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Abstract: We propose a minimum distance estimation method for ro-
bust regression in sparse high-dimensional settings. Likelihood-based esti-
mators lack resilience against outliers and model misspecification, a crit-
ical issue when dealing with high-dimensional noisy data. Our method,
Minimum Distance Lasso (MD-Lasso), combines minimum distance func-
tionals customarily used in nonparametric estimation for robustness, with
ℓ1-regularization. MD-Lasso is governed by a scaling parameter capping
the influence of outliers: the loss is locally convex and close to quadratic
for small squared residuals, and flattens for squared residuals larger than
the scaling parameter. As the parameter approaches infinity the estimator
becomes equivalent to least-squares Lasso. MD-Lasso is able to maintain
the robustness of minimum distance functionals in sparse high-dimensional
regression. The estimator achieves maximum breakdown point and enjoys
consistency with fast convergence rates under mild conditions on the model
error distribution. These hold for any solution in a convexity region around
the true parameter and in certain cases for every solution. We provide an
alternative set of results that do not require the solutions to lie within
the convexity region but where the ℓ2-norm of the feasible solutions is
constrained within a safety radius. Thanks to this constraint, a first-order
optimization method is able to produce local optima that are consistent.
A connection is established with re-weighted least-squares that intuitively
explains MD-Lasso robustness. The merits of our method are demonstrated
through simulation and eQTL analysis.
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1. Introduction

We address the problem of robust sparse estimation in high-dimensional regres-
sion. Sparse linear models allow for simultaneous model estimation and variable
selection. They have become very popular tools to analyze the high-dimensional
data that is prevalent in many domains such as genomics [45], neuroimag-
ing [21, 42], and economics [16]. A widely used approach to sparse learning
is via sparsity-inducing regularization. A well known example is the Lasso [38],
which employs ℓ1-penalized least-squares to identify a parsimonious subset of
predictors. Beyond Lasso, various structured penalties have been proposed that
reflect the underlying structural information among the predictors. For instance
the Group Lasso [46] enforces group sparsity via the ℓ1/ℓq norm (q > 1), the
Path Coding Penalties [26] and Graph Lasso [20] deal with applications where
the variables reside in a graph, the Fused Lasso [39] enforces sparsity in both
the coefficients and their successive differences for settings where variables are
ordered in some meaningful way and a locally constant coefficient profile is
desirable. Much attention has been devoted recently to the study of these struc-
tured norms and their theoretical properties [29, 30], and to devising efficient
algorithms for large scale problems [6].

The issue of robustness, however, has been largely overlooked in the sparse
learning literature, while this aspect is critical when dealing with high dimen-
sional noisy data. Traditional likelihood-based estimators (including Lasso and
variants) are known to lack resilience to outliers and model misspecification. De-
spite this fact, there has been limited focus on robust sparse learning methods
in high-dimensional modeling. Relevant penalized regression methods include
the “extended” Lasso formulation [32] which employs the traditional squared
error but incorporates an additional sparse error vector into the model so as
to account for corrupted observations, and the LAD-Lasso [43], which uses the
least absolute deviation combined with an ℓ1 penalty. Note that the least ab-
solute deviations estimate also arises as a maximum likelihood estimate if the
errors have a Laplace distribution. Hence the aforementioned approaches can
still be viewed as likelihood-based, and they share the deficiencies of maximum-
likelihood estimators for sparse estimation in high-dimensional regression. In
particular their performance drops significantly if the model is mis-specified or
outliers are present: a single outlier can make their estimates entirely unreli-
able [1].

Departing from likelihood-based methods, we propose a penalized minimum
distance criterion for robust and consistent estimation of sparse high dimensional
regression. Our approach is motivated by minimum distance estimators [44],
which are popular in nonparametric methods and have been shown to exhibit
excellent robustness and efficiency properties [10, 15]. Their use for parametric
estimation has been discussed in Basu et al. [8], Scott [36] and investigated
by Chi and Scott [13] for sparse logistic regression. However, the robustness
properties of minimum distance estimators have not been formally established
in the high-dimensional regression setting. We propose the Minimum Distance
Lasso (MD-Lasso) estimator, which is derived from the integrated squared error
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distance between the model and the “true” distribution, and imposes sparse
model structure via ℓ1 penalty.

The MD-Lasso loss, taken as a function of a single observation, acts similarly
to the squared-loss if the residual squared-error of that observation is small,
while the loss becomes flat as the squared-error becomes large. This ensures
that the contributions of large outliers to the overall loss are capped. Overall
the MD-Lasso loss is invex1 and locally convex. The extent of the local convexity
region and the capping of outliers are both governed by a scaling parameter of
our estimator, against which the residual squared error of each observation is
being compared. In the extreme case where the scaling parameter goes to zero,
only the most “trusted” observation is taken into account, while as the scaling
parameter goes to infinity, the estimator becomes equivalent to the traditional
Lasso estimator with the same amount of regularization on the ℓ1 penalty. Our
analysis shows that the tradeoff between convexity and robustness, as controlled
by the scaling parameter, is, understandably, essential in securing both robust-
ness and consistency of the estimator.

Our results demonstrate that the MD-Lasso enjoys fast convergence rates in
high dimensional settings under mild conditions on the model error distribu-
tion in relation to the scaling parameter. These conditions are much less re-
strictive than the traditional sub-gaussian assumption, and cover a broad class
of heavy-tailed distributions. We present two sets of consistency results. One
holds for any of the solutions in the local convexity region around the true pa-
rameter (and in certain cases these are the only existing solutions globally).
One does not necessitate that the solutions lie within the local convexity re-
gion but requires adding a constraint to the MD-Lasso problem to bound the
ℓ2-norm of the parameters β considered, and assuming that the true param-
eter vector β∗ is feasible. The latter set of results has practical consequences
as they allow us to show that a simple incremental algorithm yields consistent
estimates.

We also show that MD-Lasso achieves a maximum breakdown point [19]
for any finite value of the scaling parameter c, namely MD-Lasso is able to
tolerate the maximum percentage of arbitrarily corrupted observations achiev-
able by any method. In contrast the least squares Lasso and LAD-Lasso have
a vanishing breakdown point, namely a single corruption can already dras-
tically affect these estimators. We shed further light onto the robustness of
MD-Lasso by establishing its connection with a form of iteratively re-weighted
ℓ1-penalized least-squares regression (namely the traditional Lasso) where the
weights assigned to the observations can be interpreted in terms of their likeli-
hood.

The performance of our estimator is demonstrated on simulation data under
various error distributions, in comparison to the traditional Lasso, LAD-Lasso,
and Extended Lasso. This study also confirms that outliers and/or heavy-tailed
noise can severely influence the variable selection accuracy of existing sparse

1A function f is invex if it is differentiable and there exists a vector-valued function g such
that |f(v) − f(u)| ≤ 〈∇f(u), g(v,u)〉, for all u, v. A function is invex if and only if every
stationary point is a global minimum [9].



Minimum Distance Lasso 1299

learning methods. Experiments on real eQTL data further illustrate the useful-
ness of our approach.

The manuscript is organized as follows. Section 2 is devoted to the MD-Lasso
estimator, its derivation from a minimum distance criterion, its geometry, and
the analysis of its breakdown point. The statistical consistency results and con-
vergence rates are shown in Section 3. The incremental method for efficient and
scalable optimization is presented in Section 4. Empirical results are described
in Sections 5. All proofs are collected in the Appendix.

2. The Minimum Distance Lasso estimator

2.1. Problem formulation and notation

Let X ∈ R
n×p denote the predictor matrix, whose rows are p-dimensional vari-

able vectors observed for n training examples. Denote by Xi ∈ R
p the vector

formed by ith observation across all variables.
Denote byXj ∈ R

n the vector formed by the observations for the jth variable.
Denote by Xj

i ∈ R the entry in matrix X corresponding to the ith observation
for the jth variable. Similarly let Y ∈ R

n denote the response vector, and Yi

it’s i-th observation.
Consider the general regression model:

Y = Xβ⋆ + η, (1)

where β⋆ ∈ R
p is the coefficient vector one wishes to estimate, and η ∈ R

n is the
error term, and for simplicity we assume that the data have been standardized
so that we need not consider intercept terms.

We address the sparse estimation of coefficient vector β⋆ via ℓ1-penalized loss
minimization. Specifically, we consider estimators of the form

β̂λn
= argmin

β
L(β) + λn‖β‖1, (2)

where the loss function L measures the goodness-of-fit on the response and
λn is the regularization parameter for the ℓ1 penalty. However our framework
is readily applicable to other sparsity-inducing penalties such as the group or
fused Lasso.

Using likelihood-based loss functions such as squared loss is a common prac-
tice in estimating and exploring the sparsity structure of the unknown parame-
ters for model (1), whereby L(β) is derived from a product of probability den-
sity functions (p.d.f.). However, the likelihood-based estimators are known to
lack resilience to outliers and model misspecification. In contrast, the minimum
distance estimators [44] often used in nonparametric function estimation show
excellent robustness properties [10, 15]. This motivates our proposed MD-Lasso
estimator.

We begin this section by presenting how the MD-Lasso objective can be
rigorously derived from a minimum distance criterion.
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2.2. Minimum distance estimation

Here we treat response Y and predictors X as random variables, where Y ∈ R

and X ∈ R
p.

We first apply the Integrated Squared Error to the conditional distribution
of response Y given the predictors X. This leads to an ℓ2 distance between the
true conditional distribution f(Y |X) and the parametric distribution function
f(Y |X;β) as follows

d(β) =

∫
[f(Y |X;β)− f(Y |X)]

2
dY (3)

=

∫
f2(Y |X;β)dY − 2

∫
f(Y |X;β)f(Y |X)dY +

∫
f2(Y |X)dY

=

∫
f2(Y |X;β)dY − 2E[f(Y |X;β)] + constant.

We remark that minimum distance estimators originally involved distances
between cumulative distribution functions [44], but the notion was subsequently
broadened to encompass distances between probability density functions [10, 15,
36]. We consider the latter, which is easier to work with, and is also more natural
in the context of linear regression.

Note that we assume a parametric family for the model while using a non-
parametric criterion (the Integrated Squared Error) to measure goodness of fit.
From the perspective of the loss function, the Integrated Squared Error is a
more robust measure of the goodness-of-fit compared to likelihood-based loss
functions. It can match the model with the largest portion of the data because
the integration in (3) accounts for the whole range of the squared loss function.

To derive our estimator, we assume that f(Y |X;β) is the p.d.f. of multivari-
ate normal N (X ′β, σ2). However it is important to note that our methodology
and theoretical results go well beyond the normal assumption for the error.
f(Y |X;β) ≡ f(Y −X ′β) because of the conditional distribution assumption,
and it holds that

∫
f2(Y |X;β)dY = 1/(2π1/2σ). Since ηi = Yi − X ′

iβ, i =
1, . . . , n are independently and identically distributed, one can consider esti-
mating E[f(Y |X;β)] by the empirical mean n−1

∑n
i=1 f(Yi|Xi;β). Such an

approximation technique has also been used for Gaussian mixture density esti-
mation [36]. Disregarding the terms that are independent of β we can write the
resulting empirical criterion as

dn(β) = − 2

n

n∑

i=1

f(Yi|Xi;β)

= − 2

n

n∑

i=1

1√
2πσ2

exp(− 1

2σ2
(Yi −X ′

iβ)
2). (4)

Rather than directly minimizing dn we will aim to minimize, equivalently,

− log(−dn(β)) = − log

(
2

n
√
2πσ2

n∑

i=1

exp

(
− 1

2σ2
(Yi −X ′

iβ)
2

))
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= − log

(
n∑

i=1

exp

(
− 1

2σ2
(Yi −X ′

iβ)
2

))
+ C,

where C is a function of σ and n but is independent of β. As σ is unknown we
consider instead

L(β) = −c log

(
n∑

i=1

exp

(
− 1

2c
(Yi −X ′

iβ)
2

))

where c is a scaling parameter. Plugging the resulting loss in (2) yields the
MD-Lasso problem:

β̂λn
= argmin

β

(
−c log

[
n∑

i=1

exp(− 1

2c
(Yi −X ′

iβ)
2)

]
+λn‖β‖1

)
. (5)

Remarks. We can already gain some intuition on the robustness of MD-Lasso
by considering the ratio between data and model probability density functions:
f(Y |X)/f(Y |X;β). An outlier in the data may drive this ratio to infinity, in
which case the log-likelihood becomes infinite as well. In contrast, the differ-
ence between f(Y |X)− f(Y |X;β) as in (3) is always bounded. This property
makes the ℓ2-distance a favourable choice when dealing with outliers. A similar
argument can be applied to the problem of density estimation and explains why
the ℓ2-distance is also very well suited for this problem (e.g. see Sugiyama et al.
[37]). A more heuristical intuition comes from noting that in (5) the logarithm is
applied to a sum of probability density functions, in contrast to the likelihood-
based estimators which involve a product : the sum should be more robust to
noise and outliers, as often encountered in high-dimensional data.

2.3. The geometry of the MD-Lasso estimator

The geometry of MD-Lasso is worth examining, as it provides some key insights
on the estimator’s robustness and the theoretical conditions required for fast
convergence rates. The MD-Lasso loss, taken as a function of the residual error
for a single observation with the contributions from the other observations fixed,
is depicted in Figure 1, for various values of the scaling parameter c, along with
the squared loss and the absolute loss. In the figure, the MD-Loss has been
translated w.r.t. the y-axis for ease of comparison. From Figure 1 we can see
that the MD-Lasso loss acts similarly to the squared-loss if the residual squared-
error of that observation is small, while the loss becomes flat as the squared-error
becomes large. This insures that the contributions of large outliers to the overall
loss are capped. The range of the similarity to the squared loss is governed by
the scaling parameter c of the MD-Lasso estimator, against which the residual
squared error of each observation is being compared. Intuitively, the scaling
parameter can thus be interpreted as a cut-off on what is an acceptable range
for the error.
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Fig 1. The MD-Lasso loss, squared loss and absolute loss, as a function of the residual error
of a single observation.

Fig 2. Contour plot and graph of the MD-Lasso loss for illustrative examples where the
dimensionality p = 2, and sample size n > p (two plots on the left), and n = p (two plots
on the right). The x-axis and the y-axis in the contour plots and graphs correspond to the
coordinates of the parameter vector β. In the graphs, the z-axis corresponds to the loss.

The MD-Lasso loss over all observations is depicted in Figure 2 as a function
of the regression parameter vector β, for an illustrative examples with dimen-
sionality p = 2 and just a single relevant predictor, namely β⋆ = (β⋆

1 , 0). As
shall be formally discussed in Section 3, the MD-Lasso loss is invex and lo-
cally convex, yet it is globally non-convex. The extent of the local convexity
region is controlled by the scaling parameter c. As the parameter increases, the
convexity region becomes larger, and so does the proportion of observations
whose squared-error are below the scaling parameter. The robustness, how-
ever, becomes weaker, as instances with larger error are allowed to significantly
contribute to the overall loss. If the scaling parameter becomes too small, the
proportion of observations with squared error below the scaling parameter be-
comes too small and compromises the convexity of the overall loss with respect
to the model coefficients, a property that is needed to yield fast convergence
rates.
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Limit cases. As the parameter c goes to infinity the MD-Lasso estimator
becomes equivalent to the traditional Lasso estimator with the same amount of
regularisation λn. Indeed as x → 0, we have exp(x) ∼ 1+ x and log(1+ x) ∼ x.
Therefore as c → ∞, the MD-Lasso estimator is identical the minimizer of

1

2n

n∑

i=1

(Yi −X ′
iβ)

2 + λn‖β‖1.

On the other extreme, for c → 0, the MD-Lasso is equivalent to the minimizer
of

min
i=1,...,n

1

2
(Yi −X ′

iβ)
2 + λn‖β‖1.

In the latter case, only the observation with smallest residual error is taken into
account, while the other observations are being discarded. This setting can thus
be viewed as an extreme case of trimmed Lasso regression, where all but one
observation are trimmed out.

Non-convexity and robustness. To illustrate the limitations of convex loss
functions and the appropriateness of non-convex loss functions with respect
to robustness, it is worthwhile to recall the notion of influence function from
robust statistics [18]. Consider the loss L as a function of the residual ri of a
single sample. The influence function represents the rate of change in L upon a
small amount of contamination on ri, and thus measures the effect of the size
of a residual on the loss. Specifically, for loss functions induced by log-concave
densities (e.g. the squared and absolute losses are induced by the Gaussian
and Laplace distributions respectively) the influence function is identical to the
derivative of the loss with respect to the residual. For squared error loss, the
influence function is given for example by I(ri) = ri and for the absolute loss it
is I(ri) = sign(ri). In our case the influence function can be written as

I(ri) =
ri

1 + d exp(r2i /(2c))
,

where d > 0 is a constant due to the contribution from other observations. We
can see that in contrast to the case of log-concave densities, the influence func-
tion of the MD-Lasso loss is redescending as ri becomes large, which signifies
that large residuals are basically ignored. The so-called redescending behavior
is a desirable property for robustness, which clearly cannot be achieved by con-
vex loss functions. We refer the reader to Hampel et al. [18] for a review of
influence-function approaches to robust statistics, including redescending influ-
ence functions.

Note that the negative log-likelihood functions of heavy tailed distributions
(e.g. Student’s t and Cauchy) are non-convex. For instance for a Student’s t
error model with ν degrees of freedom, the loss becomes L(ri) = log(1 + r2i /ν).
It thus appears that non-convexity assists in accommodating large outliers or
significantly noisy data. See Aravkin et al. [3] for additional pertinent points
elucidating the need for non-convex loss functions to achieve robustness.
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2.4. Breakdown point of the MD-Lasso estimator

Intuitively, the breakdown point [27] is the proportion of arbitrarily corrupted
observations an estimator can tolerate before giving an arbitrarily large result.
Thus a high breakdown point reflects a good resistance to corruptions and hence
can be considered as a measure of robustness.
We recall the definition of replacement finite-sample breakdown point [27].

Definition 1. Consider any sample of n points (X,Y ) and let β̂ be a regres-
sion estimator. Then consider all possible corrupted samples (X ′,Y ′) that are
obtained by replacing m of the original points by arbitrary values.The breakdown
point of the estimator β̂ at the sample (X,Y ) is defined as

ǫ∗n(β̂;X,Y ) = min

{
m

n
: sup
(X′,Y ′)

‖β̂(X ′,Y ′)‖2 = ∞
}
.

In order to compare different estimators, one usually considers the asymp-
totic behaviour of ǫ∗n(β̂;X,Y ) : ǫ∗(β̂;X,Y ) = limn→∞ ǫ∗n(β̂,X,Y ).
The following theorem shows that the MD-Lasso estimator achieves the maxi-
mum breakdown point.

Theorem 1. Let Qc(β) denote the objective MD-Lasso seeks to minimize:

Qc(β) = −c log

(
n∑

i=1

exp

(
− 1

2c
(Yi −X ′

iβ)
2

))
+ λ‖β‖1

For any finite choice of the scaling parameter c, consider the non-empty set

Bc = {β : β is a local optimum for the MD-Lasso problem and Qc(β) ≤ Qc(0).}

For every α ∈ (0, 1),
the breakdown point of any solution in Bc is at least α. Namely the MD-

Lasso can tolerate at least αn arbitrarily corrupted observations and still produce
estimates with bounded ℓ2-norm.

Theorem 1 indicates that even if a majority of observations are corrupted,
the estimated regression coefficients will remain bounded. Naturally, if more
than 50% of observations are arbitrarily corrupted, it makes no sense to trust
any model and thus the breakdown point is typically capped at 50%. We can
not make a statement about the breakdown point of all local solutions but
can show a high breakdown point for the best local solutions, in the sense
that the local solutions in a specific levelset of the objective function have a
high breakdown point. Recall that as c → 0 the MD-Lasso yields a special
case of sparse trimmed least squares regression, where all but the most trusted
observation are disregarded. Our results for this limit case are consistent with
those on sparse trimmed regression [1]. As c → ∞, MD-Lasso is equivalent to
the Lasso estimator. If one sets c → ∞ in the proof of theorem 1, the reasoning
guaranteeing high breakdown for MD-Lasso is no longer valid. This is to be
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expected: for the traditional Lasso estimator it was shown in Alfons et al. [1] that
only one outlier can already send the estimates to infinity and the breakdown
point is 1/n. Finally, we note that the LAD Lasso estimator also shares the poor
breakdown point property of Lasso; the absolute loss does not help in improving
the breakdown point.

The results of Theorem 1 pertain to arbitrary corruptions in both the data
matrix X and the response vector Y . In the next section we further charac-
terize the robustness of MD-Lasso from a different standpoint. Specifically, we
consider errors in Y that are incurred via the error term η, and show that under
mild assumptions on the distribution of the error term η, MD-Lasso achieves
consistency with fast convergence rates.

3. Main results

In this section we establish the conditions for consistency and fast convergence
rates of the MD-Lasso estimator under the high-dimensional setting (p ≫ n).
The proofs of our results are all relegated to the Appendix. Consistency and fast
convergence rates can be secured thanks to two key properties: (i) the restricted
strong convexity of the loss L in the neighborhood of the true model parameter
vector and (ii) the gradient boundedness at the true model parameter vector. The
importance of these two properties was first identified in [30]. Before defining
and establishing them, we introduce some notation and state the assumptions
required by our analysis.

Notation. Define tγ to be the cumulative distribution function of |ηi| such
that for all γ ≥ 0,

tγ := P (|ηi| ≥ γ).

Let S denote the set of indices corresponding to the support of the true coeffi-
cient vector β⋆. Writing ΔS for the projection of a vector Δ ∈ R

p onto indices
S, and ΔSC for the projection onto the complement of S, define the cone

C(S) := {Δ ∈ R
p | ‖ΔSC‖1 ≤ 3‖ΔS‖1}.

Assumptions. We make the following assumptions throughout.
[A1] Bounded predictors: there exists M < ∞ such that |Xj

i | ≤ M for all
i = 1, . . . , n and j = 1, . . . , p.
[A2] The error terms (ηi)

n
i=1 form a sequence of independent and identically

distributed random variables, with zero-mean or, if the mean is undefined, a
probability density function symmetric around zero.
[A3] The design matrixX satisfies the following Restricted Eigenvalue condition

‖XΔ‖22
n

≥ κRE‖Δ‖22, for all Δ ∈ C(S) (6)

with constant κRE > 0.
[A4] For every Xi=1,...,n, the variable 〈v, Xi〉 is sub-Gaussian with parameter at
most κ2

u‖v‖22.
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Assumptions [A1] and [A4] could be relaxed in some ways but we are mainly
interested here in robustness with respect to outliers in the target. The second
assumption [A2] is weak since it allows arbitrarily heavy tails in the error dis-
tribution, while the last assumption [A3] is standard, see, for example, Bickel
et al. [12].

3.1. Gradient boundedness property

The following results provide upper-bounds on the ℓ∞-norm of the gradient of
the MD-Lasso loss evaluated at β⋆. These bounds are the most important part
when establishing rates of convergence.

Lemma 1. Under Assumptions [A1] and [A2] for any γ ≤ √
c let ξc,γ ≥ 0 be

given by
ξ2c,γ = M2t−2

1

[
(1− 2tγ)γ

2 exp(−γ2/c) + 2ctγ/e
]
e1/c,

Then, for some positive constants α1, α2,

P

(
‖∇L(β⋆)‖∞ ≤ ξc,γ

√
log p

n

)
≥ 1− α1 exp(−α2ξ

2
c,γ log p).

A proof is given in the Appendix.

Lemma 2. Under Assumptions [A1] and [A2] let ζc ≥ 0 be given by

ζ2c = 4M2t−2
1 E[η2i e

−η2
i /c]e1/c.

Then, for some positive constants α′
1, α

′
2, α

′
3,

P

(
‖∇L(β⋆)‖∞ ≤ ζc

√
log p

n

)
≥ 1− α′

1 exp
(
− α′

2ζ
2
c log p

1− α′
3

√
c log p/n

1 + α′
3

√
c log p/n

)
.

A proof is given in the Appendix.

Remarks. We note that Lemma 1 rests on establishing the bounded differ-
ences property of the gradient coordinates, based on whether or not the ampli-
tude of the error ηi exceeds

√
c. Lemma 2 employs Bernstein’s inequality [23],

noting that the variance of ηi exp(−η2i /(2c)) is always well-defined regardless of
whether or not the variance of ηi exists.

As c → ∞ the bound in Lemma 1 becomes vacuous: it essentially scales with√
c. For heavy-tailed distributions, this is an accurate indication that large values

of c are not an option, as this would essentially mean giving up on the robustness
property of the estimator. For lighter-tailed distributions for which the variance
of ηi exists (and is finite), Lemma 2 is preferred. Since ζc → 4M2t−2

1 E[η2i ] for
c → ∞ (by the monotone convergence theorem), Lemma 2 yields finite upper-
bounds if c → ∞ but with a rate depending on n such that c log p/n → 0.
We present below some specific examples illustrating this interesting fact. If the
variance of ηi is undefined Lemma 1 yields tighter bounds for large values of c.
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Examples. Gaussian Errors. If the error terms ηi, i = 1, . . . , n follow a
Gaussian distribution N(0, σ2) and c is finite, then Lemma 2 implies that with
high probability

‖∇L(β⋆)‖∞ ≤ 2Mσ

(
c

2σ2+c

)3/4

e1/2c

t1

√
log p

n
.

If c → ∞ while c log p/n → 0, we recover the condition for the traditional
Lasso (up to a constant factor) namely:

‖∇L(β⋆)‖∞ ≤ 2Mσ

√
log p

n

This is consistent with the fact that the MD-Lasso estimator yields the tradi-
tional Lasso estimator as c → ∞.

Laplace-distributed Errors. If the error terms ηi, i = 1, . . . , n follow
a Laplace distribution with scale parameter b, and c is finite, then Lemma 2
implies that with high probability

‖∇L(β⋆)‖∞ ≤

2Me1/2c

t1

√

− c2

4b2
+

√
2π

b

( c
2

)3/2

e
c

4b2

(
1 +

c

2b2

)
F̄

(
1

b

√
c

2

)√
log p

n
,

where F̄ (·) denotes the tail probability function of the standard normal distri-
bution.

If c → ∞ while (c log p)/n → 0, Lemma 2 together with the monotone con-
vergence theorem yields the condition

‖∇L(β⋆)‖∞ ≤
√
8
Mb

t1

√
log p

n
.

We will use these gradient bounds to show fast convergence rates of the MD-loss
under potentially heavy-tailed distributions.

3.2. Restricted strong convexity

The following lemma states conditions that guarantee the restricted strong con-
vexity of the MD-Lasso loss in a restricted neighborhood of the true model
coefficients β⋆.

Lemma 3. Under Assumptions [A1], [A3], [A4] for any μ <
√
c/(4κu

√
logn),

consider the set K(S, μ) = {Δ ∈ C(S) : ‖Δ‖2 = μ}. Let λμ ∈ (0, (
√
c −

4μκu

√
logn)/2]. If the model error distribution satisfies the tail condition:

tλµ <
(
1 +

64

21
e−

3
2

)−1
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then for all Δ ∈ K(S, μ) it holds that

L(β⋆ +Δ)− L(β⋆)− 〈∇L(β⋆),Δ〉 ≥ κ1‖Δ‖22 − κ2

√
log p

n
‖Δ‖1‖Δ‖2 (7)

with probability at least 1 − α1 exp(−α2n), for some α1, α2 > 0, where κ1 =
1
4κRE(C(1− tλµ)− 2e−

3
2 ) and κ2 = 49

2 Cκ2
u

√
logn, with C = (21/32) + 2e−3/2.

A proof is given in the Appendix.

Remarks. Noting that for any Δ ∈ C(S), ‖Δ‖1 ≤ 4‖ΔS‖1 ≤ 4
√
s‖Δ‖2, the

bound (7) implies that

L(β⋆ +Δ)− L(β⋆)− 〈∇L(β⋆),Δ〉 ≥ κ1

2
‖Δ‖22 (8)

as long as n > 64(κ2/κ1)
2s log p.

Lemma 3 indicates that the region of restricted strong convexity is controlled
by parameter c via the condition ‖Δ‖2 ≤ μ where μ <

√
c/(4κu

√
logn). For

fixed c, we remark that when n is increasing the region of restricted strong
convexity (or μ) will shrink due to the log n dependency. However, as will be
clarified in the next section, this does not compromise convergence rates and
consistency of the estimator: when n is increasing, the region within which
restricted strong convexity is required to hold is also shrinking with a rate that
is faster.

The convexity of the loss rests on a condition related to the tail of the error
distribution, which is required so that κ1 > 0. We consider a specific example
to illustrate that the requirements on the tail of the error distribution are very
mild.

Example. Let μ = c1/4/(2
√
lognκu), λμ =

√
c/2 − c1/4. Hence c must be

chosen so that P (|ηi| >
√
c/2− c1/4) ≤ 0.59. This translates into the conditions

c > 2.42 for the Laplace(0,1) distribution,
c > 2.45 for the Normal(0,1) distribution,
c > 2.47 for the Student’s t distribution with 4 degrees of freedom, and
c > 2.58 for the Cauchy(0,1) distribution.

These conditions are quite similar. Nevertheless, except for the Laplace distri-
bution, the heavier the tail, the larger the lower bound on c needs to be in order
to secure restricted strong convexity, which makes sense as the number of large
outliers is expected to increase. It is important to note, however, that while a
large value of c extends the convexity region, it reduces the resilience to outliers
(via the gradient bound). Thus the choice of c is key in guaranteeing both fast
convergence rates and robustness, as shall be made explicit in the next section.

We conclude this section by noting that under similar tail conditions on the
error, the MD-Lasso loss function is (simply) convex with asymptotic probability
1 in the set Hc = {β⋆ +Δ : ‖Δ‖2 <

√
c/(12κu

√
logn)}.

The proof is similar to that of Lemma 3 and is thus omitted.
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3.3. Consistency results

We now state the results on the consistency and convergence rates for the MD-
Lasso estimator. These results leverage the restricted strong convexity and gra-
dient boundedness properties.

3.3.1. Consistency in the local convexity region

In this section we provide error bounds for the solutions of MD-Lasso which
reside within the local convexity region. The following theorem builds on the
gradient bound of Lemma 1, and is thus preferred if the variance of the error
is undefined. In the Appendix, we also provide a second theorem (Theorem 4)
that uses the gradient bound of Lemma 2 and is thus preferred for errors with
finite variance.

Theorem 2. Consider the linear regression model (1) and assume that the
support of the true model coefficients β⋆ has cardinality s. Let Hc = {β⋆ +Δ :
‖Δ‖2 <

√
c/(12κu

√
logn)}

Under Assumptions [A1−A4], for any γ ≤ √
c, with c such that t√c/2 < (1+

(64/21)e−3/2)−1 < 0.6 given the MD-Lasso estimator (5) with scaling parameter
c and regularization parameter λn = 2ξc,γ

√
log p/n, where ξ2c,γ = M2t−2

1

[
(1 −

2tγ)γ
2 exp(−γ2/c) + 2ctγ/e

]
e1/c, any of the solutions in Hc (there is at least

one such solution) satisfies

‖β̂λn
− β⋆‖2 ≤ 32ξc,γ(

C(1− t√c/2)− 2e−
3
2

)
κRE

√
s log p

n
(9)

with probability at least 1−α1 exp(−α2nλ
2
n), for any n > max

{
ξ̃c,γ

s
c log p log n,

64(κ2/κ1)
2s log p

}
, where C = 21/32 + 2e−3/2 ≈ 1.1, ξ̃c,γ = α3

κ2
u

κ2
1
ξ2c,γ , and

positive constants α1, α2, α3.

A proof is given in the Appendix. Both Theorem 2 and Theorem 4 demon-
strate that MD-Lasso is robust with respect to errors in Y . The results rest on
mild assumptions on the quantiles of the error distribution η.

The bounds on ‖β̂λn
− β⋆‖2 in Theorem 2 and Theorem 4 scale inversely

with the restricted strong convexity constant of Lemma 3. This makes sense as
the constant reflects the curvature of the loss function L in a restricted set of
directions around the true solution β⋆ : the higher the curvature the faster the
convergence. On the other hand, the convergence rates and the regularization
parameter λn are proportional to the gradient bound of Lemmas 1 and 2. While
restricted strong convexity favors large values of c, the gradient bound favors
small values, hence the “tension” between the two that we now elaborate upon.

Figure 3 depicts the impact of c on the scaling factor in the convergence
rates of (9) and (48) for various error distributions. The values of the y-axis
do not reflect the multiplicative factors that do not depend on c and the error
distribution. Note that to generate the figure, γ was varied, and tγ determined
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Fig 3. Impact of the error distribution on the scaling of the convergence rate for ‖β̂ − β⋆‖2
as a function of c. The values of the y-axis correspond to the contributions from the error
term; multiplicative factors which are independent of c are disregarded.

numerically given the error distribution, then the value with the ‘best’ γ was
selected. The convergence rates along with Figure 3 suggest the following points:

• Regardless of the error distribution, one should not set c to values of
much below a value of, say, 5. This makes sense intuitively, since a small
c means that we are not using many observations and operating on too
small a sample size. Recall that as c → 0 the estimator acts as a trimmed
ℓ1− penalized Least Squares estimator where all but one observations are
trimmed out.

• As c grows beyond an “optimum value”2, the heavier the tail, the faster
the multiplicative factor grows. This is aligned with the intuition that one
should be more conservative the heavier the tail, and thus not set c too
large. Recalling that the MD-Lasso estimator is equivalent to the tradi-
tional Lasso estimator as c → ∞, our results also corroborate the fact that
the performance of the traditional Lasso estimator degrades dramatically
in the presence of heavy-tailed noise.

• Interestingly, for lighter-tailed distribution (e.g. Laplace and Gaussian)
the multiplicative factor flattens out and converges to a finite value as
c → ∞, provided that c grows in a sample size dependent fashion so that
c log p/n → 0. In particular, for sub-gaussian tails one recovers the results
of the traditional Lasso estimator (up to a constant factor) as c → ∞.

• Robustness does not cause significant loss of estimation efficiency in the
absence of outliers. This will be confirmed in the simulations of Section 5,

2Here we use the term “optimum” in a loose sense as our bounds may not be tight around
the actual optimum.
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e.g. under the Gaussian setting.

We also want to make a few remarks about global and local solutions. Re-
call that the MD-Lasso estimator is invex and locally convex but not globally
convex. If the constraint region induced by the ℓ1-penalty resides within the
local convexity region, the invexity of the loss is not compromised, every local
minimum lies within the local convexity region and is also a global minimum.
The results of Theorem 2 and Theorem 4 therefore apply to any solution of
the MD-Lasso estimator. A sufficient condition for this case to hold is that
‖β⋆‖2 + λ̄ <

√
c/(12κu

√
logn) where λ̄ is the parameter corresponding to pa-

rameter λ in the constrained version of the MD-Lasso problem3: minimize L(β)
s.t. ‖β‖1 ≤ λ̄.

If the constraint region induced by the ℓ1-penalty merely intersects (or even
resides outside of the local convexity region), local minima may exist outside of
the convexity region.

3.3.2. Consistency within a safety radius

The next set of results does not require the solutions to lie within the convexity
region. Here the original MD-Lasso estimator is slightly modified to introduce
a “safety” radius for β. Namely we consider

β̂λn
= arg min

‖β‖2≤b0
(L(β) + λn‖β‖1) , (10)

where the safety radius b0 is chosen such that β⋆ is feasible. A key benefit of
the following results is their practical impact: in Section 4 we will see that a
simple incremental algorithm yields consistent estimates.

Since the solutions need not belong to the local convexity region of MD-Lasso,
we do not make use of Assumption [A3]. Instead we introduce the following
assumption: [A3′] The rows of the design matrix X are independently drawn
from N(0,Σ) where Σ has the minimum eigenvalue λmin(Σ).

The following theorem guarantees that any of the local solutions are consis-
tent. The theorem is obtained by adapting the work of [24], noting that global
convexity is actually not required for ℓ2 consistency (see the Appendix for more
details).

Theorem 3. Consider the linear regression model (1) and assume that the

support of the true model coefficients β⋆ has cardinality s. Let β̃λn
be any local

optima of (10) under the assumptions of Theorem 2. Suppose that the scale pa-
rameter c and the radius parameter b0 of (5) are selected so that (i) the model
error distribution can satisfy the tail condition: t√c/2 < (1+((64/21)e−3/2)−1 <

0.6, and (ii) ‖β⋆‖2 ≤ b0 ≤ √
c/(8κu

√
logn). Also suppose that λn is set as

2max
{
ξc,γ , 2κ2b0

}√
log p/n where κ1 = 1

32

(
λmin(Σ)

)2
(C(1 − tλν ) − 2e−2/3),

3Note that a mapping between this problem and the original penalized MD-Lasso problem
is possible due to the invexity of the loss and properties of the ℓ1-norm [2].
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κ2 = 49Cκ2
u

√
logn + 9

4λmin(Σ)
√

maxΣjj , and ξ2c,γ , C are as defined in Theo-
rem 2. Then, with probability at least 1 − α1 exp(−α2nλ

2
n), for some universal

positive constants α1 and α2, the local optimal error is guaranteed to be consis-
tent:

‖β̃λn
− β⋆‖2 ≤ 3

κ1
max

{
ξc,γ , 2κ2b0

}
√

s log p

n
.

A proof is given in the appendix. We note that in order to have a valid
selection for b0 from the condition (ii) in the theorem,

√
c should at least scale

with ‖β⋆‖2
√
logn. This is the cost of the non-convexity. However, the cost is

mitigated when s and ‖β⋆‖∞ are bounded since ‖β⋆‖2 ≤ √
s‖β⋆‖∞.

4. Optimization and parameter tuning

We first describe an incremental method. A connection with re-weighted least
squares follows thereafter. We conclude this section by describing a procedure
for parameter tuning.

4.1. Incremental algorithm

We first show an incremental method. The need for solving very large problems
has led to a recent resurgence of interest in first-order optimization methods,
such as the composite gradient method of Nesterov [31] and the incremental
methods of Bertsekas [11] (adopted e.g. in [35, 28]). We focus on the MD-Lasso
objective with “safety” radius of (10).

The algorithm proceeds with the following updates

β(t+1) = Π{‖β‖2≤b0}
(
argmin

β

{
L(β(t)) + 〈∇L(β(t)),β − β(t)〉

+
ρ

2
‖β − β(t)‖22 + λ‖β‖1

})
, (11)

where Π{‖β‖2≤b0} denotes the projection onto the ℓ2 ball of radius b0. It is im-
portant to note that the algorithm is guaranteed to converge to a local minimum
even if the loss L is not convex [11] and regardless of the initialization. Hence,
the algorithm can be readily instantiated for MD-Lasso.

Instantiation of the incremental algorithm for MD-Lasso. Denote by
S the soft-thresholding operator defined as

Sλ(u) = sign(u)max(|u| − λ,0), (12)

where all operations are applied element-wise on a vector u. Each incremental
algorithm update can be computed by (at most) two simple operations. The
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first operation consists in computing pρ(β
(t)) = Sλn/ρ(β

(t) − 1
ρ∇L(β(t))). Let

ri = yi −Xiβ
(t) denote the residual for the ith sample, and define

wi =
exp

(
− 1

2cr
2
i

)
∑n

j=1 exp
(
− 1

2cr
2
j

) . (13)

Let R̃ = (r̃1, . . . , r̃n)
′ where r̃i = riwi. Then ∇L(β(t)) = −X ′R̃, and R̃ can be

interpreted as a generalized residual. The thresholding operation boils down to
the following simple step:

pρ(β
(t)) = Sλn/ρ(β

(t) +
1

ρ
X ′R̃). (14)

If the ℓ2-norm of the projection exceeds the safety radius, a second operation
has to be carried out to project onto the the ℓ2 ball of radius b0. The overall
procedure is summarized by Algorithm 1.

Algorithm 1 Incremental Algorithm for MD-Lasso

Initialize β(0)

repeat

Given β(t−1), compute w(t) from (13) and the corresponding generalized residuals R̃
(t)

Update. β(t) ← pρ(β(t−1)) as in (14)
until stopping criterion is satisfied.

Consistency of the local optima found by the incremental algorithm.
The incremental algorithm applied to the objective of (10) is guaranteed to
converge to a local optimum [11]. Hence theorem 3 shows that any local op-
timum obtained by the incremental algorithm is consistent, regardless of the
initialization.

4.2. Re-weighted penalized least squares

Some interesting insights on the robustness of MD-Lasso can be gained by
examining the descent direction in the incremental procedure, as explicated
in (14). Given an initial solution β, under the traditional squared loss one
would get ∇jL(β) = − 1

n

∑n
i=1 X

j
i (Yi − X ′

iβ). For the MD-Lasso we have

∇jL(β) = −∑n
i=1 wiX

j
i (Yi − X ′

iβ), where the weights wi are given in (13).
Hence the descent direction for MD-Lasso can be seen as a “weighted version”
of the direction for usual squared loss, where the weights wi can be interpreted
as being proportional to the likelihood functions of individual data points, i.e.,

wi =
L(Yi|Xi;β)∑n
i=1 L(Yi|Xi;β)

, where L denotes the likelihood function under Gaussian

assumption. Thus data with high likelihood values are given more weights in
the computation of the descent direction. Conversely, data with low likelihood
values, which are more likely to be outliers, contribute less. The connection be-
tween the likelihood functions and weights provides an intuitive insight on the
resilience of the original MD-Lasso to outliers.
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We remark that a similar conclusion can be obtained by considering a first
order approximation of the “log-sum-exp” term in (5) around an initial solution.
This yields an approximate iterative procedure where given initial estimates,
data are first re-weighted by wi in (13) and then passed to a traditional Lasso
solver to provide new estimates, and the procedure is repeated until convergence.
The following algorithm summarizes the procedure.

Algorithm 2 Approximate MD-Lasso as Iteratively Reweighted Lasso

Step1: Given initial estimate β(0) for the regression coefficients (e.g. using ridge regression)

compute weights wi =
exp(− 1

2c
r2i (β

(0)))
∑n

i=1 exp(− 1
2c

r2i (β
(0)))

, where ri(β
(0)) = (Yi −X′

iβ
(0)).

Step 2: Estimate β by minimizing

β̂ = argmin
β

n∑

i=1

wi(Yi −X′

iβ)
2 + λ‖β‖1.

Step 3: If ‖β̂ − β(0)‖2 ≤ ǫ stop. Else, set β(0) = β̂ and go back to Step 1.

While the weighted least squares formulation illustrates most intuitively the
robustness of the MD-Lasso loss, it requires running several individual Lasso
problems. Even though the procedure can benefit from a warm start in each
iteration, it is is computationally more intensive than running the incremental
approach. We therefore do not adopt it in practice and instead prefer the incre-
mental approach. Intuitively, the incremental approach can be interpreted as a
“lazy update” version of the iteratively reweighted least squares.

4.3. Parameter tuning

In practice, the scaling parameter c is unknown and rather than guessing its
value, one might wish to automatically select it, along with the regularization
parameter λ. The challenge is that MD-Lasso (unpenalized) losses for different
values of c, denoted by Lc, are not directly comparable. This is because c1 < c2
implies Lc1(β) > Lc2(β). Hence the selection criterion should penalize large
values of c somehow. A rigorous criterion can be found by inspecting (3) and
(4), and reintroducing the term

∫
f2(Y |X;β)dY = 1/(2π1/2σ) to obtain

dn(β) +

∫
f2(Y |X;β)dY =

1

2
√
πσ

− 2

n

n∑

i=1

1√
2πσ2

exp(− 1

2σ2
(Yi −X ′

iβ)
2).

Based on this consideration, we propose as selection criterion the minimization
of the following loss on evaluation data

L̃eval(β) =
1√
c

(
1

23/2
neval −

neval∑

i=1

exp

(
− (Yi −X ′

iβ)
2

2c

))
,

where neval is the evaluation sample size.
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The overall tuning procedure can then be summarized as follows. For each
c in a grid of candidate scaling parameters and each λ in a grid of candidate
tuning parameters, solve the MD-Lasso problem on training data and obtain
the estimate β̂c,λ. Compute L̃eval(β̂c,λ). Pick the pair (c, λ) with smallest loss

L̃eval. The procedure can be naturally extended to cross-validation.

5. Numerical results

We compare the proposed MD-Lasso estimator with the LAD-Lasso [43], the
Extended Lasso [32] and the traditional Lasso [38]. We also present a strategy
to automatically select the MD-Lasso scaling parameter c.

5.1. Simulation results

Model setup. We simulated data from the linear regression model

Y = Xβ⋆ + η.

For the predictors, we consider two data generation models:

(P1) Toeplitz design: The n× p predictor matrices X have rows sampled inde-
pendently from N (0,ΣX) where (ΣX)ji = 0.5|i−j|.

(P2) Factor model with two factors: let φ1 and φ2 be two latent variables fol-
lowing i.i.d. standard normal distributions. Each predictor variable Xk,
for k = 1, , p, is generated as Xk = fk,1φ1 + fk,2φ2 + ǫk, where f1

k , f
2
k and

ǫk have i.i.d. standard normal distributions for all k = 1, . . . , p.

For the error term distribution, we consider five cases:

(E1) Normal: η ∼ N (0, 1).
(E2) Laplace: η ∼ Laplace(0, 1).

(E3) Mixture of Gaussians: η∼ hN (0,1)+(1−h)N (0,
√
225)√

0.9∗1+0.1∗225 where h∼Bernoulli(0.9).

(E4) Student’s t with degrees of freedom 4: η ∼ Student(0, 4).
(E5) Cauchy: η ∼ Cauchy(0, 1).

In each simulation study, we consider both n = 200 and n = 1000 observa-
tions, and p = 1000 predictors. The entries of true model coefficient vector β⋆

are set to be 0 everywhere, except for a randomly chosen subset of s coefficients,
which are chosen independently and uniformly in (1, 3). The size s of the set of
non-zero coefficients is randomly set between 3 and 10.

Parameter tuning. We consider holdout-validated estimates, which are ob-
tained by selecting the tuning parameter λ that minimizes the average loss on a
validation set. In a first set of experiments, we hold the parameter c fixed at var-
ious values so as to examine the impact of c for various error distributions. In a
second set of experiments, c is selected automatically along with λ as described
in Section 4.3.
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Performance metrics. To measure the estimation accuracy, we report the
model error defined as

ME(β̂,β⋆) = (β̂ − β⋆)′ΣX(β̂ − β⋆).

To measure variable selection accuracy, we use the F1 score [40] defined by
F1 = 2PR/(P +R), where P is precision (fraction of correctly selected variables
among selected variables) and R is recall (fraction of correctly selected variables
among true relevant variables).

Results. For each setting, we present the average of the performance mea-
sure based on 100 simulations. Figure 4 and Figure 5 provide boxplots for the
Model Error and the variable selection accuracy, respectively of MD-Lasso. In
the figures MD-x denotes MD-Lasso with c = x and x = 1, 2, 5, 10, 25, 50, 100,
Lasso denotes the Least Squares Lasso, which is the limiting case of MD-Lasso
for c → ∞.

From the figures we can see that the simulations results are in agreement
with the theoretical results of Section 3. Specifically if the scaling parameter
is too small, the performance of the MD-Lasso method degrades, as the re-
stricted strong convexity property is violated. As expected, the performance of
MD-Lasso gets closer to that of Lasso as c becomes large. For light tail distribu-
tions (e.g. Gaussian and Laplace) we see that as long as c is larger or equal to
the minimum value required for restricted strong convexity, the performance of
MD-Lasso is quite insensitive to the choice of c, while the sensitivity increases
for heavy tailed distributions (e.g. Student’s t and Cauchy). It is intriguing to
note that in many cases the variable selection accuracy of MD-Lasso decreases
monotonically with the scaling parameter, suggesting that the restricted strong
convexity of the loss might be more influential on the model error than on the
variable selection accuracy.

Figure 6 and Figure 7 provide boxplots for the Model Error and the vari-
able selection accuracy, respectively of MD-Lasso with automatic selection of
the scaling parameter c (denoted by MD in the figures), and comparison meth-
ods. Lasso denotes the Least Squares Lasso, LAD denotes the Least Absolute
Deviation Lasso, and ExLasso denotes the Extended Lasso.

For Laplace distributed errors, LAD-Lasso performs the best in terms of
model error. This can be explained by the fact that the noise distribution
matches the LAD-Lasso loss exactly. However, MD-Lasso achieves higher vari-
able selection accuracy. Even for Gaussian errors, MD-Lasso is often able to
outperform the Least Squares Lasso in terms of variable selection accuracy.
This might be partly attributable to a better parameter selection by MD-Lasso.
Indeed we noticed that MD-Lasso tends to select fewer variables than standard
Lasso. For instance, under Gaussian errors, Toeplitz design, with n = 100, and
p = 1000, MD-Lasso selects on average 8 variables while Lasso selected over 11
variables.

The results for Cauchy distributed errors underscore the need for a non-
convex loss function as offered by MD-Lasso, and the limited ability of convex
loss functions (including LAD-Lasso) in dealing with very large outliers.
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Fig 4. Influence of the scaling parameter c on the performance of MD-Lasso (Lasso corre-
sponds to c → ∞). Model error (the lower the better), from top to bottom row, errors with a
Gaussian, Laplace, Gaussian Mixture, Student t (4 df) and Cauchy distribution. TM=Toeplitz
Model, FM=Factor Model.
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Fig 5. Influence of the scaling parameter c on the performance of MD-Lasso (Lasso corre-
sponds to c → ∞). Variable selection accuracy (F1 score, the higher the better), from top to
bottom row, errors with a Gaussian, Laplace, Gaussian Mixture, Student t (4 df) and Cauchy
distribution. TM=Toeplitz Model, FM=Factor Model.
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Fig 6. Model error (the lower the better) for the comparison methods and, from top to bot-
tom row, errors with a Gaussian, Laplace, Gaussian Mixture, Student t (4 df) and Cauchy
distribution. TM=Toeplitz Model, FM=Factor Model.
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Fig 7. Variable selection accuracy (F1 score, the higher the better) for the comparison methods
and, from top to bottom row, errors with a Gaussian, Laplace, Gaussian Mixture, Student t
(4 df) and Cauchy distribution. TM=Toeplitz Model, FM=Factor Model.
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Fig 8. (a) Normal QQ-plots of residuals for MD-Lasso in the eQTL study. (b)“Circle” graph
of the chromosomes highlighting the location of the target APOE gene, a subset of SNPs
selected by MD-Lasso only (unmarked), by both MD-Lasso and LAD-Lasso (marked as ∗),
and by Lasso only (marked as ∗∗) for the trans-eQTL study.

5.2. Application to eQTL mapping

We apply MD-Lasso and other methods for comparison to the task of expression
quantitative trait locus (eQTL) mapping. The main goal of eQTL studies is to
identify the genetic variants (SNPs) that are associated with gene expression
traits. In our analysis we use data on Alzheimer’s disease (AD) generated by
Harvard Brain Tissue Resource Center and Merck Research Laboratories4. The
dataset concerns n = 206 AD cases with SNPs and expression levels in the
visual cortex. We study the associations between p = 18137 candidate SNPs
and the expression levels of APOE gene, which is a key Alzheimer’s gene [41].
Specifically, persons having an APOE ǫ4 allele have an increased chance of
developing the disease; those who inherit two copies of the allele are at even
greater risk.

The tuning parameters for all methods were chosen using a five-fold cross
validation. To start, we investigated the Normal QQ-plots of the residuals from
different regression methods and saw that the residuals from the fitted regres-
sions have very heavy right tails. As an example the plot of the MD-Lasso is
shown in Figure 8(a); the plots for the competing methods look similar. This
suggests that for this eQTL data analysis it might not be judicious to use meth-
ods that lack robustness to noise and model misspecification.

For ease of comparison, we first focus on a cis-eQTL analysis, namely we look
into the subsets of SNPs within chromosome 19 (where gene APOE is located).

To get a measure of confidence in the associations identified, we apply the
bootstrap procedure (see Davison and Hinkley [14] for a review) as follows. Given
the original data, we randomly draw 100 datasets by sampling with replacement
the rows of the original data, so that each dataset has the same number of rows
as the original data. We then apply the comparison methods to each of the 100
bootstrap datasets. For each SNP selected using the original dataset, we count

4http://sage.fhcrc.org/downloads/downloads.php

http://sage.fhcrc.org/downloads/downloads.php
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Table 1

Top 20 selected SNPs on chromosome 19 by comparison methods for the cis-eQTL study and
their “confidence score” (the number of times the SNP is selected in 100 bootstrap samples).

MD-Lasso LAD-Lasso Extended Lasso Lasso

rs5021327 86 rs1120559 81 rs2285751 100 rs280519 87
rs280519 77 rs1654322 75 rs11882861 52 rs2162296 71

rs16964772 76 rs11882490 74 rs1433078 45 rs10408465 69
rs2112460 76 rs3745297 74 rs17314711 43 rs12459372 67
rs7249518 76 rs2116877 70 rs10409463 41 rs16980543 63
rs1599860 74 rs3746006 68 rs12460915 37 rs12327600 42
rs1673130 72 rs353989 67 rs2419549 37 rs13730 40
rs1120559 71 rs10404242 66 rs11665711 32 rs1357879 39
rs11672071 71 rs11878850 66 rs16973403 32 rs1402325 35
rs4805590 71 rs16964772 65 rs1402325 30 rs17314711 28
rs2395891 70 rs3108549 63 rs1422259 29 rs1549951 17
rs352826 69 rs16964420 61 rs12975977 28 rs2304184 16
rs7246997 69 rs184239 59 rs276731 28 rs2395891 16
rs10404242 67 rs2292033 59 rs1013414 27 rs11084566 15
rs3745297 67 rs420703 59 rs12459372 27 rs16964772 13
rs2301742 66 rs1549951 58 rs1560730 27 rs1120559 12
rs2304184 64 rs16973403 58 rs10414066 26 rs11882490 12
rs11084566 63 rs2301742 58 rs12609039 24 rs10412301 11
rs3108549 63 rs280519 58 rs2195948 22 rs276725 11

NA NA rs11881644 57 rs12976494 21 rs2304185 10

the number of times it appears in the bootstrap datasets. There is a sharp
contrast among methods with respect to the number of selected SNPs. MD-
Lasso and LAD-Lasso select fewer SNPs than Extended Lasso and Lasso (19
selected coefficients for MD-Lasso, 20 for LAD-Lasso, and over a 100 for Lasso
and Extended Lasso). For each method, the top 20 selected SNPs according to
the amplitude of their regression coefficients are listed in Table 1 along with
their “confidence score”.

From Table 1 we can see that MD-Lasso and LAD-Lasso share 9 common
SNPs. In contrast Extended Lasso share no common SNPs with MD-Lasso or
LAD-Lasso, and Lasso shares at most 2 common SNPs with other methods.
The SNPs identified by MD-Lasso are selected in average 71% of the time in
the bootstrap datasets, those by LAD-Lasso 65% of the time, those by Extended
Lasso 35% of the time, and those by Lasso 37% of the time. While a low vari-
ability in the selection process is not a guarantee that the selection includes the
SNPs of interest, a high variability in the selection results (and a corresponding
low confidence score like for Lasso and Extended Lasso) makes a consistent se-
lection of interesting SNPs less plausible. We thus hypothesize that non-robust
methods may select too many spurious associations due to their inability to
cope with outliers and heavy-tailed errors.

We now focus on the results obtained by the comparison methods on the full
set of chromosomes. As the genetics of Alzheimer’s disease are not yet fully un-
derstood, the variable selection results can only lead to qualitative statements
about the performance of each method. To provide a more quantitative assess-
ment, we evaluate the predictive accuracy of the various methods by randomly
partitioning the data into training and test sets, using 150 observations for
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Table 2

Average test absolute error (MAE) and square error (MSE) with standard deviation for the
models output by MD-Lasso and representative comparison methods on the eQTL dataset.

(Smaller values indicate higher predictive accuracy).

MD-Lasso LAD-Lasso Extended Lasso Lasso Trim. Lasso

MAE 11.90± 1.52 20.00± 3.04 175.75± 14.25 38.62± 5.45 35.71± 4.46
MSE 6.11± 1.39 12.18± 2.99 858.90± 160.85 20.13± 9.87 18.22± 9.15

training and the remainder for testing. To get a sense of how a robust criterion
performs, we also tested trimmed Lasso regression, removing the worst 10% ob-
servations according to the absolute residuals. We computed both the absolute
prediction error and squared prediction error for the testing set for the model
estimated using the training set. We repeated this process 20 times (using 20
random partitions). The results are presented in Table 2. Overall the predictive
performance of MD-Lasso is superior to the other methods. We can also see that
trimming is not as beneficial as using MD-Lasso or LAD-Lasso.

To conclude the eQTL analysis, we discuss some biologically interesting SNPs
selected by various methods. These are depicted in Figure 8(b), which shows the
chromosomes, highlights the position of the target APOE gene and the selected
SNPs along with their closest gene. To facilitate the following discussion, we
refer to the genes close to the corresponding SNPs. We first describe results
pertaining to MD-Lasso, which are not found by other methods. Gene DLG2 is
a memory-associated protein known to be associated to Schizophrenia. However,
a recent study showed that conservation of DLG2 functions could potentially
reduce the symptoms of Alzheimer’s [22]. It has been shown that the inactivation
of the gene GRIK2 can cause severe learning disabilities. Gene GNA14 has
been identified by several studies as linked to Alzheimer’s disease progression
(see, e.g. Arefin et al. [4]). It has been indicated that SNPs in gene GAB2
can modify the risk of late-onset Alzheimer’s disease in APOE ǫ4 carriers and
plays an important role in Alzheimer’s pathogenesis (see, e.g. Reiman et al.
[34]). Remarkably, MD-Lasso was the only method to select SNPs in the coding
region of GAB2.

We also checked for interesting SNPs selected by other methods. Most of them
were also selected by MD-Lasso. For instance, SNP rs17138233, located within
gene SNX13, was selected by both MD-Lasso and LAD-Lasso. The carboxyl ter-
minal fragment of SNX13 was reported to associate with activated H-Ras [17],
which has been implicated in the process of neurodegeneration in Alzheimer’s
disease [5]. Our finding is quite intriguing as the functional consequence of the
interaction between SNX13 and H-Ras is not fully understood. An example
among the few interesting SNPs discarded by MD-Lasso is rs7156281, located
near gene LINGO-1 , which was identified by Lasso only. LINGO-1 is known to
be involved in neurodegenerative processes including Alzheimer’s disease [25].

Overall, our results suggest that the MD-Lasso method achieves greater pre-
dictive accuracy and stability than other methods, and is successful in identify-
ing plausible and relevant SNPs in eQTL mapping.
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6. Concluding remarks

We have shown that by combining minimum distance estimation with ℓ1 penal-
ization the robustness of minimum distance estimation can be preserved in the
sparse high-dimensional regression setting. Our theoretical results indicate that
the proposed MD-Lasso estimator can achieve optimal convergence rates even
under heavy-tailed error distributions. These results hinge on the selection of
a scaling parameter of MD-Lasso. If the scaling parameter is very large, MD-
Lasso is identical to standard least-squares Lasso. Combining robustness with
fast convergence rates requires non-convexity of the loss function, and the ob-
jective function can have multiple minima as a consequence. One set of results
holds for all local minima within a local convexity region around the desired
solution (and we have provided reasonable conditions under which these are the
only existing local minima of the objective function). Another set holds beyond
the local convexity region but requires constraining the ℓ2-norm of the feasible
solutions within a safety radius. This guarantees the convergence of a simple
first-order optimization method to consistent solutions regardless of the initial-
ization. These desirable properties were confirmed by numerical examples. The
MD-Lasso framework should prove equally useful in other statistical models
such as generalized linear models, which will be investigated in a future study.
Another pertinent direction for future work is to consider minimum-distance
loss functions beyond those stemming from likelihood-based models.

Appendix A: Proofs of lemmas and theorems

A.1. Breakdown point analysis: Proof of Theorem 1

The proof technique is similar to Alfons et al. [1]. Assume thatm = n−l observa-
tions are corrupted, and l observations are kept intact. For convenience assume
that the uncorrupted observations are placed at the beginning of the sample, so
one actually observes {(X1, Y1), . . . , (Xl, Yl), (X

′
l+1, Y

′
l+1), . . . , (X

′
n, Y

′
n), } where

(X ′
i, Y

′
i ) denote the corrupted observations. Let K = maxi=1,...,l |Yi|, where Yi

are the uncorrupted responses. We have

Qc(0) = −c log

(
l∑

i=1

exp

(
−Y 2

i

2c

)
+

n∑

i=l+1

exp

(
−Y ′

i
2

2c

))

≤ −c log(l exp(−K2

2c
) + 0))

= −c log l +
K2

2
. (15)

For any β we have

Qc(β) ≥ −c logn+ λ‖β‖1 ≥ −c log n+ λ‖β‖2. (16)
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Let K ′ = λ−1(c log n− c log l+K2/2+1). If β is such that ‖β‖2 ≥ K ′ then (16)
and (15) imply

Qc(β) ≥ −c log l +
K2

2
+ 1 > Q(0).

By contraposition we thus obtain that

Qc(β) ≤ Q(0) ⇒ ‖β‖2 < K ′. (17)

Recall that the MD-Lasso loss is non-convex, hence multiple local minima may
exist. However, there is at least one minimizer, β̂, such that Qc(β̂) ≤ Q(0). Using

(17), we get that for such β̂ we have ‖β̂‖2 ≤ K ′. Here K ′ = λ−1(c log(n/(n −
m)) +K2/2 + 1) is independent of the corrupted sample. Hence for any finite
c we can tolerate at least m = αn corruptions where α is arbitrarily close to 1,
as in such cases K ′ < ∞ even as n → ∞ and regardless of the nature of the
corruptions.

A.2. Gradient bounds: Proof of Lemma 1 and Lemma 2

Define pi for i = 1, . . . , n as

pi =
exp(−η2

i

2c )
∑n

j=1 exp(−
η2
j

2c )

and f j(η1, . . . , ηn) =
∑n

i=1 ηipiX
j
i . Note that Xj

i are constants with |Xj
i | ≤ M.

We have ∇jL(β
⋆) = f j(η1, . . . , ηn).

Notation and lemma. Let the event E−
γ,λ for λ ≥ 0 and γ < 1 be defined as∑n

i=1 1{|ηi| < λ} < nγ(1− tλ). With Hoeffding’s inequality we have for γ < 1

P (E−
λ,γ) ≤ exp

(
− 2n(1− γ)2(1− tλ)

2
)
. (18)

Likewise let E+
γ,λ be defined as

∑n
i=1 1{|ηi| ≥ λ} > nγtλ. With Hoeffding’s

inequality we have for γ > 1 again

P (E+
λ,γ) ≤ exp(−2n(γ − 1)2t2λ). (19)

Showing that E[fj ] = 0. If E[η] is well defined this is straightforward
(e.g. for Gaussian, Laplace, Student’s, Gaussian mixture etc). The following
deals with the case where E[η] is undefined (e.g. Cauchy). Assume that the error
term has a symmetrical and bounded probability density function μ. Namely for
all x ∈ R, μ(x) = μ(−x) and there exists an A > 0 such that 0 ≤ μ(x) ≤ A < ∞.

Since the predictors are bounded, we have by Hölder’s inequality

|E[f j ]| = |
n∑

i=1

E[ηipi]X
j
i | ≤ ‖Xj‖∞

n∑

i=1

|E[ηipi]| = M
n∑

i=1

|E[ηipi]|. (20)
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Now

|E[ηipi|ηj for all j �= i]| ≤ 1

b
|E[ηi exp

(
− η2i

2c

)
]|, (21)

where b =
∑

j 	=i exp(−
η2
j

2c ). We have

E[ηi exp
(
− η2i

2c

)
] =

∫ ∞

−∞
μ(x)x exp

(
−x2

2c

)
dx

= −
∫ ∞

0

μ(x)x exp

(
−x2

2c

)
dx+

∫ ∞

0

μ(x)x exp

(
−x2

2c

)
dx,

where the last equation comes from the fact that μ is symmetrical.
Now we have

0 ≤
∫ ∞

0

μ(x)x exp

(
−x2

2c

)
dx ≤ A

∫ ∞

0

x exp

(
−x2

2c

)
dx

= Ac

Hence
∫∞
0

μ(x)x exp
(
− x2/(2c)

)
dx is finite and thus E[ηi exp

(
−η2i /(2c)

)
]| = 0.

Together with (20) and (21) we conclude that E[f j ] = 0.

McDiarmid’s inequality. We have to find bounds δi such that for all η1, . . . ,
ηn, η̃i and all i,

|f j(η1, . . . , ηi, . . . , ηn)− f j(η1, . . . , η̃i, . . . , ηn)| ≤ δi. (22)

Once we have these, since E[f ] = 0, by McDiarmid’s inequality we have for all
t > 0

P (|f | > t) ≤ 2 exp
(
− 2t2∑

i δ
2
i

)
(23)

If the bounds δi in (22) hold only with probability 1− α, we have

P (|f | > t) ≤ 2 exp
(
− 2t2∑

i δ
2
i

)
+ α (24)

Bounds. Now, for a given η1, . . . , ηi−1, ηi+1, . . . , ηn, we have, if ηi can take
any real value,

max
x

|f j(η1, . . . , ηi−1, x, ηi+1, . . . , ηn)| ≤ M max
x≥0

| x exp(−x2

2c )

b+ exp(−x2

2c )
|+ const

≤ M max
x≥0

|x exp(−
x2

2c )

b
|+ const,

where b =
∑

j 	=i exp(−
η2
j

c ). Now, maxx≥0 x exp(−x2

2c ) is attained at x =
√
c and

the maximal value is
√
c/e. Hence the lhs in (22) is bounded by

max
η,η̃

|f j(η1, . . . , ηi, . . . , ηn)− f j(η1, . . . , η̃i, . . . , ηn)|
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≤ 2M max
x

|f j(η1, . . . , ηi−1, x, ηi+1, . . . , ηn)|

≤ 2M

√
c/e

b
.

On the other hand, if |η| is constrained to be within λ, and λ ≤ √
c then the

equivalent bound becomes

2 max
x:|x|≤λ

|f j(η1, . . . , ηi−1, x, ηi+1, . . . , ηn)| ≤ 2λ exp(−λ2

2c )

b
. (25)

Fixing a particular value of λ, we have by (19) that with probability at most
exp(−2nt2λ) a proportion of at least 2tλ of all samples have value larger in
absolute value than λ. Hence the sum of all δ2i is bounded with probability
1− exp(−2nt2λ) by

n−1
n∑

i=1

δ2i ≤ M(1− 2tλ)
(
2
λ exp(−λ2

2c )

b

)2

+M(2tλ)
(
2

√
c/e

b

)2

.

Bounding b. Let b =
∑

j 	=i exp(−η2j /(2c)). Let Eb,λ′,γ be the event

∑

j 	=i

1{|ηj | ≥ λ′} > nγtλ′ .

We have E[
∑

j 	=i 1{|ηj | ≥ λ′}] = (n− 1)tλ′ . By Hoeffding’s inequality,

P
(∑

j 	=i

1{|ηj | ≥ λ′} > E[
∑

j 	=i

1{|ηj | ≥ λ′}] + t
)

≤ exp
( −2t2∑

j 	=i(1− 0)2

)
,

since 1{|ηj | ≥ λ′} ∈ [0, 1]. Setting t = (n(γ − 1) + 1)tλ′ we obtain

P (Eb,λ′,γ) ≤ exp
(−2((n(γ − 1) + 1)tλ′)2

n− 1

)

and hence, since exp(−x) is decreasing,

P
(
b < nγtλ′ exp

(
− λ′2

2c

))
≤ exp

(−2 (n(γ − 1) + 1)
2
t2λ′

n− 1

)
.

For γ = 2 and λ′ = 1 it follows that

P
(
b ≥ 2nt1 exp(−

1

2c
)
)

> 1− exp
(−2 (n+ 1)

2
t21

n− 1

)
.

Hence, with probability at least 1− exp(−2nt2√
1
)− exp(−2nt2λ),

n∑

i=1

δ2i ≤ M2e1/c

nt21

[
(1− 2tλ)λ

2e−λ2/c +
2ctλ
e

]
.
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In summary, we have from (24) that

P (|f j | > t) ≤ 2 exp
(
− 2nbλ,ct

2) + exp(−2nt21) + exp(−2nt2λ), (26)

where bλ,c =
t21

M2e1/c

[
(1−2tλ)λ

2+ 2ctλ
e

]−1

with λ ≤ √
c. By a union bound over

the predictors we obtain

P ( max
j=1,...,p

|fj(η1, . . . , ηn)| > t) ≤ 2 exp
(
− 2nbλ,ct

2 + log p)

+ exp(−nt21/2 + log p) + exp(−2nt2λ + log p),

We can set t2 ≥ b−1
λ,c log p/n and λ =

√
c. We remark that it seems safe to

assume that log p/n → 0. However, if we choose c as a function of n we still
need to make sure that tλ = ω(1/

√
n), where λ <

√
c and ω denotes the “Small

Omega”.

Bernstein’s inequality. The random variable zi = ηi exp(−η2i /(2c)) is a
mean-zero random variable. Furthermore it is bounded in absolute value by√
c/e and hence its variance is guaranteed to exist and is at most c/e (regard-

less of whether or not the variance of ηi is well-defined). We can thus apply
Bernstein’s inequality as follows.

P{
∑n

i=1 zi
n

> t} ≤ exp
(
− n2t2

2(
∑n

i=1 E[z2i ] +
√

c
e
nt
3 )

)
.

We now specialize the above bounds in cases where the variance of zi is com-
putable in closed form.

Gaussian errors. If (ηi) is a zero-mean gaussian sequence with variance σ2,
let dσ,c = (c/(2σ2 + c))3/2σ2. Then E[z2i ] = dσ,c. By a union bound over the
predictors we obtain

P ( max
j=1,...,p

|fj(η1, . . . , ηn)| > t)

≤ exp
(
− n

2dσ,c + 2
√
c/e(t/3)

t2 + log p
)

+exp
(
− n

2dσ,c
t2 + log p

)
+ exp(−nt21/2 + log p).

If c is finite, we can set t2 = 4 log(p)dσ,c/n. (This is enough because the

term 2
√
c/e(t/3) becomes negligible compared to dσ,c as n → ∞ as long as

log(p)/n → 0.) If c → ∞ while c log(p)/n → 0, we recover the condition for the
traditional Lasso, namely:

t2 = 4σ2 log p

n
.

Note that if c < σ2 we obtain t2 ∼ 4 log p
n c which is similar (with respect to the

dependence in c) to what we got with McDiarmid’s inequality.
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Laplacian errors. If (ηi) is a sequence of zero-mean Laplace(0, 2b) random
variables then

E[z2i ] = − c2

4b2
+

√
2π

b

( c
2

)3/2

e
c

4b2

(
1 +

c

2b2

)
F̄

(
1

b

√
c

2

)
,

where F̄ (·) denotes the tail probability function of the standard normal distribu-
tion. Note that as c → ∞, E[z2i ] → 2b2. By a union bound over the predictors,

P ( max
j=1,...,p

|fj(η1, . . . , ηn)| > t)

≤ exp
(
− n

2db,c + 2
√
c/e(t/3)

t2 + log p
)
+ exp

(
− n

2db,c
t2 + log p

)

+exp(−nt21/2 + log p),

where db,c = E[z2i ]. If c is finite, we can set t2 = 4 log(p)db,c/n. If c → ∞ while
c log(p)/n → 0, we obtain the condition

t2 = 8b2 log(p)/n.

Error distributions with undefined variances (e.g. Cauchy). If the
error distribution has an undefined variance, there is no hope of getting a gradi-
ent condition which would guarantee that the gradient is still finite as c → ∞.
While Bernstein’s inequality is still applicable, as we know that E[z2i ] ≤ c

e ,
McDiarmid’s inequality yields tighter bounds in this case.

A.3. Restricted strong convexity: Proof of Lemma 3

Notation. Let ri, i = 1, . . . , n be the residual for β = β⋆ + tΔ, . Then ri =
(ηi − 〈Xi, tΔ〉). Define p̃i for i = 1, . . . , n as

p̃i =
exp(− r2i

2c )
∑n

j=1 exp(−
r2j
2c )

. (27)

For any λ ≥ 0 let tλ = P (|ηi| > λ).

Preliminary lemma. The following technical lemma establishes the condi-
tions required on the Hessian to guarantee restricted strong convexity of the
loss L in a neighborhood of the true parameter β⋆.

Lemma 4. Let A ⊂ R
p be star-shaped with respect to β⋆ ∈ R

p, namely for
any β ∈ A and t ∈ [0, 1] it holds that tβ⋆ + (1 − t)β ∈ A. Let f : A → R be
a twice-differentiable function. Let the second derivative of f satisfy ∇2f(β⋆ +
tΔ)(Δ,Δ) > 2κ1‖Δ‖2(‖Δ‖2 − κ2‖Δ‖1) for all Δ such that β⋆ +Δ ∈ A′ ⊂ A

and t in (0, 1]. Then for all Δ such that β⋆ + Δ ∈ A′ ⊂ A we have f(β⋆ +
Δ)− f(β⋆)− 〈∇f(β⋆),Δ〉 > κ1‖Δ‖2(‖Δ‖2 − κ2‖Δ‖1).
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Proof of Lemma 4: Consider the function g(t) := f(β⋆ + tΔ) − f(β⋆) −
〈∇f(β⋆), tΔ〉 − t2(κ1‖Δ‖2(‖Δ‖2 − κ2‖Δ‖1)). We need to show that g(1) > 0.
It holds that g(0) = g′(0) = 0. Moreover g′′(t) = ∇2f(β⋆ + tΔ)(Δ,Δ) −
2(κ1‖Δ‖2(‖Δ‖2 − κ2‖Δ‖1)) > 0 on (0, 1]. This implies that g′ is positive on
(0, 1] and g(1) > 0. �

Lemma 4 indicates that it suffices to focus on the Hessian of L and establish
that a lower bound of the form ∇2L(β⋆ + tΔ)(Δ,Δ) ≥ 2κ1‖Δ‖2(‖Δ‖2 −
κ2‖Δ‖1) holds for all Δ in K(S, μ) and t ∈ (0, 1].

Condition on the Hessian of L. We first provide the expression for
∇2L(β⋆ + tΔ)(Δ,Δ), for which we then provide a lower-bound. Let Δ ∈ R

p.
The gradient of L evaluated at a vector β = β⋆+tΔ, 0 ≤ t ≤ 1 can be expressed
as

∇j(L(β)) = −
n∑

i=1

p̃iriX
j
i , j = 1, . . . , p, (28)

Differentiating a second time we obtain

∇2L(β)(Δ,Δ) =
n∑

i=1

(
p̃i
(
1− 1

c
r2i
)
s2i

)
+

1

c

( n∑

i=1

p̃irisi
)2
, (29)

where si = X ′
iΔ.

Let zi = r2i /c. We wish to lower-bound f(zi) = e−zi/2 (1− zi) . Let a
2 < 1. If

zi ≤ a2, it holds that f(zi) ≥ (1−a2)(1− a2

2 ), noting that exp(−zi/2) ≥ (1− zi
2 ).

On the other hand if zi > a2 then f(zi) ≥ −2e−
3
2 . Let

ψ(z) =

{
(1− a2)(1− a2

2 ) if z ≤ a2

−2e
−3
2 if z > a2

(30)

Then (29) can be lower-bounded as follows

∇2L(β⋆ + tΔ)(Δ,Δ) ≥ 1∑n
i=1 exp

(
− r2i /(2c)

)
n∑

i=1

ψ(zi)s
2
i .

Goal. In what follows we shall consider Kν(S, μ) = {Δ ∈ C(S) : ‖Δ‖1 =
ν, ‖Δ‖2 = μ} and show that the probability of the event

E(ν) = { 1
n

n∑

i=1

ψ(zi)s
2
i < g(ν, μ), for some Δ ∈ Kν(S, μ)}

is very small, where g(ν, μ) shall be specified. Then we shall appeal to a peel-
ing argument (see Raskutti et al. [33]) to prove that the event over all Δ ∈
K(S, μ) = {Δ ∈ C(S) : ‖Δ‖2 = μ} is also very small.

We begin by proving a tail bound for

Z̃(ν) = sup
∆∈Kν(S,μ)

∣∣∣∣∣
1

n

n∑

i=1

(ψ(zi)− E(ψ(zi)))s
2
i

∣∣∣∣∣ .
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Step 1: Lower-bounding 1

n

∑n

i=1
Eψ(zi)s

2

i .

Let ǫn ∈ R be such that 2κu

√
lognμ/

√
c ≤ ǫn < a and let λμ =

√
c(a− ǫn). We

first show that
E[1{zi ≥ a2}] = P (zi ≥ a2) ≤ tλµ ,

where tλµ = P (|ηi| > λμ).
Indeed, P (zi ≥ a2) = P (|ηi−tX ′

iΔ| > a
√
c) = P (ηi > a

√
c+tX ′

iΔ)+P (ηi <
−a

√
c+ tX ′

iΔ). By Assumption [A4] we have

P
(
|X ′

iΔ| ≥ δ
)
≤ 2 exp

(
− δ2

2κ2
u‖Δ‖22

)
for all δ > 0, (31)

hence it follows maxi |X ′
iΔ| ≤ 2‖Δ‖2κu

√
logn ≤ √

cǫn with probability at least
1− 2/n.

Now P (ηi > a
√
c + tXiΔ) ≤ P (ηi > a

√
c − √

cǫn) and P (ηi < −a
√
c +

tXiΔ) ≤ P (ηi < −a
√
c+

√
cǫn). Thus

P (|ηi − tX ′
iΔ| > a

√
c) ≤ P (|ηi| >

√
c(a− ǫn)) = P (|ηi| > λμ) = tλµ ,

as desired.
We also have E[1{zi < a2}] = 1− P (zi ≥ a2) ≥ 1− tλµ . Thus we obtain

E[ψ(zi)] = (1− a2)(1− a2

2
)P (zi ≤ a2)− 2e−

3
2P (z ≥ a2) (32)

≥ (1− a2)(1− a2

2
)− tλµ

(
(1− a2)(1− a2

2
) + 2e−

3
2

)
. (33)

Hence if

tλµ ≤ (1− a2)(1− a2

2 )

(1− a2)(1− a2

2 ) + 2e−
3
2

,

we have E[ψ(zi)] ≥ 0. Then, noting that
∑n

i=1 exp
(
− r2i /(2c)

)
≤ n, we obtain

E[∇2L(β⋆ + tΔ)(Δ,Δ)] ≥ 1

n

n∑

i=1

Eψ(zi)s
2
i (34)

≥ 1

n

(
Ca(1− tλµ)− 2e−

3
2

) n∑

i=1

s2i

≥ κREμ
2(Ca(1− tλµ)− 2e−

3
2 ), (35)

where Ca = (1−a2)(1− a2

2 )+2e−
2
3 . Here the second inequality comes from (33)

and the last inequality is due to the Restricted Eigenvalue condition (6).

Step 2: Upper-bounding Z̃(ν).
We first show that

|ψ(zi)− Eψ(zi)| ≤
[
(1− a)2(1− a2

2
) + 2e−

3
2

]
.
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Indeed if ψ(zi) ≥ Eψ(zi) we have

|ψ(zi)− Eψ(zi)| = ψ(zi)− Eψ(zi)

≤ (1− a2)(1− a2

2
)− (1− a2)(1− a2

2
)

+tλµ

(
(1− a2)(1− a2

2
) + 2e−

3
2

)

= tλµ

(
(1− a2)(1− a2

2
) + 2e−

3
2

)
.

If ψ(zi) < Eψ(zi) we have

|ψ(zi)− Eψ(zi)| = Eψ(zi)− ψ(zi) ≤ (1− a2)(1− a2

2
) + 2−

3
2 .

Hence
1

n
|ψ(zi)− Eψ(zi)|s2i ≤ 1

n
Ca4κ

2
u logn‖Δ‖22, (36)

and
Z̃(ν) ≤ 4Caκ

2
u lognμ

2, (37)

with Ca =
[
(1− a)2(1− a2

2 ) + 2e−
3
2

]
.

Step 3: Upper-bounding E[Z̃(ν)].
Let (ξi)

n
i=1 be a sequence of i.i.d. Rademacher variables. It holds that

EZ̃(ν)

= E sup
∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

(ψ(zi)− Eψ(zi)) s
2
i

∣∣∣ (38)

≤ 2Eη,ξ sup
∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

ξiψ(Zi)s
2
i

∣∣∣ (39)

≤ 2(1− a
2)(1−

a2

2
)Eη,ξ sup

∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

ξi1{zi ≤ a
2}s2i

∣∣∣

+4e−
2
3Eη,ξ sup

∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

ξi1{zi > a
2}s2i

∣∣∣ (40)

≤ 2((1− a
2)(1−

a2

2
) + 2e−

2
3 )Eξ sup

∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

ξi(si(∆))2
∣∣∣ (41)

≤ 8κu

√
log nµ((1− a

2)(1−
a2

2
) + 2e−

2
3 )Eξ sup

∆∈Kν(S,μ)

∣∣∣ 1
n

n∑

i=1

ξisi(∆)
∣∣∣ (42)

≤ 8κu

√
log nµ((1− a

2)(1−
a2

2
)+2e−

2
3 )Eξ sup

∆∈Kν(S,μ)

‖∆‖1‖
1

n

n∑

i=1

ξiXi‖∞ (43)

≤ 8κu

√
log nµν((1− a

2)(1−
a2

2
) + 2e−

2
3 )Eξ‖

1

n

n∑

i=1

ξiXi‖∞. (44)
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Here (39) follows by a standard symmetrization argument, (40) follows from sim-
ple structural results on Rademacher complexity (see e.g. Bartlett and Mendel-
son [7]), (41) follows by the contraction principle (see Ledoux and Talagrand
[23]), (42) is obtained by applying Talagrand’s comparison theorem (see Theo-
rem 4.12 in Ledoux and Talagrand [23]) noting that for any Δ,Δ′ :∈ Kν(S, μ)
we have

∣∣〈Xi,Δ〉2 − 〈Xi,Δ
′〉2

∣∣ ≤ (4κu

√
lognμ)

∣∣〈Xi,Δ〉 − 〈Xi,Δ
′〉
∣∣ ,

and (43) follows by Hölder’s inequality.
Applying an existing bound on the expectation of sub-Gaussian maxima (e.g.,

see Ledoux and Talagrand [23]) we get

Eξ‖
1

n

n∑

i=1

ξiXi‖∞ ≤ 6κu

√
log p

n
.

Hence we conclude

EZ̃(ν) ≤ 48Caκ
2
u

√
lognμν

√
log p

n
, (45)

where Ca = (1− a2)(1− a2

2 ) + 2e−
2
3 .

Step 4: Tail bound on Z̃(ν). In view of (36), McDiarmid’s inequality im-
plies that for any t > 0 we have

P (Z̃(ν)− EZ̃(ν) ≥ t) ≤ exp

(
− 2nt2

(4Caκ2
u logn)

2

)
,

where Ca = (1− a)2(1− a2

2 ) + 2e−
3
2 . Let

t =
1

2
κREμ

2(Ca(1− tλµ)− 2e−
3
2 ) + Caκ

2
u

√
lognμν

√
log p

n
.

Together with (45) we obtain

P
(
Z̃(ν) ≥ 1

2
κREμ

2(Ca(1− tλµ)− 2e−
3
2 ) + 49Caκ

2
u

√
lognμν

√
log(p)/n

)

≤ exp
(
−

2n
(
1
2κREμ

2(Ca(1− tλµ)− 2e−
3
2 ) + Caκ

2
u

√
lognμν

√
log p
n

)2

(4Caκ2
u logn)

2

)
,

Hence we obtain that the event that for any Δ ∈ Kν(S, μ)

1

n

n∑

i=1

ψ(zi)s
2
i ≤ 1

2
κREμ

2(Ca(1− tλµ)− 2e−
3
2 )− 49Caκ

2
u

√
lognνμ

√
log(p)/n

(46)
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holds with probability at most

exp

(
−n

κ2
RE(Ca(1− tλµ)− 2e−

3
2 )2

2(4Caκ2
u logn)

2
− 1

8

ν

μ log n
log p

)
, (47)

noting that for a ≥ 0, b ≥ 0, it holds that exp(−(a + b)2) ≤ exp(−a2 − b2) and
that ν/μ > 1, since for any u, ‖u‖2 ≤ ‖u‖1. By a peeling argument (see Raskutti
et al. [33] for details) this yields the claim of Lemma 3. �

A.4. Consistency results

We first present a theorem which is the counterpart of Theorem 2, and then
prove both theorems. As noted in section 3.3 the following theorem leverages
Lemma 2 and is thus better suited for errors with well-defined variance.

Theorem 4. Consider the linear regression model (1) and assume that the
support of the true model coefficients β⋆ has cardinality s. Let Hc = {β⋆ +Δ :
‖Δ‖2 <

√
c/(12κu

√
logn)}. Under Assumptions [A1−A4], given the MD Lasso

estimator (5) with scaling parameter c such that t√c/2 < (1+(64/21)e−3/2)−1 <

0.6 and regularization parameter λn = 2ζc
√

log p/n, where ζc is given by ζ2c =

4M2t−2
1 E[η2i e

−η2
i /c]e1/c, any of the solutions in Hc (there is at least one such

solution) satisfies

‖β̂λn
− β⋆‖2 ≤ 32ζc

(C(1− t√c/2)− 2e−
3
2 )κRE

√
s log p

n
(48)

with probability at least

1− α1 exp
(
− α2nλ

2
n

1− α3

√
c log p/n

1 + α3

√
c log p/n

)
,

for n ≥ ζ̃c,γ
s
c log p log n where C = 21/32+2e−3/2 ≈ 1.1, ζ̃c,γ = (96κu/κ1ζc,γ)

2,
and α1, α2, α3 > 0 constants.

A.5. Proof of Theorem 2 and Theorem 4

The proof follows the same arguments as the proof of Theorem 1 in Negahban
et al. [30]. We include details for completeness.

Denote by δ the error tolerances on ‖β̂ − β⋆‖2 in the theorem statements.
Define the function F : Rp → R as

F (Δ) = L(β⋆ +Δ)− L(β⋆) + λn(‖β⋆ +Δ‖1 − ‖β⋆‖1).

Let K(δ, S) = {Δ ∈ C(S) : ‖Δ‖2 = δ}, where δ ≤
√
c

12κu

√
logn

. Let β̂ denote a

minimizer of L(β) + λn‖β‖1 in the local convexity region Hc. Let Δ̂ = β̂−β⋆.
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First, Lemma 1 of Negahban et al. [30] can be seamlessly adapted: since
λn is chosen in the theorem statement such that λn ≥ 2‖∇L(β∗)‖∞ we have
Δ̂ ∈ C(S). Next we note that if F (Δ) > 0 for all Δ ∈ K(δ, S) then ‖Δ̂‖2 ≤ δ.
This is shown by contraposition. If ‖Δ̂‖2 > δ , the line joining Δ̂ to 0 intersects
K(δ, S) at some point tΔ̂ with t ∈ (0, 1). Since L is locally convex on the line
joining (β⋆ + Δ̂) and β⋆, by Jensen’s inequality we have F (tΔ̂) = F (tΔ̂ +
(1 − t)0) ≤ tF (Δ̂). Since F (Δ̂) ≤ 0 then F (tΔ̂) ≤ 0 as well, thus showing the
contrapositive statement.

To prove Theorem 2 and Theorem 4 is thus suffices to establish a lower-bound
on F (Δ) over K(δ, S) for the specific values of δ in the theorem statements. For
any Δ ∈ K(δ, S) due to restricted strong convexity and decomposability of the
ℓ1-norm with respect to the set S, we have F (Δ) ≥ 〈∇L(β⋆),Δ〉 + κ̄1‖Δ‖2 +
λn(‖ΔSc‖1 − ‖ΔS‖1), where κ̄1 := κ1/2 comes from the restricted eigenvalue
condition in (8) and Lemma 3.

By Cauchy-Schwartz we have |∇L(β⋆),Δ〉| ≤ ‖∇L(β⋆)‖∞‖‖Δ‖1. Notice
that λn in the theorems is chosen such that λn ≥ 2‖∇L(β⋆)‖∞ based on the
gradient bounds of Lemmas 1 and 2. In addition ‖Δ‖1 = ‖Δ‖S+‖ΔSc‖1. Hence
we get F (Δ) ≥ κ̄1‖Δ‖2 + λn(

1
2‖ΔSc‖1 − 3

2‖ΔS‖1) ≥ κ̄1‖Δ‖2 − λn

2 (3‖ΔS‖1).
Since ‖Δ‖1 ≤ √

s‖Δ‖2 and ‖ΔS‖2 ≤ ‖Δ‖2 we have F (Δ) ≥ κ̄1‖Δ‖2 −
λn

2 (3
√
s‖Δ‖2), which is strictly positive as long as ‖Δ‖2 ≥ 1

κ̄1
(2λn

√
s). This is

possible as long as 1
κ̄1
(2λn

√
s) ≤

√
c

12κu

√
logn

. For Theorem 2, this will hold as

long as n ≥ ξ̃c,γ
s
c log p log n where ξ̃c,γ = (96)2

κ2
u

κ2
1
ξ2c,γ . For Theorem 4, this will

also hold as long as n ≥ ζ̃c,γ
s
c log p log n where ζ̃c,γ = (96)2

κ2
u

κ2
1
ζ2c,γ . The theorem

statements then follow. �

A.6. Convergence results of local optima: Proof of Theorem 3

Let β̃λn
be any local optimum found by the incremental algorithm. Throughout

the proof, we use the shorthand for local optimal error vector: Δ̃ := β̃λn
− β⋆

for any local optimum β̃λn
. We have two key ingredients in this proof to derive

the consistency of arbitrary local optimum.
The first ingredient is the restricted strong convexity condition, which is also

required in Theorem 2. Suppose that b0 ≤ √
c/(8κu

√
logn). Then, for any local

optimum β̃λn
, ‖Δ̃‖2 ≤ ‖β̃λn

‖2+ ‖β⋆‖2 ≤ √
c/(4κu

√
logn), provided that β⋆ is

also feasible for (10). Now, noting that the proof of Lemma 3 is based on [A3]
and the fact that the error vector lies in the structure C(S), we here make the
alternate assumption [A3’], and utilize a well known inequality conditioned on
[A3’] [33]:

‖XΔ‖2√
n

≥ c1‖Δ‖2 − c2

√
log p

n
‖Δ‖1 for all Δ ∈ R

p (49)

with probability at least 1− c3 exp(−c4n) for c1 = 1
4λmin(Σ), c2 = 9

√
maxΣjj

and some positive constants c3 and c4. With a careful modification of the proof,
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we now have for all Δ̃ ∈ R
p such that ‖Δ̃‖2 ≤ √

c/(4κu

√
logn),

L(β⋆ + Δ̃)− L(β⋆)− 〈∇L(β⋆), Δ̃〉 ≥ κ1‖Δ̃‖22 − κ2

√
log p

n
‖Δ̃‖1‖Δ̃‖2 (50)

similarly as in (7) but now κ1 = 1
64

(
λmin(Σ)

)2
(C(1 − tλν ) − 2e−2/3) and κ2 =

49
2 Cκ2

u

√
logn+ 9

8λmin(Σ)
√

maxΣjj . Furthermore, the proof of Lemma 3 can be
seamlessly modified for slightly different version of RSC condition, as follows:
as in Lemma 4, we define g(t) :=

〈
∇L(β⋆ + tΔ̃) −∇L(β⋆), Δ̃

〉
− t(κ1‖Δ‖22 −

κ2‖Δ‖1‖Δ‖2)) for t ∈ [0, 1]. As long as ∇2L(β⋆ + tΔ)(Δ,Δ) ≥ κ1‖Δ‖22 −
κ2‖Δ‖1‖Δ‖2, we have g(0) = 0 and g′(t) ≥ 0 for t ∈ (0, 1] and hence g(1) ≥ 0:

for all Δ̃ ∈ R
p such that ‖Δ̃‖2 ≤ √

c/(4κu

√
logn), we have with probability

specified in Lemma (3),

〈
∇L(β⋆ + Δ̃)−∇L(β⋆), Δ̃

〉
≥ κ1‖Δ̃‖22 − κ2

√
log p

n
‖Δ̃‖1‖Δ̃‖2 (51)

where κ1 = 1
32

(
λmin(Σ)

)2
(C(1 − tλν ) − 2e−2/3) and κ2 = 49Cκ2

u

√
logn +

9
4λmin(Σ)

√
maxΣjj .

Now, we are ready to show the upper bound of Δ̃ as stated. From the con-
straint of (10), ‖Δ̃‖2 ≤ 2b0, hence the RSC inequality can be represented as

〈
∇L(β⋆ + Δ̃)−∇L(β⋆), Δ̃

〉
≥ κ1‖Δ̃‖22 − κ2

√
log p

n
‖Δ̃‖1‖Δ̃‖2

≥ κ1‖Δ̃‖22 − 2κ2b0

√
log p

n
‖Δ̃‖1 . (52)

The second ingredient handling the local optima is the first-order necessary
condition to be a local optimum:
〈
∇L(β⋆ + Δ̃), β̃λn

− β
〉
≤ −

〈
∂λn‖β⋆‖1, β̃λn

− β
〉

for any feasible β. (53)

Note that this condition reduces to the usual zero sub-gradient condition when
β̃λn

lies in the interior of the constraint set, but is more general one for the
local optimum. (see [24] for further discussion on the local minima and condition
(53)).

Therefore, if we take β = β⋆ in (53), we have

〈
∇L(β⋆ + Δ̃), Δ̃

〉
≤ −

〈
∂λn‖β⋆ + Δ̃‖1, Δ̃

〉 (i)

≤ λn

(
‖β⋆‖1 − ‖β̃λn

‖1
)

≤λn

(
‖β⋆‖1 + ‖Δ̃Sc‖1 − ‖Δ̃Sc‖1 − ‖β̃λn

‖1
)

=λn

(
‖β⋆ + Δ̃Sc‖1 − ‖Δ̃Sc‖1 − ‖β̃λn

‖1
)

(ii)

≤ λn

(
‖β⋆ + Δ̃Sc + Δ̃S‖1 + ‖Δ̃S‖1 − ‖Δ̃Sc‖1 − ‖β̃λn

‖1
)

=λn

(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
, (54)
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where S is true support set of β⋆ as defined earlier, the inequalities (i) and (ii)
hold by respectively the convexity and the triangular inequality of ℓ1 norm.

Now, combining two ingredients in (52) and (54), we obtain

κ1‖Δ̃‖22 − 2κ2b0

√
log p

n
‖Δ̃‖1 ≤ −

〈
∇L(β⋆), Δ̃

〉
+ λn

(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)

≤
∥∥∇L(β⋆)

∥∥
∞‖Δ̃‖1 + λn

(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
.

Since the theorem assumes max
{
‖∇L(β⋆)‖∞ , 2κ2b0

√
log p
n

}
≤ λn

4 , we can con-

clude that

κ1‖Δ̃‖22 ≤
∥∥∇L(β⋆)

∥∥
∞‖Δ̃‖1 + λn

(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
+

(
2κ2b0

√
log p

n

)
‖Δ̃‖1

≤ 3λn

2
‖Δ̃S‖1 −

λn

2
‖Δ̃Sc‖1 (55)

where we have already shown how the term ‖∇L(β⋆)‖∞ can be upper bounded
in Theorem 2. As a result, we can finally have an ℓ2 error bound as follows:

κ1‖Δ̃‖22 ≤ 3λn

2
‖Δ̃S‖1 ≤ 3λn

√
s

2
‖Δ̃S‖2 ≤ 3λn

√
s

2
‖Δ̃‖2

implying that

‖Δ̃‖2 ≤ 3
√
sλn

2κ1
.

At the same time we can also derive ℓ1 error bound using the inequality by (55):

‖Δ̃Sc‖1 ≤ 3‖Δ̃S‖1 .
Hence, combining with ℓ2 error bound, we obtain

‖Δ̃‖1 ≤ ‖Δ̃S‖1 + ‖Δ̃Sc‖1 ≤ 4‖Δ̃S‖1 ≤ 4
√
s‖Δ̃S‖2 ≤ 6sλn

κ1

which completes the proof. �
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