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Abstract— Energy conservation is a critical issue in ad
hoc wireless networks for node and network life, as the
nodes are powered by batteries only. One major ap-
proach for energy conservation is to route a communi-
cation session along the routes which requires the low-
est total energy consumption. This optimization prob-
lem is referred to as minimum-energy routing. While
minimum-energy unicast routing can be solved in poly-
nomial time by shortest-path algorithms, it remains open
whether minimum-energy broadcast routing can be solved
in polynomial time, despite of the NP-hardness of its gen-
eral graph version. Recently three greedy heuristics were
proposed in [8]: MST (minimum spanning tree), SPT
(shortest-path tree), and BIP (broadcasting incremental
power). They have been evaluated through simulations
in [8], but little is known about their analytical perfor-
mance. The main contribution of this paper is the quan-
titative characterization of their performances in terms of
approximation ratios. By exploring geometric structures
of Euclidean MSTs, we have been able to prove that the
approximation ratio of MST is between 6 and 12, and the
approximation ratio of BIP is between 13

3 and 12. On the
other hand, the approximation ratio of SPT is shown to be
at least n

2 , where n is the number of receiving nodes. To
our best knowledge, these are the first analytical results
for minimum-energy broadcasting.

I. Introduction
Ad hoc wireless networks have received significant at-

tention in recent years due to their potential applica-
tions in battlefield, emergency disaster relief and etc [7]
[8]. Unlike wired networks or cellular networks, no wired
backbone infrastructure is installed in ad hoc wireless
networks. A communication session is achieved either
through a single-hop transmission if the communication
parties are close enough, or through relaying by inter-
mediate nodes otherwise. Omnidirectional antennas are
used by all nodes to transmit and receive signals. They
are attractive in their broadcast nature. A single trans-
mission by a node can be received by many nodes within
its vicinity. This feature is extremely useful for multi-
casting/broadcasting communications. For the purpose
of energy conservation, each node can dynamically ad-
just its transmitting power based on the distance of the
receiving nodes and background noise. In the most com-
mon power-attenuation model [6], the signal power falls
as 1

rκ where r is the distance from the transmitter an-
tenna and κ is the a constant between 2 and 4 dependent
on the wireless environment. All receivers have the same
power threshold for signal detection, which are typically
normalized to one. With these assumptions, the power
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required to support a link between two nodes separated
by range r is rκ. A key observation is that relaying signal
between nodes may results in lower transmission than
communicating over large distances due to the nonlin-
ear power attenuation. As a simple illustration, consider
three nodes p1,p2 and p3 with as ‖p1p2‖ > ‖p1p3‖ in
Figure 1 and assume κ = 2. Node p1 wants to send a mes-
sage to node p2. It has two options. It can transmit the
signal directly to node p2, with a energy consumption of
‖p1p2‖2. Alternatively, it can relay the message through
node p3 and have it retransmit to node p2, with a total
energy consumption of ‖p1p3‖2 + ‖p3p2‖2. Therefore if
the angle p1p3p2 is obtuse, the second option consumes
less total energy. A crucial issue is then how to find a
routing with minimum total energy consumption for a
given communication session. This problem is referred to
as the Minimum-Energy Routing [7] [8].

p2 p3

p1

Fig. 1. Reduce energy consumption through relaying.

The minimum-energy broadcast/multicast routing in
a simple ad hoc networking environment has been ad-
dressed by the pioneering work in [8]. To assess the com-
plex trade-offs one at a time, the nodes in the network are
assumed to be a point1 set randomly distributed in a two-
dimensional plane and there is no mobility. Nevertheless,
as argued in [8], the impact of mobility can be incor-
porated into this static model because transmitter power
can be adjusted to accommodate the new locations of the
nodes, as necessary. In other words, the capability to ad-
just transmission power provides considerable “elasticity”
to the topological connectivity, and hence may reduce the

1The terms node, point and vertex are interchangeable in this
paper: node is a networking term, point is a geometric term, and
vertex is a graph-theoretic term.

0-7803-7016-3/01/$10.00 ©2001 IEEE 1162 IEEE INFOCOM 2001

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 09:19:53 UTC from IEEE Xplore.  Restrictions apply. 



need for hand-offs and tracking. In addition, as assumed
in [8], there are sufficient bandwidth and transceiver re-
sources. Under these assumptions, centralized (as op-
posed to distributed) algorithms were presented by [8]
for minimum-energy broadcast/multicast routing. These
centralized algorithms in this simple networking environ-
ment are expected to serve as the basis for further studies
on the distributed algorithms in a more practical network
environment with limited bandwidth and transceiver re-
sources, as well as node mobility.
Three greedy heuristics were proposed in [8] for

minimum-energy broadcast routing: MST (minimum
spanning tree), SPT (shortest-path tree), and BIP
(broadcasting incremental power). They have been evalu-
ated through simulations in [8], but little is known about
their analytical performances in terms of the approxima-
tion ratios. We believe that this analytical performance
is very essential and more convincing in evaluating these
heuristics. For the minimum-energy broadcast routing,
one may come up with many seemingly reasonable greedy
criteria. But it’s hard to tell from simulation outputs
which one is better or poorer. Indeed, all the three heuris-
tics proposed in [8] only have subtle differences. For pure
illustrative purpose, another a slight variation of BIP,
which is referred to Broadcast Average Incremental Power
(BAIP), will be introduced in Section III. These subtle
differences, however, can have great impact on their per-
formance ratios. In fact, we will show that the approx-
imation ratios of MST and BIP are between 6 and 12
and between 13

3 and 12 respectively; on the other hand,
the approximation ratios of SPT and BAIP are at least
n
2 and

4n
ln n − o (1) respectively, where n is the number of

nodes. To our best knowledge, these are the first quan-
tiative characterizations of heuristics for minimum-energy
broadcast routing.
The remaining of this paper is organized as follows. In

Section II, we analyze the challenges for minimum-energy
broadcast routing and briefly overview the three greedy
heuristics developed in [8]. In Section III, we construct
some bad instances to illustrate the poor performance of
both SPT and BAIP. These instances lead to the lower
bounds on the approximation ratios of SPT and BAIP. In
Section IV, we construct instances to obtain lower bounds
on the approximation ratios of MST and BIP. In Section
V, we derive upper bounds on the approximation ratios
of MST and BIP. A cornerstone to the analysis of the up-
per bounds is an elegant structure property of Euclidean
MST, which is explored in Section VI. Finally in Section
VIIwe summarize our results and point out several future
reseach problems.

II. Preliminaries

In this paper, we assume the network nodes are given
as a finite point set P in the two-dimensional plane. For
any κ, we use G(κ) to denote the weighted complete graph
over P in which the weight of an edge e is equal to ‖e‖κ.
The minimum-energy unicast routing is essentially a

shortest-path problem in G(κ). Consider any for a unicast

from a node p ∈ P to another node q ∈ P can be easily
obtained by applying a shortest-path algorithm to G(κ).
Consider any unicast path from a node p ∈ P to another
node q ∈ P:

p = p0p1 · · ·pm−1pm = q.

In this path, the transmission power of node pi for 0 ≤
i ≤ m−1 is ‖pipi+1‖κ and the transmission power of pm
is zero. Thus the total transmission energy required by
this path is

m−1∑
i=1

‖pipi+1‖κ
,

which is the total weight of this path. So by applying any
shortest-path algorithm such as Dijkstra’s algorithm [2],
one can get a minimum-energy unicast routing.
However, for broadcast applications, and in general

multicast applications, the minimum-energy routing is far
more challenging. Any broadcast routing is an arbores-
cence (a directed tree) T rooted at the source node of
the broadcasting that spans all nodes. We use fT (p) to
denote the transmission power of the node p required by
T . Then for any leaf node p of T , fT (p) = 0; and for
any internal node p of T ,

fT (p) = max
pq∈T

‖pq‖κ
,

in other words, the κ-th power of the longest distance
between p and its children in T . The total energy re-
quired by T is then given by

∑
p∈P fT (p). Thus the

minimum-energy broadcast routing is different from the
conventional link-based minimum spanning tree (MST)
problem. Indeed, while the MST can be solved in poly-
nomial time by algorithms such as Prim’s algorithm [2]
and Kruskal’s algorithm, it is still unknown whether
minimum-energy broadcast routing can be solved in poly-
nomial time. In its general graph version, the minimum-
energy broadcast routing can be shown to be NP-hard
[3], and even worse, inapproxiable within a factor of
(1− ε) log∆, where ∆ is the maximal degree and ε
is any arbitrary small positive constant unless NP ⊆
DTIME

[
nO(log log n)

]
by an approximation-preserving

reduction from the Connected Dominating Set problem
[4]. However, this intractness of its general graph ver-
sion does not necessarily imply the same hardness of its
geometric version. In fact, as will be shown later in
the paper, its geometric version can be approximated
within a constant factor. Nevertheless, this suggests
that minimum-energy broadcast routing is considerably
harder than the MST problem.
Three greedy heuristics have been proposed for the

minimum-energy broadcast routing by [8]. The MST
heuristic first applies the Prim’s algorithm to obtain a
MST, and then orient it as an arborescence rooted at the
source node. The SPT heuristic first applies the Dijk-
stra’s algorithm [2] to obtain a SPT, and then orient it
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as an arborescence rooted at the source node. The BIP
heuristic is the node version of Dijkstra’s algorithm for
SPT. It maintains throughout its execution a single ar-
borescence rooted at the source node. The arborescence
starts from the source node, and new nodes are added to
the arborescence one at a time on a minimum incremental
cost basis until all nodes are included in the arborescence.
The incremental cost of adding a new node is the min-
imum additional power increased by some node in the
current arborescence so as to reach this new node. The
implementation of BIP is based on the standard Dijk-
stra’s algorithm, with one fundamental difference on the
operation whenever a new node is added. Whereas Dijk-
stra’s algorithm updates the node weights (representing
the distances), BIP updates the link costs (representing
the incremental power to reach the head node of the link).
This update is performed by subtracting the cost of the
added link from the cost of every link from the source
node of the added link to a node not in new arborescence.
The performance of these three greedy heuristics have

been evaluated in [8] by simulations studies. However,
their analytic performances in terms of the approximation
ratios remain open. The subsequent sections of this paper
will derive the bounds on their approximation ratios.

III. Greedy Is Not Always Good
Greedy approaches are the most natural and widely

used techniques in design practical heuristics for opti-
mization problems. For minimum-energy broadcast rout-
ing, one may think of many greedy heuristics, in addition
to the three greedy heuristics proposed in [8]. The real
challenge, however, is how to come up with a provably
good one. Two greedy criteria may only have slight dif-
ference, but these small variation can have a great impact
on their performance. In addition, some criteria may per-
form quite well or even optimally in some situations, but
may perform very poorly in some other situations. In
this section, we describe two examples, one is SPT, an-
other is a new one. The “bad” instance constructed in
this section can not only lead to lower bounds on their
approximation ration, but also help to design an overall
good greedy criteria. For the simplicity, we only consider
κ = 2 in this section.
We begin with the SPT algorithm. Let ε be a

sufficiently small positive number. Consider m nodes
p1,p2, · · · ,pm evenly distributed on a cycle of radius 1
centered at node o (see Figure 2). For 1 ≤ i ≤ m, let
qi be the point in the line segment opi with ‖oqi‖ = ε.
We consider a broadcasting from node o to these n = 2m
nodes

p1,p2, · · · ,pm,q1,q2, · · · ,qm.

The SPT is the superposition of the paths oqipi. Its total
energy is

ε2 +m (1− ε)2 .

On the other hand, if the transmission power of node o
is 1, then the signal can reach all other points. Thus the

minimum energy is at most 1. So the approximation ratio
of SPT is ε2+m (1− ε)2. As ε −→ 0, this ratio converges
to n

2 = m.

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o

Fig. 2. A bad instance for SPT.

The second greedy heuristic is very similar to Chvatal’s
algorithm [1] for Set Cover Problem and is a variation of
BIP. Like BIP, an arborescence, which starts with the
source node, is maintained throughout the execution of
algorithm. However, unlike BIP, many new nodes can be
added one time. Similar to Chvatal’s algorithm [1], the
new nodes added are chosen to have the minimal aver-
age incremental cost, which is defined as the ratio of the
minimum addition power increased by some node in the
current arborescence so as to reach these new nodes to the
number of these new nodes. We refer to this heuristic as
the Broadcast Average Incremental Power, abbreviated
by BAIP. In contrast to the 1 + logm approximation ra-
tio of the Chvatal’s algorithm [1] where m is the largest
set size, we show that the approximation ratio of BAIP
is at least 4n

ln n − o (1) where n is the number of receiving
nodes.

Consider the following instance of minimum-energy
broadcasting. All nodes are colinear with the source be-
ing the origin, the i-th receiving node at the position

√
i

for 1 ≤ i ≤ n − 1, and the n-th receiving node at the
position

√
n− ε for some sufficiently small number ε > 0.

For any 1 ≤ k ≤ n − 1, the minimal transmission power
of the source to reach k receiving nodes is

(√
k
)2
= k,

and thus the average power efficiency is k
k = 1. On the

other hand, the minimal transmission power of the source
to reach all n receiving nodes is

(√
n− ε

)2 = n − ε, and
the thus the average power efficiency is n−ε

n = 1− ε
n . So

BAIP will let the source to transmit at power n − ε to
reach all nodes in a single step. However, the optimal
routing is a directed path consisting of all nodes from left
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to right. So the minimum power is

n−1∑
i=1

(√
i− √

i− 1
)2
+

(√
n− ε− √

n− 1)2
.

<

n∑
i=1

(√
i− √

i− 1
)2
= 1 +

n−1∑
i=1

1(√
i+ 1 +

√
i
)2

≤ 1 +
n−1∑
i=1

1
4i

≤ 1 +
ln (n− 1) + 1

4

=
ln (n− 1) + 5

4
.

Thus the approximation ratio is at least

n− ε∑n−1
i=1

(√
i− √

i− 1)2
+

(√
n− ε− √

n− 1)2 .

As ε −→ 0, this ratio converges to

n∑n
i=1

(√
i− √

i− 1)2 =
n

1 +
∑n−1

i=1
1

(
√

i+1+
√

i)2

≥ n

1 +
∑n−1

i=1
1
4i

≥ n

1 + ln(n−1)+1
4

=
4n

ln (n− 1) + 5 =
4n
lnn

− o (1) .

Interestingly, SPT generates the optimal solution in
the second bad instance, while BAIP can provide near-
optimal or optimal solution for the first bad instance. On
the other hand, MST and BIP have a lot similarities to
SPT and BAIP, but have constant approximation ratios
as will be proved later. Thus one should carefully design
and select greedy heuristics.

IV. Lower Bounds on Approximation Ratios
In this section, we will derive lower bounds on approx-

imation ratios of MST and BIP. We begin with MST.
Theorem 1: The approximation ratio of MST is at least

6 for any κ ≥ 2.
Proof: Let ε be a sufficiently small positive number.

Consider seven nodes o,p1, · · · ,p6 (see Figure 3), which
satisfies that

‖op1‖ = 1,
‖opi‖ = 1 + ε, 2 ≤ i ≤ 6;

‖pipi+1‖ = 1, 1 ≤ i ≤ 5.

Then for any 1 ≤ i ≤ 5,

∠piopi+1 <
π

3

and

∠p6op1 >
π

3
.

1

1

1

1

1

1

p3

p4

p5

p6

p1

p2

o

1+ε
1+ε

1+ε

1+ε

1+ε

Fig. 3. A bad instance for MST.

Consider the two triangles op1p2 and op1p6. Since

‖op2‖ = ‖op6‖
and

∠p6op1 > ∠p1op2,

by Law of Cosine, we have

‖p1p6‖ > ‖p1p2‖ = 1.
We consider the broadcasting from the node o to nodes

p1, · · · ,p6. Then the path op1 · · ·p5p6 is the unique
MST. It’s total energy is 6. On the other hand, the op-
timal routing is the star centered at node o, whose total
energy is (1 + ε)κ. Thus the approximation ratio is at
least 6

(1+ε)κ , which converges to 6 as ε −→ 0.
Now we develop the lower bound on the approximation

ratio of BIP.
Theorem 2: The approximation ratio of BIP is at least

13
3 for any κ = 2.

Proof: Let θ be a sufficiently small positive num-
ber. Consider six points p1, · · · ,p6 on a cycle of radius
1 centered at node o (see Figure 4), with

∠p1op2 = ∠p5op6 =
π

3
− 3θ,

∠p2op3 = ∠p4op5 =
π

3
− 2θ,

∠p3op4 =
π

3
− θ,

∠p6op1 =
π

3
+ 11θ.

Then

‖p1p2‖ = ‖p5p6‖ <
‖p2p3‖ = ‖p4p5‖ <
‖p3p4‖ < 1 < ‖p6p1‖ .
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p2

p3

p4

p5

p6

q2q1 qm
qm+1

p1

o

qπ/3−3θ

π/3−3θ

π/3−2θ

π/3−2θ
π/3−θ

Fig. 4. A bad instance for BIP.

Let q be the point in the perpendicular bisector of p1p6
such that p1q is perpendicular to p1p2. Choose a suffi-
ciently large integer m such that

1−
(‖oq‖

m

)2

> ‖p3p4‖2
.

Let q1, · · · ,qm+1 be the m+1 points on the ray oq with

‖oqi‖ =
i

m
‖oq‖

for 1 ≤ i ≤ m+ 1. Then qm = q.
We consider a broadcasting from point o to points

q1, · · · ,qm+1,p1, · · · ,p6. The optimal solution is that
the node o transmits at power 1 to reach all nodes. Now
let’s examine the output of the BIP algorithm. As m
is sufficiently large, in the first m + 1 steps, the points
q1, · · · ,qm+1 are sequentially added, and the transmis-
sion power of the nodes o,q1, · · · ,qm all has the trans-

mission power
(

‖oq‖
m

)2
. Since the angles

∠p1qm+1qm = ∠p6qm+1qm >
π

2
,

in the next two steps, the points p1 and p6 are added,
and the transmission power of point qm+1 is ‖p1qm+1‖2.
At this moment, the incremental power of all points
o,q1, · · · ,qm to reach any node pi for 2 ≤ i ≤ 5 is at
least

1−
(‖oq‖

m

)2

> ‖p3p4‖2
> ‖p1p2‖2 = ‖p5p6‖2

,

and the incremental power of point qm+1 to reach any
node pi for 2 ≤ i ≤ 5 is also greater than ‖p1p2‖2 =
‖p5p6‖2 as

∠p2p1qm+1 = ∠p5p6qm+1 > ∠p2p1qm =
π

2
.

Thus in the subsequent two steps, the points p2 and p5
are added, and the transmission power of points p1 and
p6 is ‖p1p2‖2 = ‖p5p6‖2. Similarly, in the last two
steps, the points p3 and p4 are added, and the transmis-
sion power of points p2 and p5 is ‖p2p3‖2 = ‖p4p5‖2.
The total power is

(m + 1)
(‖oq‖

m

)2
+ ‖p1qm+1‖2 + 2 ‖p1p2‖2 + 2 ‖p2p3‖2

=
m + 1
m2

‖oq‖2 + ‖p1qm+1‖2 + 2 ‖p1p2‖2 + 2 ‖p2p3‖2 .

As θ −→ 0 and m −→ ∞, the polygon p1p2p3p4p5p6
converges to a regular hexagon, and the nodes q and
qm+1 converges to the center of the triangle op1p6. Thus
the total power converges to 1

3 + 4 =
13
3 . Thus the ap-

proximation ratio of BIP is at least 13
3 ≈ 4.33.

V. Upper Bounds on Approximation Ratios

Our deriving of the upper bounds relies on extensively
on the geometric structures of Euclidean MSTs. We first
observe that as long as the cost of a link is an increasing
function of the Euclidean length of the link, the set of
MSTs of any point set coincides with the set of Euclidean
MSTs of the same point set. In fact, this can be followed
from Prim’s algorithm. In particular, for any spanning
tree T of a (finite) point set P , the parameter

∑
e∈T ‖e‖2

achieves its minimum if and only if T is an Euclidean
MST of P . For any (finite) point set P , we use mst (P )
to denote an arbitrary Euclidean MST of P . The radius
of a point set P is defined as

inf
p∈P

sup
q∈P

‖pq‖ .

Thus a point set of radius one can be covered by a disk
of the same radius. A key result in this section is an
upper bound on the parameter

∑
e∈mst(P ) ‖e‖2 for any

finite point set P of radius one. Note that the supreme
of the length of mst (P ),

∑
e∈mst(P ) ‖e‖, over all point

sets P of radius one is infinity. Amazingly however, the
parameter

∑
e∈mst(P ) ‖e‖2 is bounded by a constant for

any point set P of radius one, as shown later. We use
c to denote the supreme of the length of

∑
e∈mst(P ) ‖e‖2

over all point sets P of radius one. The next key theorem
states that c is at most 12.
Theorem 3: 6 ≤ c ≤ 12.
The proof of this theorem involves complicated geomet-

ric arguments, and therefore we postpone it in Section VI.
Note that for any point set P of radius one, the length of
each edge in mst (P ) is at most one. Therefore, Theorem
3 implies that for any point set P of radius one and any
κ ≥ 2, ∑

e∈mst(P )

‖e‖κ ≤
∑

e∈mst(P )

‖e‖2 ≤ c ≤ 12.
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In the next, we explore a relation between the min-
imum energy required by a broadcasting and the Eu-
clidean MST of the corresponding point set.
Lemma 4: For any point set P in the plane, the total

anergy required by any broadcasting among P is at least
1
c

∑
e∈mst(P ) ‖e‖κ.
Proof: Let T be an optimal arborescence for a

broadcasting among P . For any none-leaf node p in T ,
let Tp be an Euclidean MST of the point set consisting
p and all children of p in T . Suppose that the longest
Euclidean distance between p and its children is r. Then
the transmission power of node p is rκ, and all children
of p lie in the disk centered at p with radius r. From the
definition of c, we have

∑
e∈Tp

(‖e‖
r

)κ

≤ c

which implies that

rκ ≥ 1
c

κ∑
e∈Tp

‖e‖κ

Let T ∗ denote the spanning tree obtained by superpos-
ing of all Tp’s for non-leaf nodes of T . Then the total
energy required by T is at least 1

c

∑
e∈T ∗ ‖e‖κ, which is

further no less than 1
c

∑
e∈mst(P ) ‖e‖κ. This completes

the proof.
Consider any point set P in the plane. Let T be an

arborescence oriented from some mst (P ). Then the to-
tal energy required by T is at most

∑κ
e∈Tp

‖e‖κ. From
Lemma 4, this total energy is at most c times the opti-
mum cost. Thus the approximation ratio of MST is at
most c. Together with Theorem 3, this observation leads
to the following theorem.
Theorem 5: The approximation ratio of MST is at

most c, and therefore is at most 12.
Finally, we derive the upper bound on the approxima-

tion ratio of the BIP heuristic. Once again, the Euclidean
MST will play an important role.
Lemma 6: For any broadcasting among a point set P in

the plane, the total energy required by the arborescence
generated by BIP algorithm is at most

∑
e∈mst(P ) ‖e‖κ.

Proof: Let G(κ) be the complete graph over the
point set P , in which the weight of an edge e is ‖e‖κ. Let
T be the arborescence output by the algorithm BIP. We
construct another weighted graph H over the same point
set P according to the execution of BIP for generating T .
Suppose that during the execution of BIP the nodes are
added in the order p1,p2, · · · ,pn where p1 is the source
node. Let Ti be the arborescence just after node pi is
added. In H, the weight of the edge pipi+1 is equal to
the incremental energy of the link from Ti to pi+1 chosen
during the execution of SPF; and the weight of any other
edge is the same as that in G(κ). Note that for each edge
pipi+1, its weight in H is not more than its weight in

G(κ). Therefore, for any spanning tree, its weight in H
is no more than its weight in G(κ). On the other hand,
the execution of Prim’s algorithm on H will emulate the
algorithm BIP on G(κ) in the sense that it will add the
required nodes in the same order, and will output the
path p1p2 · · ·pn. The weight of this path in H is exactly
the total energy required by T , but is at most the weight
of any MST in G(κ). This implies that the total energy
required by T is at most

∑
e∈mst(P ) ‖e‖κ. This completes

the proof.
From the above lemma and Lemma 4, we can get the

result for the BIP algorithm similar to Theorem 5.
Theorem 7: The approximation ratio of the BIP

heuristic is at most c, and therefore is at most 12.

VI. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. The
lower bound is very trivial as it can follow from the in-
stance consisting of seven points: the center of a regular
hexagon and its six vertices. However, the deriving of the
upper bound is very challenging. We first introduce some
geometric structures and notations to be used in this sec-
tion. All angles are measured in radians and take values
in the range [0, π]. For any three points p1,p2 and p3,
the angle between the two rays p1p2 and p1p3 is denoted
by ∠p2p1p3 or ∠p3p1p2. The closed infinite area inside
the angle ∠p2p1p3, also referred to as a sector, is de-
noted by �p2p1p3. The triangle determined p1,p2 and
p3 is denoted by �p2p1p3. The open disk centered at
p with radius r, denoted by B (p, r), is the set of points
whose distance from p is less than r. The lune through
points p1 and p2, denoted by L (p1p2), is the intersec-
tion of the two open disks of radius ‖p1p2‖centered at
p1 and p2 respectively (see Figure 5(a)). Thus it con-
sists of points whose distances from p1 and p2 are both
less than ‖p1p2‖. The open diamond substended by a
line segment p1p2, denoted by D (p1p2), is the rhombus
with sides of length

√
3

3 ‖p1p2‖ (see Figure 5(b)). Note
that the interior angles at p1 and p2 withinD (p1p2) are
equal to π

3 .

p1
p2p1

p2

(a) (b)

Fig. 5. Illustration of (a) lune and (b) diamond.

The Euclidean MSTs have many nice structure prop-
erties [5]. Some basic properties are listed blow.
• Any pair of edges do not cross each other.
• The angles between any two edges incident to a com-
mon vertex is at least π

3 .

0-7803-7016-3/01/$10.00 ©2001 IEEE 1167 IEEE INFOCOM 2001

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 09:19:53 UTC from IEEE Xplore.  Restrictions apply. 



• The length of each edge is at most the radius of the
vertex set.
• The luna determined by each edge does not contain any
other vertices.
• Let p1p2 be any edge. Then the two endpoints of
any other edge are either both outside B (p1, ‖p1p2‖),
or both outside B (p2, ‖p1p2‖).
In this section, we will first prove yet another structure

property of the Euclidean MSTs, which is very essential
to bound the constant c: The diamonds of any two edges
are disjoint. The proof of this property will make use of
the following lemma.
Lemma 8: Let p1,p2 and p3 be any three points in the

plane with ∠p1p3p2 = 2π
3 and ‖p1p3‖ = ‖p2p3‖(see

Figure 6). Let p4 be any point in �p1p3p2 but out-
side �p1p2p3 with ∠p2p1p4 = α. Then D (p1p4) ⊆
�p1p3p2 if and only if either α ∈ [

0, π
3

)
and ‖p1p4‖ ≤

sin π
3

sin(π
3 −α) ‖p1p2‖ or α ∈ [

π
3 ,

5π
6

]
.

p1
p2

p3

p4

α
α α

π/3−α x

p1
p2

p3

p4

π/3−α

α

α

α

x

(a)

(b)

Fig. 6. Two extreme cases for D (p1p4) ⊆ �p1p3p2.

Proof: Note that D (p1p4) � �p1p3p2 if α > 5π
6 ;

and D (p1p4) ⊆ �p1p3p2 if α ∈ [
π
3 ,

5π
6

]
. So we now

assume α ∈ [
0, π

3

)
. We fix α and calculate the maximum

length of p1p4 such that D (p1p4) ⊆ �p1p3p2. This
happens when D (p1p4) touches the ray p3p2, say at x.
We consider this extreme scenario. In this case,

∠p3p1x =α,∠p1xp3=
π

3
− α.

Applying the Laws of Sine in �p1p3x, we have

‖p1x‖
‖p1p3‖ =

sin π
3

sin
(

π
3 − α

) .

On the other hand, as�p1p2p3 and�p1p4x are similar,

‖p1p4‖
‖p1p2‖ =

‖p1x‖
‖p1p3‖ =

sin π
3

sin
(

π
3 − α

) .
Therefore, D (p1p4) ⊆ �p1p3p2 as long as ‖p1p4‖ ≤

sin π
3

sin(π
3 −α) ‖p1p2‖.
In the next we apply the above lemma to show that the

diamond determined by any edge in an Euclidean MST
is contained in some sector defined in the next lemma.
Lemma 9: Let p1,p2 and p3 be any three points in the

plane with p3 being outside L (p1p2). Let p′
1 (p

′
2 respec-

tively) be the vertex of D (p1p3) (D (p2p3) respectively)
which is lies on the opposite side of the line p1p3 (p2p3
respectively) from p2 (p1 respectively) (see Figure 7).
Then D (p1p2) ⊆ �p′

1p3p′
2.

p1
p2

p3

p1’

p2’

x

y

p1
p2

p2’

p3

p1’

x

y

p1 p2

p1’

p2’

p3
x

y

(a)

(b)

(c)

Fig. 7. The three cases for Lemma 9

Proof: We assume by symmetry that p3 is to the
left of the line p1p2 and to the right of the perpendicular
bisector of p1p2. Then ‖p1p3‖ ≥ ‖p2p3‖. Since p3 is
outside L (p1p2), ‖p1p3‖ ≥ ‖p1p2‖ and ∠p1p3p2 < π

2 .
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Therefore,

∠p′
1p3p′

2 <
π

2
+
π

6
+
π

6
=
5π
6
,

∠p1p2p3 ≥ π

3
,

∠p2p1p3 <
π

2
.

Let x and y be the other two vertices ofD (p1p2) which
lie between the left side and right side respectively of the
line p1p2. It’s sufficient to show that both x and y are
within �p′

1p3p′
2. This is true when ∠p2p1p3 ≥ π

6 (see
Figure 7(a)). So we assume that ∠p2p1p3 < π

6 . In this
case x is within �p1p3p′

1, and thus within �p′
1p3p′

2,
from Lemma 8 and ‖p1p3‖ ≥ ‖p1p2‖. If ∠p1p2p3 ≤ 5π

6 ,
then y is within �p′

1p3p2 ⊆ �p′
1p3p′

2 (see Figure 7(b)).
If ∠p1p2p3 >

5π
6 , then

∠p3p2y = 2π−∠p1p2p3 − ∠p1p2y

≥ 2π−π − π

6
=

5π
6

which implies that the ray p2y does not intersect with
the ray p3p′

2 (see Figure 7(c)). So y is within �p′
1p3p′

2.
Therefore, in either case both x and y are within
�p′

1p3p′
2. This completes the proof.

Now we are ready to prove the “disjoint diamond”
property of Euclidean MSTs.
Lemma 10: In any Euclidean MST, the two diamonds

determined by any two edges are disjoint.
Proof: The lemma is true when two edges are inci-

dent to a common vertex as the angle between them is at
least π

3 . So we consider two edges p1p2 and q1q2 with
distinct endpoints. We consider two cases.
Case 1: At least one of p1p2 and q1q2 does not cross

the perpendicular bisector of the other. Without loss of
generality, assume that q1 and q2 lie in the same side
of the perpendicular bisector of p1p2 as p1 (see Figure
8(a)). Let q′

1 (q
′
2 respectively) be the vertex of D (p1q1)

(D (p1q2) respectively) which is lies on the opposite side
of the line p1q1 (p1q2 respectively) from q2 (q1 respec-
tively). Then from Lemma 9, D (q1q2) ⊆ �q′

1p2q′
2.

On the other hand, since both q1 and q2 are outside
L (p1p2), D (p1p2) is outside �q′

1p2q′
2. Thus D (p1p2)

and D (q1q2) are disjoint.
Case 2: Both p1p2 and q1q2 cross the perpendicular

bisector of the other. Without loss of generality, assume
that q1 lies in the same side of the perpendicular bisector
of p1p2 as p1 (see Figure 8(b)). Then p1 must lie in the
same side of the perpendicular bisector of q1q2 as q1, for
otherwise

‖p2q1‖ > ‖p1q1‖ > ‖p1q2‖ > ‖p2q2‖ ,
i.e., both p1 and p2 lie in the same side of the per-
pendicular bisector of q1q2 as q2, which contradicts
to the assumption. Since q2 is outside L (p1p2) and

q1

q2

p1 p2

q2’

q1’

(a)

p1 p2

q1

q2

(b)

xy

Fig. 8. Two cases for Lemma 10.

‖p1q2‖ > ‖p2q2‖, we have ‖p1q2‖ > ‖p1p2‖. As
‖p1q2‖ > ‖p1q1‖, q2 is outside �q1p1p2. Similarly,
any of these four points p1,p2,q1 and q2 is outside the
triangle determined by the other three points. This im-
plies that the convex hull determined by these four points
is a quadrilateral. Note that p1p2 and q1q2 can’t be the
two diagonals of the quadrilateral as they do not cross
each other. Neither can be p1q1 and p2q2 as they are
separated by the perpendicular bisector of p1p2. Thus
the two diagonals must be p1q2 and p2q1, and conse-
quently the boundary of the quadrilateral is p1p2q2q1.
From the previous argument its four sides are all less
than its two diagonals, and hence its four inner angles
are all more than π

3 . Without loss of generality, we as-
sume that ‖p1q1‖ ≥ ‖p2q2‖. Then ‖p1q1‖ ≥ ‖p1p2‖,
for otherwise q1 would be inside B (p1, ‖p1p2‖) and
q2 would be inside B (p2, ‖p1p2‖), which is impossible.
Similarly, ‖p1q1‖ ≥ ‖q1q2‖. Therefore, both ∠q1p1q2
and ∠p1q1p2 are less than π

3 . Since both ∠q2p1p2 and
∠p2q1q2 are less than π

2 , we have

∠q1p1p2,∠p1q1q2 ∈
(
π

3
,
5π
6

)
.

Let x be the point inside �q1p1p2 such that �p1q1x
is equilateral. Then both p1p2 and q1q2 are outside
�p1q1x. In addition,

∠xp1p2,∠xq1q2 ∈
(
0,

π

2

)
and

‖p1x‖ ≥ ‖p1p2‖ , ‖q1x‖ ≥ ‖q1q2‖ .
Let y be the center of �p1q1x. Then from Lemma 8,

D (p1p2) ⊆ �p1yx,D (q1q2) ⊆ �q1yx.

This implies that D (p1p2) and D (q1q2) are disjoint.

Let P be any point set of radius one. According to
Lemma 10, the total area of the diamonds through the
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edges in mst (P ) equals to
√
3
6

∑
e∈mst(P )

‖e‖2
.

Let p be the point in P such that all points in P have
distance of at most one from p. Since all edges have
lengths of at most one, all diamonds are contained in
B

(
p, 2√

3

)
. This implies that

√
3
6

∑
e∈mst(P )

‖e‖2 ≤ π

(
2√
3

)2

=
4π
3
.

Therefore ∑
e∈mst(P )

‖e‖2 ≤ 8π√
3

≈ 14.51.

This estimation is quite loose and fails in getting the de-
sired 12 upper bound. In the next, we will provide a
tighter estimation which can lead to the 12 upper bound.
We observe that the total area of the diamonds is

no more than the area of the disk B (p,1) plus the
sticking-out areas of these diamonds beyond B (p,1). Let
D (p1p2) be any diamond which sticks out B (p,1), and
let q be its vertex which is outside B (p,1) (see Figure 9).
Let p′

1 (p
′
2 respectively) be the intersection between p1q

(p2q respectively) and the boundary of B (p,1). Then
the sticking-out area of D (p1p2) can be calculated by
subtracting the area of the sector substended by pp′

1 and
pp′

2 from the area of the quadrilateral pp′
1qp′

2. The area
of the quadrilateral pp′

1qp′
2 can be further calculated

by summing up the areas of �pp′
1p

′
2 and �qp′

1p
′
2. As

∠p′
1qp′

2 is a constant
2π
3 , the area of �qp′

1p
′
2 is max-

imized when ‖qp′
1‖ ≥ ‖qp′

2‖. Let ∠p′
1pp′

2 = α, then
α ∈ (

0, π
3

]
and the sticking-out area of D (p1p2) is a at

most

S (α) =
1
2
sinα+

√
3
6
(1− cosα)− α

2
.

The area function S (α) has the following nice property.
Lemma 11: For any α, β ∈ (

0, π
3

)
,

1. if α+ β ≤ π
3 , S (α) + S (β) ≤ S (α+ β);

2. if α+ β ≥ π
3 , S (α) + S (β) ≤ S

(
α+ β − π

3

)
+ S

(
π
3

)
.

Proof: The lemma follows from the following two
equality: for any α and β,

S (α + β) − S (α) − S (β)

=
4
√

3
3

sin
α

2
sin

β

2
sin

(
π

6
− α + β

2

)
,

S
(
α + β − π

3

)
+ S

(π

3

)
− S (α) − S (β)

=
4
√

3
3

sin
(

α + β

2
− π

6

)
sin

(π

6
− α

2

)
sin

(
π

6
− β

2

)
.

p1
p2

p1’
p2’

q

p

Fig. 9. The calculation of the sticking-out area.

We first prove the first equality.
S (α + β) − S (α) − S (β)

=
1
2

(sin (α + β) − sin α − sin β) +
√

3
6

((cos α + cos β) − (cos (α + β) + 1))

=
(

sin
α + β

2
cos

α + β

2
− sin

α + β

2
cos

α − β

2

)
+

√
3

3

(
cos

α + β

2
cos

α − β

2
− cos2

α + β

2

)

= sin
α + β

2

(
cos

α + β

2
− cos

α − β

2

)
+

√
3

3
cos

α + β

2

(
cos

α − β

2
− cos

α + β

2

)

=
2
√

3
3

sin
α

2
sin

β

2

(
cos

α + β

2
−

√
3 sin

α + β

2

)

=
4
√

3
3

sin
α

2
sin

β

2
sin

(
π

6
− α + β

2

)

Now we prove the second equality.

S
(
α + β − π

3

)
+ S

(π

3

)
− S (α) − S (β)

= (S (α + β) − S (α) − S (β)) −(
S (α + β) − S

(
α + β − π

3

)
− S

(π

3

))

=
4
√

3
3

sin
α

2
sin

β

2
sin

(
π

6
− α + β

2

)
−

4
√

3
3

sin
(

α + β

2
− π

6

)
sin

π

6
sin

(
π

6
− α + β

2

)

=
4
√

3
3

sin
(

α + β

2
− π

6

) (
sin

π

6
sin

(
α + β

2
− π

6

)
− sin

α

2
sin

β

2

)

=
2
√

3
3

sin
(

α + β

2
− π

6

) (
cos

(
π

3
− α + β

2

)
− cos

α − β

2

)

=
4
√

3
3

sin
(

α + β

2
− π

6

)
sin

(π

6
− α

2

)
sin

(
π

6
− β

2

)
.
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Suppose that there are k diamonds which stick out
B (p,1). For any 1 ≤ i ≤ k, let αi be the inner an-
gle of the arc between the two intersection points of the
boundary B (p,1) and the boundary of the i-th sticking-
out diamond. Then αi ∈ (

0, π
3

]
and

k∑
i=1

αi < 2π.

By repeatedly applying the two inequalities in Lemma 11,
the total sticking-out area of the diamonds is

k∑
i=1

S (αi) ≤
⌈∑k

i=1 αi
π
3

⌉
S

(π
3

)

≤ 6S
(π
3

)
= 2

√
3− π.

Thus the total area of diamonds is at most

π + 2
√
3− π = 2

√
3.

Therefore,

∑
e∈mst(P )

‖e‖2 ≤ 2
√
3

√
3

6

= 12.

This completes the proof Theorem 3.

VII. Summary and Future Works
In this paper, we have provided theoretical perfor-

mance analysis the heuristics presented in [8]. The ap-
proximation ratio of SPT is at least n

2 , and thus less fa-
vorable from the theoretical perspective. The other two
heuristics, MST and BIP, have constant approximation
ratios. Specifically, the approximation ratio of MST is
between 6 and c, which is at most 12; the approxima-
tion ratio of the BIP heuristic is between 13

3 and c ≤ 12.
However, there are still several challenging issues for fu-
ture research.
First of all, the computational complexity of the

Minimum-Energy Broadcasting remains unknown. As
mentioned in Section I, the graph-version of this prob-
lem is at least as hard as the Connected Dominate Set
problem. However, due to its geometric nature, this in-
tractness of the graph version does not imply the same
intractness of geometric version which is studied in this
paper. Indeed, while Connected Dominating Set problem
does not allow a constant-approximation ratio, the geo-
metric version does on the contrary, for example, by MST
or BIP.
Secondly, the exact value of the constant c remains

unsolved. A tighter upper bound on c can lead to tighter
upper bounds on the approximation ratios of both MST
and BIP. From the deriving of the 12 upper bound, we
observe there are still rooms to improve the upper bound.

For example, it’s very unlikely for the diamonds to fill the
unit disk fully. At least this is true for small number of
nodes. However, the treatment of large number of nodes
is quite challenging, and more geometric properties of the
Euclidean MSTs have to be explored.
The third interesting problem is how to construct

“worse” instances that can lead to better lower bounds
on the approximation ratios of both the MST and BIP.
A major challenge, and a topic of continued research,

is the development of distributed algorithms of MST and
BIP. These algorithms should take advantage of the geo-
metric properties for fast implementation. Furthermore,
it is important to study the impact of limited bandwidth
and transceiver resources, as well as to develop mecha-
nisms to cope with node mobility [8].
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