

Γ
W̃ ỹ

(0, 0) = Γ
W̃

(0)

(
ψP1

ψP2

)
Γỹ(0) = ψP3 +

(
ψP1 ψP2

)
Γ
W̃

(0)

(
ψP1

ψP2

)
(17)

Γ
W̃ ỹ

(0, 0)′Γ
W̃

(0)−1Γ
W̃ ỹ

(1, 0) = −ψP4 +
(
ψP1 ψP2

)
Γ
W̃

(1)

(
ψP1

ψP2

)
Note that the system (17) is equivalent to the original set of equations ψP (θP ) = ψP since it only

involves pre-multiplying the first two equations by Γ
W̃

(0) which is nonsingular, and plugging them

into the last two equations. As was the case in our analysis of ARX(1,0) in the previous section,

only the left hand side terms of (17) depend on θP . They can be expanded using:

Γ
W̃ ỹ

(0, 0) =

(
αΓỹ−1

(0) + βΓ
X̃ỹ−1

(0, 0)− σ2
uhT (α)

αΓ
X̃ỹ−1

(0, 0) + βΓ
X̃

(0)− βσ2
ε

)
Γỹ(0) = α2Γỹ−1

(0) + 2αβΓ
X̃ỹ−1

(0, 0) + β2Γ
X̃

(0) + σ2
u + β2σ2

ε − 2σ2
uhT (α)− 2βσ2

ε

Γ
W̃ ỹ

(1, 0) =

(
αΓỹ−1

(1) + βΓ
X̃ỹ−1

(0, 1)− σ2
u [(T + 1)hT (α)− 1]

αΓ
X̃ỹ−1

(1, 0) + βΓ
X̃

(1) + β 1
T σ

2
ε

)

Now define the mapping θP 7→ ΨP (θP ) by letting

ΨP (θP ) =

 Γ
W̃ ỹ

(0, 0)

Γỹ(0)
Γ
W̃ ỹ

(0, 0)′Γ
W̃

(0)−1Γ
W̃ ỹ

(1, 0)


Identification of θP can now be analyzed in terms of invertibility of ΨP .
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Lemma 4 Suppose that Assumption P holds. Then θP is globally identifiable from ψP if and only

if the system of equations ΨP (θP ) = ΨP has a unique solution in θP . If rank
(
∂ΨP (θP )
∂θP

)
= 4, then

θP is locally identifiable from ψP .

Due to the presence of hT (α), which is a highly nonlinear function in α, ψP (θP ) is difficult to

invert analytically. Lemma 4 is obtained by first isolating the terms in ψP (θ) that do not depend

on θP , and then collecting the terms that do depend on θP into ΨP (θ). Local injectivity of ψP (θP )

is equivalent to local injectivity of ΨP (θP ). Hence local identification of θP amounts to checking

the rank of the Jacobian matrix, ∂ΨP (θP )
∂θP

.

5 Classical and Simulated Minimum Distance Estimation

The above analysis provides conditions under which θ can be identified from appropriately defined

ψ(θ). This leads naturally to classical minimum distance (CMD) estimation that identifies θ from

ψ̂(θ). The CMD estimator is generically defined by

θ̂ = argmin θJ(θ), J(θ) = ||ψ̂(θ0)− ψ(θ)||WT
, (18)

where WT is a weighting matrix. Provided that the conditions stated in Newey and McFadden

(1994) hold, θ̂ is instrument-free estimator with classical property that

√
T (θ̂ − θ0)

d−→N
(

0, [ψθ(θ0)Avar(ψ̂)−1ψθ(θ0)′]−1

)
≡ N(0, Avar(θ̂))

where ψθ(θ0) is the matrix of derivatives of ψ(θ) with respect to θ evaluated at θ0.

In simple linear models, the probability limit of ψ̂(θ) is easily derived. As shown above for the

ADL(0,0) model, the binding function can be inverted to obtain closed-form expressions for ψ(θ)

in the case of exact identification. But the probability limit of the terms in ψ̂(θ) can be tedious

and sometimes impossible to calculate. While we can still invert the binding function for the

ADL(1,0) model, the exercise was impossible for the ADL (1,1) model despite serious efforts. For

the dynamic panel model, ΨP is a complicated function of θP even in the absence of measurement

error. A closed-form solution for θP (θ) is out of the question.

Simulated minimum distance (SMD) estimators use Monte-Carlo methods to compute the map-

ping from θ to ψ and is therefore feasible even when ψ(θ) is not analytically tractable. Specifically,

let (yS(θ),XS(θ)) denote S sets of data simulated under an assumed value for θ, where each set

ys(θ) is T × 1 and Xs(θ) is T ×K. The estimator is

θ̂S = argmin θJ
S(θ), JS(θ) = ||ψ̂(θ0)− ψS(θ)||WT

, (19)
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where

ψS(θ) =
1

S

S∑
s=1

ψ̂(ys(θ),Xs(θ)) ≈ E(yS(θ),XS(θ))[ψ̂(yS(θ),XS(θ))].

As in classical minimum distance estimation, the mapping ψ(θ) must be injective; simulations

merely provide an approximation to θ̂ = ψ−1(ψ̂). When ψ is a vector of unconditional moments,

θ̂ is the simulated method of moments estimator of Duffie and Singleton (1993). When ψ are the

scores of the likelihood, the efficient methods of moments estimator of Gallant and Tauchen (1996)

obtains. The indirect inference estimator of Gourieroux, Monfort, and Renault (1993) defines ψ

to be the parameters of an auxiliary regression.11 Simulation estimators automatically provides

second order bias correction if the auxiliary model admits an Edgeworth expansion, though the bias

reduction comes at the cost of efficiency, see Gourieroux, Monfort, and Renault (1993). Gourieroux,

Phillips, and Yu (2010) showed that indirect inference provides a substantial reduction in bias when

the linear dynamic panel model is also the auxiliary model.

As far as we are aware, the only reference to simulation estimation of measurement error models

is Jiang and Turnbull (2004) who used indirect inference as a way to adjust the bias in the auxiliary

parameters with the help of validation data. Without validation data, simulation estimation cannot

be implemented in the standard way. To see why, suppose that the auxiliary model coincides with

the regression model. If E(VtXt) = 0, the auxiliary model can be estimated by OLS to yield ψ̂ and

plim ψ̂ = ψ. But when E(VtXt) 6= 0, plimψ̂ = ψ + bias 6= ψ. If Xt is fixed in simulations and V s
t

drawn such that Xt⊥V s
t , then by construction, plim ψ̂s(θ) = ψ(θ). The binding function ψ(θ) will

not be consistently estimated because the bias term is omitted.

The generic problem is that when Xt is not weakly exogenous for the parameters, they can

not be held fixed in simulations. In the measurement error model, the parameters in the marginal

distribution of Xt and those of the conditional distribution of yt given Xt are not variation free. For

the simulation estimation to work, it is necessary that the simulated Xs
t preserves these relations.

One can approximate xt by a parametric model such as an AR(2) model xt = φ1xt−1 +φ2xt−2 +wt.

The Yule-Walker equations then yield(
φ1

φ2

)
=

(
ΓX(1) ΓX(2)

ΓX(0)− σ2
ε ΓX(1)

)−1(
ΓX(0)− σ2

ε − σ2
w

ΓX(1)

)
.

The drawback of this approach is that θ has to be further augmented to include σ2
w, and from a

computational point of view, the presence of σ2
ε makes it difficult to control stability of xt since

φ1, φ2 can take on values arbitrarily large.

The question then is how to simulate Xt with the desired properties without fully specifying its

dynamic properties. We make use of the fact that covariance stationary processes with identical

11The estimators of Gallant and Tauchen (1996) and Gourieroux, Monfort, and Renault (1993) consider pseudo-
maximum likelihood estimator of ψ.
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second moments are observationally equivalent. Thus, it is only necessary for the simulated data to

match the first and second moment properties the observed data. To motivate our simulator, note

that if xt were serially uncorrelated, the mean and variance of the simulated data can be preserved

by letting Xs
t = xst + εst with xst = ϕXt and ϕ = (1 − σ2

ε
ΓX(0))1/2. By construction, the mean and

variance of Xs
t are equal to the mean and variance of Xt. But with serially correlated regressors,

we will need the simulated regressors to not only preserve the variance, but also the autocovariance

structure in the data. For this reason, we propose the following simulation method:

Algorithm SMD

1. Compute the auxiliary statistics ψ̂ from the data.

2. For s = 1, . . . S and t = 1, . . . T and given {εst} and {ust}:

(i) let xst = ϕ1Xt + ϕ2Xt−1;

(ii) simulate Xs
t = xst + εst ;

(iii) yst = α+ βxst + ust ;

(iv) compute ψ̂(θs) from the simulated data (ys, Xs).

3 Minimize ||ψ̂ − 1
S

∑
s ψ̂

s(θ)||WT
over θ.

The key to Algorithm SMD is Step 2(i) in which we postulate that xst is linear in Xt and Xt−1.

The constants ϕ1 and ϕ2 are chosen to satisfy the pair of equations:

ΓX(0)− Γε(0) = (ϕ2
1 + ϕ2

2)ΓX(0) + 2ϕ1ϕ2ΓX(1)

ΓX(1)− Γε(1) = (ϕ2
1 + ϕ2

2)ΓX(1) + ϕ1ϕ2ΓX(0) + ϕ2ΓX(2). (20)

Step 2(i) thus models xst as a rescaled but deterministic function of the data Xt. This method

does not directly model the dynamics of xt (or of xst ), but by construction, Γsx(0) = ΓX(0)− Γε(0)

and Γsx(1) = ΓX(1) − Γε(1). Given estimates of ΓX(0) and ΓX(1), there are two equations in two

unknowns. A unique solution for ϕ1 and ϕ2 can be obtained by noting that the system in (20) is

linear in r, φ, where r = ϕ2
1 + ϕ2

2 and r2 = ϕ1ϕ2:(
ΓX(0) 2ΓX(1)
ΓX(1) ΓX(0) + ΓX(2)

)
A

(
r1

r2

)
=

(
ΓX(0)− Γε(0)
ΓX(1)− Γε(1)

)
B

.

Assuming that A is invertible,
(
r1 r2

)′
= A−1B. Then ϕ1 and ϕ2 can be taken as

ϕ1 =
1

2

[√
r1 + 2r2 +

√
r1 − 2r2

]
, ϕ2 =

1

2

[√
r1 + 2r2 −

√
r1 − 2r − 2

]
.
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The simulation procedure can be easily adapted to allow for skewed errors or errors with fat tails.

This is used in Gospodinov and Ng (2014) to estimate moving-average models without imposing

invertibility. The procedure can also be adapted to use in dynamic panel regressions.

One we can simulate the model to obtain draws of Xt, the arguments in Gourieroux, Monfort,

and Renault (1993) can be used to analyze the properties of the SMD estimator. The order

condition requires that the dimension of ψ exceeds the dimension of θ. The necessary and sufficient

condition for local identification is that ∂ψ(θ)
∂θ′ has full column rank. Once identification is granted,

the SMD estimator has standard properties. If the auxiliary parameters ψ̂ are
√
T -consistent and

asymptotically normal, the simulation estimator is
√
T -consistent and asymptotically normal:

√
T (θ̂S − θ0)

d−→N
(

0, (1 +
1

S
)[ψθ(θ0)Avar(ψ̂)−1ψθ(θ0)′]−1

)
= N(0, Avar(θ̂S)).

The asymptotic variance is of the double sandwich form. It depends on the asymptotic variance

of the auxiliary statistics, whether the auxiliary model is correctly specified, and is smaller the

larger is the number of simulations, S. Also, T × J(θ̂S)
d−→χ2

dim(ψ)−dim(θ) as T →∞ and WT is the

optimal weighting matrix. The distance metric (DM) statistic for testing the null hypothesis that

a constraint is true is DM = TS
S+1(J(θ̂SC)− J(θ̂S)) where θ̂SC is the constrained SMD estimate.

The variance of θ̂S is based on the delta method and can be inaccurate in finite samples. We

construct confidence intervals for an element of θ, θi, by inverting the DM statistics under a sequence

of constraints H0 : g(θ) = 0. This approach is also considered in Czellar and Zivot (2008). If η is

the significance level of the test and q1−η,df is the (1−η)-th quantile of the chi-squared distribution

with df degrees of freedom, the 100(1− η)% confidence interval for θi is given by the set of values

of θ satisfying DM 6 q1−η,df .

5.1 Simulations

We use 5000 replications to illustrate the properties of the CMD and SMD estimators. For t =

1, . . . , T = (200, 500, 1000), the data are generated from the ADL(1,1) model

yt = αyt−1β0xt + β1xt−1 + uyt, uyt
iid∼N (0, σ2

uy),

xt = ρxxt−1 + uxt, uxt
iid∼N (0, σ2

ux),

Xt = xt + εt, εt = et + θet−1, et
iid∼N (0, σ2

e).

We assume (α, β) = (0, 1) with ρx = (0.2, 0.5, 0.8). The measurement error process is calibrated

such that the signal-to-noise ratio R2 = var (xt)
var (Xt)

= 0.7. This is achieved by solving σ2
e from

σ2
e(1 + θ2) =

1−R2

R2

σ2
ux

1− ρ2
x

.
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In the simulations, we let σ2
uy = σ2

ux = 1. In practice, we do not know if εt is serially correlated

or not. We always estimate the model to allow for serial correlation in εt even when εt is white

noise. The SMD simulates εt as an AR(1) process even though the true process is MA(1). We only

consider the case of exact identification.

We begin with the simple regression model when α = β1 = 0. As these parameters are not

estimated, θ = (β0, σ
2
u, σ

2
ε , φ) and ψ̂ = (β̂, Γ̂

V̂
(0), Γ̂

V̂
(1), Γ̂

V̂ X
(1, 0))′. The results are reported in

Table 1. In the top panel where εt is white noise, Xt−1 is a valid instrument. The estimator is

denoted by IV. For comparison purposes, Table 1 also reports the estimates from the infeasible

estimator (IDEAL) based on the true (latent) regressor xt. As expected, the average of the IDEAL

estimates is well centered around the true value of β. The OLS estimates are significantly downward

biased when Xt is used as regressor instead of xt. The bias is larger the less persistent is xt. The

IV estimator gives highly variable estimates when ρx = 0.2. The CMD is more stable than IV. The

SMD estimator matches up well with the CMD, showing that simulation estimation of the mapping

from θ to ψ did not induce much efficiency loss. The bottom panel shows that when εt is serially

correlated, the IV estimates are highly unreliable. The CMD and SMD estimates are similar to the

case of white noise measurement error.

The parameters of the ADL(1,1) model are θ = (α, β0, β1, σ
2
u, σ

2
ε , φ). The auxiliary statistics are

ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′. We report the estimated short- and long-run response

of yt to xt as given by β̂0 and β̂0+β̂1
1−α̂ . Table 2 reports results for ADL(1,0). This is a special ADL(1,1)

model with β1 = 0, but this constraint is not imposed in the estimation. The estimates exhibit

some downward biases that tend to increase with the degree of persistence in xt. The estimates are

reasonably precise, taking into account that estimates of models with an autoregressive structure

tend to be downward biased. Table 3 shows results for the ADL(1,1) model. The estimates are

somewhat more precise than those in Table 2 for the ADL(1,0) model.

Results for the panel data model are reported in Table 4 based on N = 200. Two models are

considered: PADL(1,0) and PADL(1,1). We assume that for all i, ηi ∼ N(0, 1), and xit is an AR(1)

process with autocorrelation of 0.5. The parameters are again chosen such that σ2
ε is about 0.7 of

ΓX(0). The first column is the infeasible estimator based on the latent regressor, x, and is denoted

LSDV-x. The estimates are biased even when x is correctly observed because of the fixed effect

bias. The biases are even larger when X is used in place of x. The SMD estimates are closer to

the true values.

5.2 Application to the Traditional Phillips Curve

Despite the advances in the development and empirical assessment of the New Keynesian Phillips

curve, the traditional Phillips curve continues to be widely used for inflation forecasting and pol-
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icy analysis, and it remains a topic of active academic research. The traditional Phillips curve

considered in Gordon (2013) and Watson (2014) is an autoregressive distributed lag model with

exogenous variables z, which we denote by ADLZ(p,q,s). Specifically,

α(L)(1− L)πt = β(L)xt + ζ(L)zt + ut,

where πt is inflation, zt is a vector of supply shock variables, α(L), β(L) and ζ(L) are lag polynomials

of orders p, q and s respectively, and ut is a serially uncorrelated error term. The long-run effect

of unemployment on the change in inflation ∆πt is

β̄ =
β(1)

α(1)
.

An important variable in the traditional Phillips curve is the ‘demand gap’ variable xt which is

meant to capture the deviation of real activity from its equilibrium. There is no unique measure of

real activity. It is quite common in empirical work to use the unemployment rate as a proxy. Feng

and Hu (2013) present evidence that the official U.S. unemployment rate underestimates the true

unemployment rate due to misclassification of labor force status in the Current Population Survey.

Even if real activity is correctly measured, the natural rate of unemployment is not observed. Any

constructed ‘gap’ variable used in estimation is potentially subject to measurement error. In what

follows, we explicitly account for possible measurement error in the unemployment gap xt = Ut−U∗t
and consider different proxies for U∗t .

The data, same as in Watson (2014) and available from the author’s website, covers the period

1959:Q3–2013:Q3. The inflation rate πt is the core inflation (PCE less food and energy) and

Ut is the civilian unemployment rate for all workers ages 16+. The control variables are zt =

(Zt1, Zt−1,1, Zt−1,2, Z
′
t,3)′, where Zt1 is the relative price of nonpetroleum imports, Zt,2 is change in

the relative price of food and energy inflation, and Zt,3 denotes two dummy variables for the 1971-

1974 Nixon-era price controls (see Gordon (2013) and Watson (2014)).12 All series are seasonally

adjusted.

We consider six measures of U∗t , giving Xt(k) = Ut − U∗t (k) for k = 1, . . . 6.

U∗t (1) = min(Ut, ..., Ut−11); U∗t (2) = Ut−4; U∗t (3) = BP (Ut, one-sided);
U∗t (4) = HP (Ut, 1600); U∗t (5) = HP (Ut, 6400). U∗t (6) = constant.

The first three are ‘real-time gaps’, considered in Stock and Watson (2010), where BP denotes

a band-pass filter. These are one-sided filters that are appropriate for out-of-sample forecasting

inflation. In contrast, the last two are based on the Hodrick-Prescott (HP) filter which is a two-sided

12More specifically, Zt1 is the difference in the rates of inflation of the GDP deflator for non-petroleum imports
and the overall GDP deflator, and Zt2 is the difference between PCE (all-items) inflation and PCE (less food and
energy) with different effects pre- and post-1984:Q1.
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filter with smoothing parameter λ. For quarterly data, a smoothing parameter of of 1600 is quite

standard. The larger smoothing parameter of 6400 is used in Gordon (2013). The last gap measure,

U∗t is assumed constant which is commonly done in practice. All six versions of Xt are persistent

and the condition ΓX(1) 6= 0 is easily satisfied. We allow the measurement error εt = Xt − xt

to be possibly serially correlated. Interestingly, the six gap variables are not particularly strongly

correlated with each other. Though Xt(4) and Xt(5) have a correlation of 0.98, Xt(2) and Xt(6)

only have a correlation of 0.34. Most of the remaining correlations are between 0.5 and 0.8.

The CMD estimator is feasible if the binding function can be explicitly derived. The current

ADLZ(p,q,s) model has additional predictors zt, making the CMD estimator difficult to imple-

ment. This is precisely the situation when the SMD estimator is appealing because it can easily

accommodate changes to the model. Here, we treat zt as exogenous in Algorithm SMD-EIV with

S = 100. Most authors choose q ≥ 2. Because measurement errors can induce serial correlation

in the residuals, more lags than necessary might have been included. When we explicitly allow

for measurement error, we find q = 1 to be appropriate. The traditional Phillips curve is thus

estimating using the ADLZ(1,1,1) model and β̄ = β0+β1
1−α1

. Confidence intervals for β̄ are obtained

by inverting the distance metric test as discussed above. The 100(1− η)% confidence interval for β̄

is given by the set of values satisfying DM 6 q1−η,1. The endpoints of the confidence interval (CI)

are obtained as

β̄L = inf{β̄ ∈ ΘC : Pr(DM 6 q1−η,1 | H0) ≥ 1− η},

β̄U = sup{β̄ ∈ ΘC : Pr(DM 6 q1−η,1 | H0) ≥ 1− η}.

Table 5 reports the OLS and SMD estimates of the long-run effect of unemployment gap on

inflation, ̂̄β and σ̂2
ε . The point estimates of β̄ are quite similar and for most models and estimators,

the long-run estimate is statistically insignificant. The main differences between the OLS and SMD

estimators of β̄ lie in their assessment of the sampling uncertainty around ̂̄β. Consistent with

our simulation results, explicitly recognizing the presence of measurement error produces more

imprecise estimates of β̄ and wider confidence intervals. For example, while the OLS estimator in

the model with Xt(6) indicates that ̂̄β is statistically different than zero at 10% significance level,

allowing for measurement error via our proposed approach renders the SMD estimate insignificant.

The measurement error ranges from 3-4% for Xt(6) and Xt(1) to 37% for Xt(2) suggesting that

some specifications of the Phillips curve are characterized by a signal-to-noise ratio which is large

enough to provide reliable empirical guidance for policy analysis. Similar results are obtained using

output gap instead of unemployment gap but the estimated magnitude of the measurement error

in these models tends to be larger.
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6 Conclusion

This paper makes two contributions. First, we show that several biased estimates can jointly

identify a model with mismeasured regressors without the need for external instruments. The key

is to exploit persistence in the data. Second, we develop a simulation algorithm for situations

where the regressors are not weakly exogenous for the parameters of interest. The algorithm can

be used in time series and panel data regressions and can accommodate additional regressors. The

proposed methodology is especially useful when external instruments are either unavailable or are

weak. This can be potentially useful in endogeneity problems.
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Table 1: ADL(0,0): (α, β0, β1) = (0, 1, 0)

θ = (β0, σ
2
u, σ

2
ε , φ)

ψ̂ = (β̂, Γ̂
V̂

(0), Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

β̂0 SE(β̂0)

T ρx OLS IDEAL IV CMD SMD OLS IDEAL IV CMD SMD

εt White Noise

200 0.200 0.702 1.006 1.078 1.058 1.089 0.068 0.086 1.151 0.401 0.375
200 0.500 0.699 1.006 1.030 0.960 0.982 0.064 0.079 0.215 0.223 0.220
200 0.800 0.690 1.004 1.013 0.972 0.983 0.062 0.066 0.108 0.129 0.132
500 0.200 0.700 1.000 1.054 1.010 1.037 0.043 0.053 0.451 0.302 0.293
500 0.500 0.699 1.000 1.008 0.967 0.978 0.041 0.049 0.122 0.167 0.166
500 0.800 0.695 1.000 1.004 0.988 0.992 0.040 0.041 0.063 0.075 0.079
1000 0.200 0.699 1.000 1.016 0.975 0.993 0.030 0.037 0.259 0.242 0.238
1000 0.500 0.699 1.000 1.002 0.973 0.978 0.028 0.034 0.083 0.128 0.129
1000 0.800 0.698 1.000 1.001 0.993 0.994 0.028 0.028 0.043 0.050 0.052

εt MA(1)

200 0.200 0.702 1.006 -3.044 1.122 1.123 0.069 0.087 246.882 0.416 0.397
200 0.500 0.700 1.007 1.093 1.004 1.003 0.065 0.083 9.395 0.187 0.189
200 0.800 0.690 1.006 1.031 1.002 1.001 0.064 0.075 0.171 0.100 0.102
500 0.200 0.700 1.000 0.815 1.048 1.042 0.043 0.054 49.865 0.292 0.282
500 0.500 0.699 1.001 1.062 0.998 0.994 0.042 0.052 1.902 0.119 0.120
500 0.800 0.695 1.001 1.009 1.000 0.997 0.042 0.046 0.093 0.061 0.061
1000 0.200 0.700 1.000 -1.57 1.008 0.997 0.030 0.038 154.439 0.206 0.206
1000 0.500 0.699 1.000 1.018 0.996 0.990 0.029 0.036 0.199 0.083 0.085
1000 0.800 0.698 1.000 1.004 0.999 0.996 0.028 0.032 0.061 0.042 0.043
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Table 2: ADL(1,0):

θ = (α, β0, β1, σ
2
u, σ

2
ε , φ)

ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

Estimates of β0 = 1 and β0+β1
1−α = 2.5 Standard Errors

T ρx OLS CMD SMD OLS CMD SMD

εt white noise

200 0.2 0.696 1.858 1.125 2.838 1.137 2.803 0.068 0.261 0.454 5.755 0.438 1.026
200 0.5 0.656 1.996 0.989 2.434 1.018 2.547 0.066 0.224 0.263 1.523 0.264 0.456
200 0.8 0.522 2.129 0.931 2.422 0.936 2.516 0.058 0.179 0.216 0.247 0.170 0.248
500 0.2 0.693 1.858 1.053 2.588 1.079 2.652 0.043 0.166 0.358 0.765 0.366 0.777
500 0.5 0.653 2.000 0.961 2.421 0.988 2.487 0.042 0.143 0.162 0.262 0.177 0.292
500 0.8 0.520 2.144 0.928 2.433 0.928 2.481 0.037 0.113 0.136 0.144 0.111 0.172
1000 0.2 0.693 1.857 1.004 2.486 1.039 2.561 0.030 0.116 0.255 0.531 0.292 0.603
1000 0.5 0.653 2.002 0.956 2.418 0.980 2.471 0.029 0.100 0.108 0.178 0.129 0.217
1000 0.8 0.520 2.151 0.933 2.440 0.931 2.481 0.026 0.077 0.090 0.097 0.078 0.105

εt MA(1)

200 0.2 0.711 1.790 1.105 2.741 1.138 2.803 0.070 0.275 0.466 1.459 0.434 1.115
200 0.5 0.679 1.945 0.941 2.367 1.000 2.504 0.069 0.243 0.251 0.440 0.270 0.501
200 0.8 0.544 2.079 0.907 2.400 0.918 2.504 0.063 0.203 0.199 0.252 0.185 0.289
500 0.2 0.709 1.787 0.981 2.428 1.078 2.640 0.044 0.174 0.355 0.787 0.354 0.783
500 0.5 0.677 1.947 0.901 2.317 0.970 2.455 0.044 0.154 0.156 0.272 0.183 0.317
500 0.8 0.543 2.094 0.899 2.407 0.913 2.482 0.041 0.127 0.125 0.152 0.119 0.168
1000 0.2 0.709 1.785 0.893 2.237 1.030 2.537 0.031 0.122 0.228 0.485 0.276 0.583
1000 0.5 0.677 1.948 0.891 2.308 0.964 2.447 0.030 0.107 0.108 0.191 0.132 0.228
1000 0.8 0.543 2.102 0.900 2.412 0.915 2.482 0.028 0.087 0.085 0.105 0.083 0.114
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Table 3: ADL(1,1)

θ = (α, β0, β1, σ
2
u, σ

2
ε , φ)

ψ̂(θ) = (α̂, β̂0, β̂1, Γ̂V̂ (0), Γ̂
V̂

(1), Γ̂
V̂ X

(1, 0))′.

Estimates of β0 = 1 and β0+β1
1−α = 3.75 Standard Errors

T ρx OLS CMD SMD OLS CMD SMD

εt white noise

200 0.2 0.715 3.014 0.963 3.629 1.023 3.810 0.071 0.352 0.192 0.564 0.223 0.631
200 0.5 0.706 3.226 0.972 3.685 1.014 3.802 0.069 0.301 0.156 0.385 0.172 0.422
200 0.8 0.605 3.392 0.997 3.741 1.008 3.931 0.063 0.238 0.173 0.267 0.168 1.259
500 0.2 0.713 3.011 0.941 3.590 1.003 3.756 0.045 0.222 0.124 0.355 0.146 0.394
500 0.5 0.703 3.228 0.961 3.675 1.002 3.768 0.044 0.190 0.101 0.239 0.109 0.255
500 0.8 0.603 3.407 0.989 3.736 0.987 3.843 0.041 0.149 0.112 0.164 0.108 0.250
1000 0.2 0.713 3.010 0.936 3.583 1.001 3.747 0.031 0.155 0.085 0.246 0.100 0.273
1000 0.5 0.703 3.230 0.960 3.674 1.000 3.761 0.030 0.132 0.069 0.166 0.075 0.178
1000 0.8 0.603 3.415 0.989 3.735 0.984 3.812 0.028 0.101 0.078 0.113 0.075 0.168

εt MA(1)

200 0.2 0.697 2.892 0.950 3.596 1.018 3.777 0.074 0.375 0.203 0.623 0.234 0.705
200 0.5 0.697 3.146 0.964 3.672 1.010 3.796 0.074 0.334 0.170 0.442 0.185 0.490
200 0.8 0.601 3.334 1.009 3.752 0.997 3.943 0.071 0.280 0.194 0.324 0.187 0.803
500 0.2 0.695 2.884 0.920 3.529 0.992 3.709 0.046 0.236 0.127 0.387 0.154 0.436
500 0.5 0.695 3.144 0.951 3.652 0.995 3.760 0.047 0.210 0.108 0.274 0.116 0.293
500 0.8 0.600 3.349 0.999 3.740 0.985 3.855 0.046 0.175 0.122 0.199 0.114 0.341
1000 0.2 0.694 2.883 0.912 3.513 0.987 3.700 0.032 0.164 0.088 0.269 0.108 0.303
1000 0.5 0.695 3.147 0.948 3.648 0.996 3.753 0.033 0.145 0.074 0.190 0.080 0.203
1000 0.8 0.600 3.357 0.999 3.738 0.985 3.810 0.032 0.119 0.084 0.137 0.080 0.198

27



Table 4: Panel Data, N = 200.

yit = ηi + αyit−1 + β0Xit + β1Xit−1 + uit

Xit = xit + εit.

LSDV-x LSDV-X SMD

Est. S.E. Est. S.E. Est. S.E.

T = 10, PADL(1,0)

β0 1.000 1.005 0.022 0.658 0.023 1.063 0.273
α1 0.800 0.722 0.059 0.720 0.066 0.750 0.114
σ2
u 1.000 1.172 0.511 1.196 0.406 0.863 0.337
σ2
ε 0.756 - - - - 0.534 0.318

T = 20, PADL(1,0)

β0 1.000 1.013 0.019 0.684 0.017 1.055 0.236
α1 0.800 0.765 0.034 0.784 0.034 0.770 0.059
σ2
u 1.000 1.327 0.392 1.376 0.311 0.937 0.248
σ2
ε 0.756 - - - - 0.555 0.268

T = 10, PADL(1,1)

β0 1.000 0.965 0.038 0.679 0.029 0.994 0.241
β1 0.600 0.669 0.062 0.514 0.040 0.568 0.113
α1 0.800 0.744 0.046 0.751 0.047 0.802 0.067
σ2
u 1.000 0.945 0.428 1.643 0.402 0.931 0.391
σ2
ε 0.756 - - - - 0.466 0.333

T = 20, PADL(1,1)

β0 1.000 0.990 0.019 0.714 0.017 1.037 0.189
β1 0.600 0.637 0.039 0.500 0.026 0.600 0.104
α1 0.800 0.778 0.021 0.800 0.020 0.797 0.028
σ2
u 1.000 1.232 0.373 2.621 0.442 0.973 0.274
σ2
ε 0.756 - - - - 0.579 0.283
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Table 5: OLS and SMD Estimates of the traditional Phillips Curve.

OLS SMD̂̄β 90% CI of β̄ ̂̄β 90% CI of β̄ σ̂2
ε Γ̂X(0)

Xt(1) -0.028 [-0.077, 0.022] -0.025 [-0.225, 0.139] 0.071 1.727
Xt(2) -0.049 [-0.129, 0.032] -0.052 [-0.270, 0.072] 0.421 1.128
Xt(3) -0.067 [-0.140, 0.006] -0.081 [-0.217, 0.056] 0.104 0.802
Xt(4) -0.017 [-0.111, 0.078] -0.021 [-0.252, 0.184] 0.081 0.587
Xt(5) -0.024 [-0.098, 0.051] -0.032 [-0.239, 0.145] 0.214 0.857
Xt(6) -0.040 [-0.078, -0.002] -0.044 [-0.199, 0.079] 0.073 2.583
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A Appendix: Proofs

Proof of Lemma 1 Note first that since ΓX(0)− σ2
ε = Γx(0) > 0, the equation for ψA1 implies

that β = 0 if and only if ψA1 = 0. Thus, β = 0 is directly identified off of ψA1. Moreover, we

than have σ2
u = ψA2. Thus (β = 0, σ2

u) is identified. For β 6= 0, we have sgn (β) = sgn (ψA1). If

ΓX(1) 6= 0, then from the equation for ψA3,

β
σ2
ε

ΓX(0)
= sgn (ψA1)

√
ψA3

ΓX(1)
. (21)

Plugging into the solution for ψA1 and noticing that ψA1 = sgn (ψA1) |ψA1 | then gives

β = sgn (ψA1)

[
|ψA1 |+

√
ψA3

ΓX(1)

]
.

For σ2
u, combine (21) with ψA2 = σ2

u + βσ2
εψA1 to obtain

σ2
u = ψA2 − |ψA1|ΓX(0)

√
ψA3

ΓX(1)
.

Thus, serial correlation in the regressor X is sufficient to globally identify (β 6= 0, σ2
u). Finally,

when β 6= 0,

σ2
ε =

ΓX(0)

β
sgn (ψA1)

√
ψA3

ΓX(1)

where β is defined above. The expression for σ2
u follows directly from ψA2. Thus, ΓX(1) 6= 0 and

β 6= 0 are sufficient for identification of θA. To show necessity, suppose ΓX(1) = 0. For κ ∈ (1−δ, 1)

and δ > 0, let

β̄ ≡ κβ

σ̄2
ε ≡

1

κ
σ2
ε + (1− 1

κ
)ΓX(0)

σ̄2
u ≡ σ2

u + β2(1− κ)(ΓX(0)− σ2
ε ).

Clearly, θA = (β, σ2
ε , σ

2
u) and θ̄A = (β̄, σ̄2

ε , σ̄
2
u) are observationally equivalent since ψA(θA) = ψA(θ̄A).

It remains to show that β 6= 0 is also necessary for identification. This is immediate because if

β = 0, ψA(θA) = ψA(θ̃A) with θA = (0, σ2
ε , σ

2
u) and θ̃A = (0, σ̃2

ε , σ
2
u) for any values of σ2

ε and σ̃2
ε .

Proof of Lemma 2 Write the binding function as:

ψB(θB) =



β
(

1− Γε(0)
ΓX(0)

)
β2Γε(0)

(
1− Γε(0)

ΓX(0)

)
+ σ2

u

β2

[
Γε(1)− 2Γε(1) Γε(0)

ΓX(0) +
(

Γε(0)
ΓX(0)

)2
ΓX(1)

]
−β
(

Γε(1)− Γε(0)ΓX(1)
ΓX(0)

)


.

30



First, consider the case β = 0. Note that ψB1 = β Γx(0)
ΓX(0) = 0. But ΓX(0) − Γε(0) = Γx(0) 6= 0.

Hence, β = 0 if and only if ψB1 = 0, and β = 0 is directly identified off of ψB1. For σ2
u, we have

σ2
u = ψB2, so (β = 0, σ2

u) is identified from ψB. Next, we consider the case β 6= 0. In this case

ψB1 6= 0, and we can solve for β by considering

A ≡ ΓX(1)ψ2
B1 + 2ψB4ψB1 + ψB3.

Using the definition of ψB, this quantity can be computed in two ways: A = β2(ΓX(1)− Γε(1)) =

β2Γx(1) and A = β(ψB4 + ΓX(1)ψB1). So if Γx(1) 6= 0, then A 6= 0 and we use the two expressions

for A to obtain:

β =
A

ψB4 + ΓX(1)ψB1
.

For σ2
u, consider

D ≡ ψB2ψB4 − ΓX(0)ψB1ψB3 + ΓX(1)ψB1ψB2 − ΓX(0)ψ2
B1ψB4.

Then, D = σ2
u(ψB4 + ΓX(1)ψB1). Dividing both sides by ψB4 + ΓX(1)ψB1 6= 0 gives

σ2
u =

D

ψB4 + ΓX(1)ψB1
.

Thus Γx(1) 6= 0 is sufficient to globally identify (β 6= 0, σ2
u). Finally, to identify Γε(0), assume

Γx(1) 6= 0, and β 6= 0. Consider

B ≡ ΓX(0) (ψB3 + ψB1ψB4) ,

and note that B = AΓε(0). Since A 6= 0 under our assumptions,

Γε(0) =
B

A
= ΓX(0)

ψB3 + ψB1ψB4

ΓX(1)ψ2
B1 + 2ψB4ψB1 + ψB3

.

Finally, for Γε(1), let C ≡ −ψ2
B4 + ΓX(1)ψB3, and note that C = Γε(1)A. Under our assumptions,

A 6= 0 and Γε(1) is identified as

Γε(1) =
C

A
=

−ψ2
B4 + ΓX(1)ψB3

ΓX(1)ψ2
B1 + 2ψB4ψB1 + ψB3

.

Proof of Lemma 3 The proof is as follows. First, we consider the case when β = 0. Note that

1− Γε(0)Γy(0)

Γy(0)ΓX(0)− ΓyX(1, 0)2
=

Γy(0)Γx(0)− ΓyX(1, 0)2

Γy(0)ΓX(0)− ΓyX(1, 0)2

and since ΓyX(1, 0) = Γyx(1, 0) both the numerator and the denominator are determinants of

positive definite covariance matrices, thus the above quantity is strictly positive. Thus, ψ2 = 0 if

and only if β = 0. In this case α = ψ1, so (α, β = 0) is identified.
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Next, consider the case when β 6= 0. There are again two cases to consider: ΓyX(1, 0) = 0 and

ΓyX(1, 0) 6= 0. Consider ΓyX(1, 0) = 0 first. Since Xt = xt + εt and yt =
∑∞

i=0 α
i(βxt−i + ut−i), we

have E[Xtyt−j ] =
∑∞

i=0 α
i(βΓx(j + i)). In particular,

ΓyX(1, 0) = β

[
Γx(1) +

∞∑
i=1

αiΓx(1 + i)

]
, (22)

so ΓyX(1, 0) occurs, for example, whenever x is white noise. In this case, α is directly identified

off ψ1, α = ψ1. As for β, notice that the components ψ−C2(θ−C ), ψ−C3(θ−C ), ψ−C4(θ−C ) are as in the

ADL(0,0) case and identification can proceed as in Lemma 2.

It remains to consider the case β 6= 0, ΓyX(1, 0) 6= 0. For this, we further expand the elements

on the left-hand side of (9). We then obtain that ψ−C (θ−C ) = ψ−C has a unique solution in θ−C if and

only if the system:

αΓy(0) + βΓyX(1, 0) = π1

αΓyX(1, 0) + β(ΓX(0)− Γε(0)) = π2(
αΓy(0) + βΓyX(1, 0)

αΓyX(1, 0) + β(ΓX(0)− Γε(0))

)′
ΓW (0)−1

(
αΓy(1) + βΓyX(2, 0)

αΓyX(0, 0) + β(ΓX(1)− Γε(1))

)
= π3

αΓyX(2, 0) + β(ΓX(1)− Γε(1)) = π4

has a unique solution in θ, for given π = (π1, . . . , π4) and ψ−C . Of course, the π’s in the above

equations are functions of the original ψ−C ’s: they correspond to the right-hand side of (9). The

above equations have a unique solution in θ−C as a function of π. Replacing π’s with the values on

the right-hand side of (9) shows that the solution for α is:

α = ψ−C1 +
ΓyX(1, 0)(ψ−C3 + ψ−C2ψ

−
C4)

(Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ−C1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ−C2

.

Of course, for the solution to be valid we need to check that the denominator is not zero. For this,

write the equality above as:

α− ψ−C1 =
N

D
,

with

N = ΓyX(1, 0)(ψ−C3 + ψ−C2ψ
−
C4)

D = (Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ−C1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ−C2.

Note that

α− ψ−C1 = −βΓε(0)
ΓyX(1, 0)

Γy(0)ΓX(0)− ΓyX(1, 0)2
6= 0.
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Thus, D = 0 if and only if ψ−C3 + ψ−C2ψ
−
C4 = 0. For β, the solution is:

β = ψ−C2 −
Γy(0)(ψ−C3 + ψ−C2ψ

−
C4)

(Γy(0)ΓyX(2, 0)− Γy(1)ΓyX(1, 0))ψ−C1 − ΓyX(1, 0)(ΓyX(0, 0)− ΓyX(2, 0))ψ−C2

= ψ−C2 −
Γy(0)

ΓyX(1, 0)
(α− ψ−C1).

Thus (α, β 6= 0) are identified from ψ−C if Γx(1) 6= 0 and ψ−C3 + ψ−C2ψ
−
C4 6= 0. Finally, for Γε(0) we

have:

Γε(0)β =
(ψ−C3 + ψ−C2ψ

−
C4)(ΓyX(1, 0)2 − ΓX(0)Γy(0))

D
,

so if in addition β 6= 0, Γε(0) is identified. Similarly, Γε(1) is then also identified from ψ−C4.

Proof of Lemma 4 We have

Γ
W̃

(0) =

(
Γỹ−1

(0) Γ
X̃ỹ−1

(0, 0)

Γ
X̃ỹ−1

(0, 0) Γ
X̃

(0)

)
,

which is assumed to be non-singular. Since Γ
W̃

(0) and Γ
W̃

(1) do not depend on θP , the system of

equations ψP = ψP (θP ) is equivalent to ΨP = ΨP (θP ), where

ΨP1(θ) = Γ
W̃ ỹ

(0, 0) = Γ
W̃

(0)

(
ψP1(θ)
ψP2(θ)

)
=

(
αΓỹ−1

(0) + βΓ
X̃ỹ−1

(0, 0)− σ2
uhT (α)

αΓ
X̃ỹ−1

(0, 0) + βΓ
X̃

(0)− βσ2
ε

)
,

ΨP2(θ) = Γỹ(0) = ψP3(θ) +
(
ψP1(θ) ψP2(θ)

)
Γ
W̃

(0)

(
ψP1(θ)
ψP2(θ)

)
= α2Γỹ−1

(0) + 2αβΓ
X̃ỹ−1

(0, 0) + β2Γ
X̃

(0) + σ2
u + β2σ2

ε − 2σ2
uhT (α)− 2βσ2

ε ,

and

ΨP3(θ) = Γ
W̃ ỹ

(0, 0)′Γ
W̃

(0)−1Γ
W̃ ỹ

(1, 0) = −ψP4 +
(
ψP1(θ) ψP2(θ)

)
Γ
W̃

(1)

(
ψP1(θ)
ψP2(θ)

)
=

(
αΓỹ−1

(1) + βΓ
X̃ỹ−1

(0, 1)− σ2
u [(T + 1)hT (α)− 1]

αΓ
X̃ỹ−1

(1, 0) + βΓ
X̃

(1) + β 1
T σ

2
ε

)
.

Only the right-hand side terms depend on θP .
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