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Abstract—The communication protocol design for wireless
networked control systems brings the additional challenge of
providing the guaranteed stability of the closed-loop control
system compared to traditional wireless sensor networks. In
this paper, we provide a framework for the joint optimization
of controller and communication systems encompassing efficient
abstractions of both systems. The objective of the optimization
problem is to minimize the power consumption of the com-
munication system due to the limited lifetime of the battery-
operated wireless nodes. The constraints of the problem are
the schedulability and maximum transmit power restrictions
of the communication system, and the reliability and delay
requirements of the control system to guarantee its stability.
The formulation comprises communication system parameters
including transmission power, rate and scheduling, and control
system parameters including sampling period. The resulting
problem is a Mixed-Integer Programming problem. However,
analyzing the optimality conditions on the variables of the
problem allows us to reduce it to an Integer Programming
problem for which we propose an efficient solution method based
on its relaxation. Simulations demonstrate that the proposed
method performs very close to optimal and much better than
the traditional separate design of these systems.

Index Terms—Wireless communication, networked control
system, optimization, energy minimization, stability.

I. INTRODUCTION

W IRELESS Networked Control Systems (WNCSs) are
spatially distributed systems in which sensors, actu-

ators, and controllers connect through a wireless network
instead of traditional point-to-point links [1]. WNCSs have
a tremendous potential to improve the efficiency of many
large-scale distributed systems in industrial automation [2],
[3], building automation [4], automated highway [5], air
transportation [6], and smart grid [7]. Transmitting sensor
measurements and control commands over wireless links
provide many benefits such as the ease of installation and
maintenance, low complexity and cost, and large flexibility to
accommodate the modification and upgrade of the components
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in many control applications. Several industrial organiza-
tions, such as International Society of Automation (ISA) [8],
Highway Addressable Remote Transducer (HART) [9], and
Wireless Industrial Networking Alliance (WINA) [10], have
been actively pushing the application of wireless technologies
in the control applications.

Building a WNCS is very challenging since control systems
often have stringent requirements on timing and reliability,
which are difficult to attain by wireless sensor networks due
to the adverse properties of the wireless communication and
limited battery resources of the nodes. The wireless communi-
cation introduces non-zero packet error probability caused by
the unreliability of the wireless transmissions, non-zero delay
due to the packet transmission and shared wireless medium,
and sampling and quantization errors since the signals are
transmitted over the network via packets. Decreasing the
packet error probability, delay and sampling period improves
the performance of the control system at the cost of more
energy consumed in the communication. There is an increasing
need for methods and analysis tools that are able to quantify
the joint performance of these systems in terms of the com-
munication parameters, including the transmission power, rate
and scheduling of the network nodes, the control parameters
including the sampling period and wireless communication
induced imperfections.

The communication system design for Networked Control
Systems (NCS) has received little attention in the literature
mainly due to the lack of efficient abstractions of both control
and communication systems. The lack of abstractions led
to either the simplification of the problem by excluding the
key system parameters from the formulation or the solutions
through numerical methods avoiding the widespread use of
the formulations. Assuming no packet error occurs unless
there is a collision in the network, the optimization of the
scheduling given the sampling period and delay requirements
of the sensors [11], [12] or the optimization of the sampling
period and delay parameters of the sensors to minimize the
overall performance loss while ensuring the system schedu-
lability [13], [14] have been formulated. These formulations
however cannot be applied to WNCS where the packet error
probability is non-zero at all times. Some of the prior work
on the communication system design for WNCS focus on
ensuring low deterministic end-to-end delay and controlled
jitter to real-time traffic across a very large mesh network
distributed over a large area in a globally synchronized multi-
channel Time Division Multiple Access (TDMA) [8], [9], [15],
[16]. The optimization problem formulations for WNCS on the
other hand aim to determine the best values of the sampling
period and network scheduling parameters by using different
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objective and constraint functions. Some of them aim to
minimize the energy consumption of the network subject to the
packet loss probability and delay distribution that are derived
from the desired control cost [17]. Others aim to maximize
the performance of control systems subject to the wireless
capacity constraints of the links and the delay requirement
of the control system [18]. None of these works however
consider the key parameters of the wireless communication
system including the transmission power and rate of the links
as a system variable to be optimized.

A more general framework where the optimal values of the
parameters of the link layer, medium access control layer, and
sampling period that minimize the control cost subject to the
delay distribution and the packet error probability constraints
is proposed in [19]. However, a suboptimal solution is obtained
by an iterative numerical method due to the difficulty of
dealing with the linear quadratic cost function representing
the performance of the control system in the objective of
the optimization problem. This numerical approach is hard
to be generalized for different requirements of various control
applications.

Joint optimization of the transmission power control, rate
adaptation, and scheduling has been widely studied for delay
constrained energy minimization in general purpose wireless
networks [20]–[27]. Different algorithms have been proposed
for the solution of the optimization problem depending on
the delay constraint in terms of either a single deadline to all
packets [20]–[23] or individual deadlines for each packet [24]–
[26] and the usage of either a fixed capacity battery [20],
[21], [24], [25], [26] or a finite storage capacity rechargeable
battery [22], [23]. None of these algorithms however have
been extended to formulate the joint optimization of power,
rate and scheduling for energy minimization while meeting a
certain controller performance.

The goal of this paper is to study the joint optimization of
controller and communication systems taking into account all
the wireless network induced imperfections including packet
error and delay; the parameters of the wireless communication
system including the transmission power, rate and scheduling
of the network nodes; and the parameters of the controller
including the sampling period. The objective of the opti-
mization problem is to minimize the power consumption of
the communication system whereas the constraints guarantee
the stability of the control system and the schedulability in
the communication system. The original contributions of this
paper are listed as follows:

• We provide a framework for the joint optimization of
controller and communication systems encompassing ef-
ficient abstractions of both systems, which may lead to
broader adoption and real-world deployment.

• We formulate the joint optimization of controller and
communication systems for MQAM modulation in a
network containing multiple sensors communicating with
their corresponding controllers as a Mixed Integer Pro-
gramming problem.

• We propose an efficient solution method for the for-
mulated optimization problem based on the analysis of
the relations between the optimal values of the decision
variables.
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Fig. 1. Overview of the WNCS setup.
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Fig. 2. Timing diagram between a plant and a controller communicating
over a wireless network.

• We prove the energy saving of the proposed joint opti-
mization problem over the traditional separate design of
controller and communication systems and the closeness
to the optimality of the proposed solution method via
extensive simulations.

The rest of the paper is organized as follows. Section
II describes the system model and the assumptions used
throughout the paper. Section III presents the control and
communication system models. The joint optimization of
controller and communication systems has been formulated
in Section IV. Simulations are presented in Section V. Finally
concluding remarks are given in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

The system model and assumptions are detailed as follows.
1) Fig. 1 depicts the architecture of a WNCS where mul-

tiple plants are controlled over a wireless network. We
assume that a sensor node is attached to each plant.
Outputs of the plants are sampled at periodic intervals by
the sensors and forwarded to the controller over a wire-
less network, which induces delays and packet errors.
When the controller receives the measurements, a new
control command is computed. The control command
is forwarded to the actuator attached to the plant. We
assume that the controller commands are successfully
received by the actuator. Many practical NCSs have
several sensing channels, whereas the controllers are
collocated with the actuators, as in heat, ventilation and
air conditioning control systems, because the control
command is very critical [28]. One of the controllers
is assigned as the network manager.

2) Fig. 2 illustrates various possible situations of the in-
formation exchange between a plant and a controller.
Let us denote the sampling period of node i by hi, the
transmission delay of the packet that includes the sample
of the sensor node by di, and the packet error probability



SADI et al.: MINIMUM ENERGY DATA TRANSMISSION FOR WIRELESS NETWORKED CONTROL SYSTEMS 2165

by pi. We assume that di ≤ hi to guarantee that the
packets arrive to the controller in the correct order.
The retransmission of outdated packets are generally not
useful since the latest information of the plant state is
the most critical information for control applications [1].
We also assume that the packet error is modeled as a
Bernoulli random process with probability pi for node
i to simplify the problem.

3) We consider TDMA as MAC protocol since TDMA
provides both delay guarantee and energy efficiency
to the networks with predetermined topology and data
generation patterns [29] thus is widely used in industrial
control applications [8], [9]. The details of synchro-
nization and topology discovery mechanisms for energy
efficient TDMA are out of scope of this paper and can
be found in [29].

4) The time is partitioned into frames. Each frame is further
divided into a beacon and time slots. The beacon is used
by the network manager to provide time synchroniza-
tion within the WNCS and broadcast updates on the
scheduling decisions. The scheduling decisions include
the time slot allocation and the values of the optimal
node parameters including the transmission power, rate
and sampling period corresponding to each sensor node.
We assume that no concurrent transmissions are sched-
uled. The network manager continually monitors the
received power and the packet error rate over each link.
If the channel conditions do not change, the beacon
only provides synchronization information. Otherwise,
the beacon also includes the updates on the scheduling
decisions. Despite the updates on the schedule and
optimal node parameters, the length of the frame is fixed
as derived mathematically in Section IV.

5) The nodes are assumed to operate their radio in sleep
mode when they are not scheduled to transmit or receive
a packet, and transient mode when they switch from
sleep mode to active mode to transmit or receive a
packet and vice versa. We consider only the energy
consumption in the transmission of the packets in the
optimization problem because it is much larger than
that in the sleep and transient modes [20], [27] and
the energy consumption in the reception of the beacon
packets is fixed.

III. CONTROL AND COMMUNICATION SYSTEM MODELS

This section provides control and communication system
models based on the consideration of the stability of the
control system, the restrictions related to the wireless com-
munication and the power consumption of the communication
system.

A. Control System Model

The performance and stability conditions for the control
systems have been formulated in the form of Maximum
Allowable Transfer Interval (MATI), defined as the maxi-
mum allowed time interval between subsequent state vector
reports from the sensor nodes to the controller, and Maximum
Allowable Delay (MAD), defined as the maximum allowed
packet delay for the transmission from the sensor node to

the controller, in [30], [31], [32], [33]. Such hard real-time
guarantees can be satisfied by wireline networks but is an
unreasonable expectation for wireless networks where the
packet error probability is greater than zero at any point
in time. Hence, many control applications such as wireless
industrial automation [8], air transportation systems [6] and
autonomous vehicular systems [34] set a stochastic MATI
constraint in the form of keeping the time interval between
subsequent state vector reports above the MATI value with
a predefined probability to guarantee the stability of control
systems. Stochastic MATI and MAD constraints are efficient
abstractions of the performance of the control systems how-
ever have not been considered before in the joint design with
the communication systems.

1) Stochastic MATI Constraint: Stochastic MATI con-
straint is formulated as

Pr [μi(hi, di, pi) ≤ Ω] ≥ δ (1)

where μi is the time interval between subsequent state vector
reports of node i as a function of hi, pi and di; Ω is the MATI;
and δ is the minimum probability with which MATI should
be achieved. The values of Ω and δ are determined by the
control system.

In order that the time interval between subsequent state
vector reports of node i is less than Ω, there should be at least
one successful transmission within Ω. Given hi and Ω, the
number of reception opportunities of the state vector reports
is

⌊
Ω
hi

⌋
. Based on the assumption that the packet error is

modeled as a Bernoulli random process with probability pi
for node i, stochastic MATI constraint given in Eq. (1) can be
rewritten as

1− p

⌊
Ω
hi

⌋

i ≥ δ . (2)

Many control applications and standards define the stochas-
tic MATI requirements to guarantee the stability of the con-
trol systems. In industrial automation, closed-loop machine
controls have specified Ω = 100 ms and δ = 0.999 [8],
[35]. Moreover, to allow IEEE 802.15.4 devices [36] to sup-
port a wide range of industrial applications, IEEE 802.15.4e
standard [37] specifies an amendment to the IEEE 802.15.4
standard to enhance its latency and reliability performances
for industrial automation. They have specified Ω = 10 ms
and δ = 0.99. In addition, the air transportation system
requires Ω = 4.8 s and δ = 0.95 [6]. Furthermore, the
requirements of cooperative vehicular safety applications are
given by Ω = 100 ms and δ = 0.95 [34].

2) MAD Constraint: MAD constraint should be included in
addition to the MATI constraint to guarantee the performance
and stability of the control systems [33]. MAD constraint is
formulated as

di ≤ Δ (3)

where Δ is the MAD to stabilize the control system. The
value of Δ is determined by the control system and typically
on the order of a few tens of milliseconds for fast control
applications [8], [35], [38].
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B. Communication System Model

This section provides the formulations of the power con-
sumption of the sensor nodes, the maximum transmit power
and schedulability constraints of the communication system.
The power consumption of the sensor node is formulated as a
function of its sampling period, delay and packet error proba-
bility for both uncoded and trellis-coded MQAM modulation.
The reason for choosing a specific modulation and coding
strategy instead of the information theoretically optimal chan-
nel coding schemes is to include the trade-off between the
packet error probability and power consumption in practical
communication systems. The optimal channel coding schemes
do not allow including such trade-off since they employ
randomly generated codes with exponentially small probability
of error for long block lengths [39]. Moreover, choosing a
specific modulation strategy allows us to include the circuit
power in addition to the transmission power consumption
[27]. The proposed formulation for MQAM modulation can
be extended for any modulation strategy.

1) Power Consumption: The key design concern of the
communication protocol is to limit the energy consumed
by the sensor devices. This will avoid battery replacement
resulting in an affordable WNCS deployment.

The power consumption of the node i as a function of
its sampling period, delay and packet error probability is
formulated as

Wi (hi, di(bi), pi) =

(
W t

i (di(bi), pi) +W c
i

)
di(bi)

hi
(4)

where bi is the number of bits used per symbol and di is
represented as a function of bi for a given modulation scheme,
W t

i is the transmission power calculated as a function of the
parameters di and pi for a given modulation and channel
coding, and W c

i is the circuit power consumption in the
active mode at the transmitter. The numerator provides the
energy consumed for the transmission of duration di(bi) in
one sampling period hi. In the following, we present the
formulation of W t

i (di(bi), pi) for MQAM modulation scheme
based on the assumption of an additive white Gaussian noise
(AWGN) channel by summarizing the derivation procedure in
[27] for completeness.

Let us denote the number of bits sent by node i by Li.
bi = log2 M is the number of bits per symbol for MQAM
and bi = 2 is the minimum allowable value ensuring MQAM
is well defined [27]. The number of MQAM symbols needed
to send Li bits is equal to both Li/bi and di/T

s, where T s is
the symbol period. If square pulses are used and T s ≈ 1/B,
where B is the bandwidth, then

di(bi) ≈ Li

Bbi
. (5)

A bound on the probability of bit error for MQAM is given
by [40]

P b
i ≤ 4

bi

(
1− 1√

2bi

)
e
− 3

2bi−1

γi
2 (6)

where P b
i is the probability of bit error of node i, γi is

the Signal-to-Noise Ratio (SNR) of node i defined as γi =
W r

i

2Bσ2Nf , where W r
i is the signal power received from node

i, σ2 is the power spectral density of the AWGN and Nf is
the noise figure. By approximating this bound as an equality

and using the relation between the transmission power and
received power as W t

i = W r
i Gi where Gi is the power gain

factor, and the function mapping bi to di in Eq. (5), the
transmission power as a function of bi and P b

i is given by

W t
i (bi, pi) ≈ 4

3
Nfσ2BGi

(
2bi − 1

)
ln

4
(
1− 2−

bi
2

)
biP b

i

. (7)

If no error control mechanism is used, a packet is considered
to be in error in the presence of one or more bit errors.
Assuming independent bit errors, the packet error probability
pi is given by

pi = 1−
(
1− P b

i

)Li ≈ P b
i Li (8)

for small values of P b
i where the approximation is obtained

by finding the Taylor series expansion of
(
1− P b

i

)Li and
ignoring higher order terms.

If forward error correction codes are used, the required
value of SNR to meet a target bit error probability decreases
by a factor called coding gain denoted by Gc at the cost of
resulting bandwidth expansion in order to communicate the
extra redundant bits. Fortunately, bandwidth expansion can
be circumvented when the channel coding and modulation
processes are jointly designed, for instance, in trellis-coded
MQAM [40]. The decrease in the required SNR results in the
decrease in the required transmission power W t

i for the same
bit error probability.

By substituting Eqs. (7) and (8) into Eq. (4), the power
consumption for trellis-coded MQAM is formulated as

Wi(hi, bi, pi) =
4Nfσ2GiLi

3Gchibi
(2bi − 1) ln

4Li(1− 2−
bi
2 )

pibi

+
W c

i Li

Bhibi
.

2) Maximum Transmit Power Constraint: We assume that
there exists a maximum power level, denoted by W t,max, that
a node can use for transmission. This is enforced by the limited
weight and size of the sensor nodes. The maximum transmit
power constraint is formulated as

W t
i (bi, pi) ≤ W t,max (9)

where

W t
i (bi, pi) =

4Nfσ2GiB

3Gc
(2bi − 1) ln

4Li(1− 2−
bi
2 )

pibi
. (10)

3) Schedulability Constraint: The schedulability constraint
represents the allocation of the transmission times of multiple
sensor nodes in the network in the absence of concurrent
transmissions using pre-emptive Earliest Deadline First (EDF)
scheduling algorithm. EDF is a dynamic scheduling algorithm
where the task closest to its deadline is scheduled whenever
a scheduling event occurs. EDF has been proven to be an
optimal uniprocessor scheduling algorithm for periodic tasks
with certain deadlines using pre-emption, in the following
sense: If a real-time task set cannot be scheduled by EDF,
then this task set cannot be scheduled by any algorithm [41].
For the case where there exists a node such that its deadline
is not equal to its period, i.e. ∃i ∈ [1, N ],Δ �= hi, there exists
an exact schedulability analysis based on the simulation of the
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EDF algorithm for a time duration formulated as a function
of di, hi, Δ and task arrival times ai for all i ∈ [1, N ]: The
EDF schedule is generated for the specified time duration
and given values of di, hi, Δ and ai for all i ∈ [1, N ] are
declared feasible if and only if no deadlines are missed in
this schedule [42], [43]. This simulation based schedulability
analysis however cannot be used in an optimization framework
where the explicit formulations of the necessary and sufficient
conditions for the schedulability are required. Since such
explicit formulations do not exist, we propose the use of the
schedulability constraint given by

N∑
i=1

di
hi

≤ β (11)

where β is the utilization bound satisfying 0 < β ≤ 1 in our
optimization framework. The use of this new schedulability
constraint is demonstrated to provide near-optimal solutions
via simulations in Section V when the value of β is adapted
to the network topology and requirements as described in the
following.

Lemma 1: For β = βnec = 1, the schedulability constraint
given by Eq. (11) is a necessary condition for a feasible
schedule.

Proof: Every term di

hi
in Eq. (11) represents the ratio

of the total time duration allocated for the transmission of
node i to the schedule length. Since there are no concurrent
transmissions, the sum of these terms gives the ratio of the
total time duration allocated to all the nodes i ∈ [1, N ] to the
schedule length. The value of this ratio cannot exceed 1 since
the sum of the time durations allocated to all the nodes in a
schedule cannot exceed the schedule length. �

Lemma 2: For β = βsuf = min{1,mini∈[1,N ]
Δ
hi
}, the

schedulability constraint given by Eq. (11) is a sufficient
condition for a feasible schedule.

Proof: For the specified value of β = βsuf , Eq. (11) can
be reformulated as

N∑
i=1

di

hi min{1,mini∈[1,N]
Δ
hi
} ≤ 1 (12)

Since
N∑
i=1

di
min{Δ, hi} ≤ 1 (13)

is a sufficient condition for a feasible schedule [44], and
N∑
i=1

di

hi min{1,mini∈[1,N]
Δ
hi
} ≥

N∑
i=1

di
min{Δ, hi} (14)

Eq. (11) is also a sufficient condition for β = βsuf . �
βnec and βsuf in Lemmas 1 and 2 provide the upper and

lower values of the utilization bound respectively. Using a
β value larger than βnec expands the feasible region of the
corresponding optimization problem by infeasible schedules
whereas using a β value smaller than βsuf shrinks the feasible
region by removing the schedules satisfying β <

∑N
i=1

di

hi
≤

βsuf from the feasible region of the corresponding optimiza-
tion problem. Moreover, increasing the value of β expands
the feasible region of the optimization problem. Therefore,
the maximum value of β ∈ [βsuf , βnec] that yields a feasible
schedule for an optimization problem needs to be determined

as explained in detail in Section IV-B.

IV. JOINT OPTIMIZATION OF CONTROL AND

COMMUNICATION SYSTEMS

This section formulates the problem of the joint optimiza-
tion of control and communication systems with the objective
of minimizing the power consumption of the network subject
to the stochastic MATI and MAD constraints guaranteeing the
stability of the control systems and maximum transmit power
and schedulability constraints of the wireless communication
system. The key in formulating this optimization problem
is the trade-off between the control performance and the
power consumption of the wireless communication network.
Decreasing the packet error probability, delay and sampling
period improves the performance of the control system at
the cost of more energy consumed in the communication.
The sampling period, packet error probability, and delay
must therefore be flexible design parameters that need to be
adequate for the control requirements.

The joint optimization of control and communication sys-
tems is formulated as

min
hi,bi,pi,i∈[1,N]

N∑
i=1

Wi(hi, bi, pi) (15a)

s.t.
N∑
i=1

di(bi)

hi
≤ β , (15b)

1− p

⌊
Ω
hi

⌋

i ≥ δ, ∀i ∈ [1, N ] , (15c)

0 < di(bi) ≤ min {Δ, hi}, (15d)

0 < hi ≤ Ω, (15e)

0 < pi < 1, (15f)

W t
i (bi, pi) ≤ W t,max, (15g)

where N is the number of nodes in the network.
The goal of the optimization problem is to minimize the

total power consumption in the network. Eq. (15b) represents
the schedulability constraint. Eqs. (15c) and (15d) repre-
sent the stochastic MATI and MAD constraints respectively.
Eq. (15e) states that the sampling period of the nodes must be
less than or equal to the MATI. Eq. (15f) states the lower
and upper bounds for the packet error probability. Finally,
Eq. (15g) represents the maximum transmit power constraint.
The variables of the problem are hi, i ∈ [1, N ], the sampling
period of the nodes; bi, i ∈ [1, N ], the number of bits used
per symbol for each node; and pi, i ∈ [1, N ], the packet error
probability of the nodes.

This optimization problem is non-convex Mixed-Integer
Programming problem thus difficult to solve for the global
optimum [45]. We now analyze the optimality conditions for
this problem and propose efficient solution methods for the
network containing one sensor node, i.e. N=1, and multiple
sensor nodes in Sections IV-A and IV-B respectively.

A. One Sensor Case

The joint optimization of control and communication sys-
tems for the network containing one sensor node is formulated
as
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min
hi,bi,qi

Ci1
2bi − 1

hibi

⎛
⎜⎝ln

4Li

(
1− 2

−bi
2

)
bi

− qi

⎞
⎟⎠+

W c
i Ci2

hibi

(16a)

s.t.

⌊
Ω

hi

⌋
qi − ln (1− δ) ≤ 0, (16b)

0 < di(bi) ≤ min {Δ, hi}, (16c)

0 < hi ≤ Ω, (16d)

qi ≤ 0, (16e)

Ci1

Ci2

(
2bi − 1

)⎛⎜⎝ln
4Li

(
1− 2−

bi
2

)
bi

− qi

⎞
⎟⎠ ≤ W t,max.

(16f)

where Ci1 = 4Nfσ2GiLi

3Gc and Ci2 = Li

B . The new variable
qi is equal to ln pi. The objective function in Equation (16a)
includes the power consumption formulation defined in Equa-
tion (15a) for N = 1 and MQAM. The constraint given in Eq.
(15b) is eliminated since the constraint in Eq. (15d) is already
sufficient for schedulability when N = 1. The constraints in
Eqs. (16b), (16c), (16d), (16e) and (16f) correspond to the
constraints given in Eqs. (15c), (15d), (15e), (15f) and (15g)
respectively for N = 1 and MQAM.

The optimization problem is again a non-convex Mixed-
Integer Programming problem thus difficult to solve for the
global optimum [45]. Next, we will investigate the relations
between the optimal values of hi and qi, denoted by h∗

i and
q∗i respectively, to that of bi, denoted by b∗i , so that we can
rewrite this problem as an Integer Programming (IP) problem,
including only bi as a variable and eliminating hi and qi, for
which there are efficient approximation algorithms [45].

Lemma 3: The optimal value of the sampling period is
given by

Ω

h∗
i

= ki (17)

where ki is a positive integer.

Proof: We prove the Lemma by contradiction. Suppose
that Ω

h∗
i

is not a positive integer then
⌊

Ω
h∗
i

⌋
< Ω

h∗
i

. If h∗
i

increases such that the equality
⌊

Ω
h∗
i

⌋
= Ω

h∗
i

holds for the first
time while satisfying the upper bound given in Eq. (16d),
the stochastic MATI constraint given in Eq. (16b) still holds
since the value of

⌊
Ω
h∗
i

⌋
does not change. The remaining

constraint including hi given in Eq. (16c) also still holds
with this change. However, the power consumption given in
Eq. (16a) decreases since it is a monotonically decreasing
function of hi. �

Lemma 4: In the optimal solution, the stochastic MATI is
satisfied with equality such that

Ω

h∗
i

=
ln(1− δ)

q∗i
= ki (18)

where ki is a positive integer.

Proof: We prove the Lemma by contradiction. Suppose that

Ω

hi∗
>

ln(1− δ)

q∗i
(19)

If q∗i increases such that the stochastic MATI constraint is
satisfied with equality, the constraints given in Eqs. (16e)
and (16f) still hold. However, the power consumption given
in Eq. (16a) decreases since it is a monotonically decreasing
function of qi. Then the result follows when combined with
Lemma 3. �

Next, we eliminate the variables hi and qi from the op-
timization problem (16) by using the expressions derived
in Lemma 4 for their optimal values as a function of the
single variable ki. Note that ki is the number of transmissions
within Ω. The joint optimization of control and communication
systems is then reformulated as

min
bi,ki

Ci1
(2bi − 1)ki

Ωbi

(
ln

4Li(1− 2
−bi
2 )

bi
− ln(1− δ)

ki

)

+
W cCi2ki

Ωbi
(20a)

s.t. 0 < di(bi) ≤ min

{
Δ,

Ω

ki

}
, (20b)

Ci1

Ci2

(
2bi − 1

)⎛⎜⎝ln
4Li

(
1− 2−

bi
2

)
bi

− ln(1− δ)

ki

⎞
⎟⎠

≤ W t,max , (20c)

where the constraints given in Eqs. (20b) and (20c) correspond
to those in Eqs. (16c) and (16f) respectively and the remaining
constraints in the optimization problem (16) are removed due
to the additional constraint of ki being a positive integer. The
following lemma expresses the optimal value of ki in terms of
bi so that the above optimization problem can be formulated
with the variable bi only.

Lemma 5: Based on the assumption that the optimization
problem (20) is feasible, the optimal value of ki denoted by
k∗i is expressed as a function of bi as

k∗
i = ki(bi) = max

⎧⎪⎪⎨
⎪⎪⎩1,

⎡
⎢⎢⎢⎢⎢

ln(1− δ)

ln 4Li(1−2
− bi

2 )
bi

− W t,maxCi2

GcCi1(2
bi−1)

⎤
⎥⎥⎥⎥⎥

⎫⎪⎪⎬
⎪⎪⎭
(21)

Proof: Since the power consumption given by Eq. (20a)
is a monotonically increasing function of ki, k∗i is the
minimum positive integer satisfying Eqs. (20b) and (20c).
The second term of the maximum in Eq. (21) is the minimum
ki value satisfying Eq. (20c) since Eq. (20b) is satisfied
by this minimum ki value if there exists a feasible solution. �

Note that ki is a non-decreasing function of bi. Let us
call bmin

i and bmax
i the minimum and maximum value of bi

satisfying the constraints given in Eqs. (20b) and (20c). In
the following, Lemma 6 and Theorem 1 derive the relation
between the optimal value of ki and these boundary values
bmin
i and bmax

i .

Lemma 6: For two feasible consecutive constellation size
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values bi and bi +1, if ki(bi) ≥ 2, then ki(bi +1) ≥ 3
2ki(bi).

Proof: If ki(bi) ≥ 2 then the second term in the maximum
operator in Eq. (21) is effective such that

ki(bi) =

⎡
⎢⎢⎢⎢⎢

ln(1− δ)

ln 4Li(1−2
− bi

2 )
bi

− W t,maxCi2

GcCi1(2
bi−1)

⎤
⎥⎥⎥⎥⎥

(22)

Since ki(bi) ≥ 2, the denominator of the above expression is
negative. If bi increases by 1, the first term in the denominator
decreases by a factor of at most 2 whereas the second term in
the denominator decreases by a factor of at least 2 resulting
in a factor of at least 2 decrease in the denominator such that

ln 4Li(1−2
− bi

2 )
bi

− W t,maxCi2

GcCi1(2
bi−1)

ln 4Li(1−2
− bi+1

2 )
bi+1

− W t,maxCi2

GcCi1(2
bi+1−1)

≥ 2 (23)

Due to the ceiling operation in the expression of ki(bi), a
factor of at least 2 decrease in the denominator results in a
factor of at least 3

2 increase in ki(bi) for ki(bi) ≥ 2.
�

Theorem 1: The optimal value of ki(bi) is given by

k∗
i (bi) = ki(b

min
i ) (24)

Proof: We prove the Theorem by contradiction. Suppose
that k∗i (bi) is not equal to ki(b

min
i ) such that k∗i (bi) ≥ 2.

Decreasing bi by one decreases the power consumed in the
actual data transmission; i.e., first term of Eq. (20a), since it
is an increasing function of both bi and ki. Decreasing bi by
one also decreases the circuit power consumption; i.e., second
term of Eq. (20a), since it is an increasing function of bi for
bi ≥ 2 based on Lemma 6 that states that ki(bi−1) ≤ 2k∗

i (bi)
3

if ki(bi − 1) ≥ 2 and the fact that ki(bi − 1) ≤ 2k∗
i (bi)
3 if

ki(bi − 1) = 1 and k∗i (bi) ≥ 2. The power consumption can
therefore further decrease if we decrease bi by one. This is a
contradiction. �

The joint optimization of control and communication sys-
tems is then reformulated as

min
bi

Ci1
(2bi − 1)ki(b

min
i )

Ωbi

(
ln

4Li(1− 2
−bi
2 )

bi
− ln(1− δ)

ki(bmin
i )

)

+
W c

i Ci2ki(b
min
i )

Ωbi
(25a)

s.t. bmin
i ≤ bi ≤ bmax

i , (25b)

where bmin
i is determined by using Eq. (20b) and bmax

i is the
maximum value of bi such that the corresponding ki(bi) value
determined by using Eq. (21) is equal to ki(b

min
i ).

This optimization problem is an IP problem for which there
is no known polynomial-time algorithm [46]. We therefore
propose the following heuristic algorithm. We first use the
upper bound

ln
4Li(1− 2

−bi
2 )

bi
≤ ln

4Li(1− 2
−bmin

i
2 )

bmin
i

. (26)

in the objective function (25a). The relaxation of the problem
(25) in which the integrality constraint on the constellation

size bi is removed is then a convex optimization problem
and can be solved optimally by using interior point method
[45]. However, the solution of the relaxed problem is generally
not integer. Since the constellation size must be integer, the
optimal solution is one of the two neighboring integer values
of the solution of the relaxed problem. The best integer solu-
tion can be determined by evaluating the power consumption
corresponding to these two integer values and choosing the
one with the minimum power.

In the following, we summarize the entire procedure for
solving the joint optimization of control and communication
systems for the network containing one sensor node:

1) Determine bmin
i and k∗i (bi) = ki(b

min
i ): We determine

the minimum bi value based on Eq. (20b), which re-
quires satisfying both 0 < di(bi) ≤ Δ and 0 < di(bi) ≤

Ω
ki(bi)

constraints. We first determine the minimum bi
value satisfying 0 < di(bi) ≤ Δ. Then, ki(bi) value is
determined based on Eq. (21). If 0 < di(bi) ≤ Ω

ki(bi)

is also satisfied using these values of bi and ki(bi) then
minimum feasible constellation size bmin

i is equal to that
particular bi. Otherwise, bi is incremented by 1 until
0 < di(bi) ≤ Ω

ki(bi)
constraint is satisfied. Once bmin

i is
determined, k∗i (bi) = ki(b

min
i ).

2) Determine bmax
i : Given the optimal value k∗i (bi), b

max
i

is the maximum value of bi such that ki(bi) = ki(b
min
i )

considering Eq. (21).
3) Determine h∗

i and q∗i : Given the optimal value k∗i (bi),
the optimal h∗

i and q∗i values are determined based on
Eq. (18).

4) Determine b∗i : Solve the relaxation of the optimization
problem (25) using the bound given by Eq. (26) and
determine the best integral solution as b∗i .

The only suboptimality of this procedure comes from the
use of the bound given by Eq. (26). The use of this bound
results in an error less than 5% in the total power consumption
when bi is within the range [2, 20] (which is a reasonable range
for practical MQAM systems) and the other parameters are set
as given in Table I. However, the effect of this error on the
optimal total power consumption is much less than 5% in most
scenarios as illustrated through simulations in Section V.

B. Multiple Sensor Case

The joint optimization of control and communication
systems for the network containing multiple sensor nodes
only brings the additional schedulability constraint given by
Eq. (15b). The schedulability constraint is the only constraint
requiring a joint decision for multiple sensor nodes since the
remaining constraints represent the individual constraints of
the nodes already considered in Section IV-A.

The findings derived in Lemmas 3-6 for the network con-
taining one sensor node still hold in the existence of the
schedulability constraint of multiple sensor nodes since they
are not related to the schedulability constraint. The schedu-
lability constraint of multiple sensor nodes can therefore be
rewritten as

N∑
i=1

Ci2ki(bi)

Ωbi
≤ β (27)
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This schedulability constraint can be simplified based on the
following Lemma.

Lemma 7: The optimal value of ki(bi) in the schedulability
constraint given by Eq. (27) is equal to ki(b

min
i ) for each node

i ∈ [1, N ].
Proof: Using minimum ki(bi) value for every i ∈ [1, N ]

minimizes each term Ci2ki(bi)
Ωbi

in the schedulability constraint
and each power consumption term in the objective function
of the joint optimization problem (15) based on Theorem 1.
Therefore, the sum of these terms are also minimized with
ki(b

min
i ) for every i ∈ [1, N ].�

The schedulability constraint can therefore be reformulated as

N∑
i=1

Ci2ki(b
min
i )

Ωbi
≤ β (28)

The optimal solution procedure derived for one sensor case
can be extended to the multiple sensor case by determining
first bmin

i , k∗i (bi) = ki(b
min
i ), bmax

i , h∗
i and q∗i separately for

each sensor i ∈ [1, N ] then b∗i for i ∈ [1, N ] via solving the
joint optimization problem formulated as

min
bi,i∈[1,N]

N∑
i=1

Ci1(2
bi − 1)kmin

i

Ωbi

⎛
⎝ln

4Li(1 − 2
−bi
2 )

bi
− ln(1− δ)

kmin
i

⎞
⎠

+
W c

i Ci2kmin
i

Ωbi
(29a)

s.t.
N∑
i=1

Ci2ki(b
min
i )

Ωbi
≤ β , (29b)

bmin
i ≤ bi ≤ bmax

i , ∀i ∈ [1, N ]. (29c)

This optimization problem is an IP problem for which
there is no known polynomial-time algorithm [46]. Similar
to the one sensor case, the following heuristic algorithm is
proposed to solve this problem. We first use the bound given
in Eq. (26). The relaxation of this problem in which the
integrality constraint on the constellation sizes is removed
is again a convex optimization problem thus can be solved
optimally by using interior point method [45]. The resulting
optimal values of the constellation sizes are possibly non-
integer therefore ceiled to obtain an integral solution while
avoiding the violation of the schedulability constraint.

Based on the above observations, the length of the schedul-
ing frame defined in Section II can be chosen to be equal to
nMATIΩ where nMATI is a positive integer fixed over time.
Since the optimal period h∗

i of each node i ∈ [1, N ] is given
by Ω

k∗
i

for some positive integer k∗i due to Lemmas 3 and 5,
the scheduling of the nodes repeats every time duration of
length Ω if the channel conditions do not change. An integer
multiple of the time duration Ω is therefore suitable to update
the schedule. Since a beacon is transmitted at the beginning
of each frame, the value of nMATI is chosen depending on
the synchronization accuracy required by the system and the
speed at which the channel conditions change.

As explained in Section III-B3, we need to determine the
maximum value of the utilization bound β ∈ [βsuf , βnec]
for which the solution of the joint optimization problem
(29) yields a feasible EDF schedule, which is denoted by
βopt. The overall procedure of generating the feasible EDF
schedule corresponding to βopt given in Algorithm 1 is

Algorithm 1 Energy Minimizing Schedule Generation Algo-
rithm (EMSA)

1: βsuf = min{1,mini∈[1,N]
Δ
h∗
i
}; βnec = 1;

2: βlow = βsuf ; βup = βnec;
3: β = βup;
4: {d∗i , i ∈ [1, N ]} = solveOptim(β);
5: if isSchedulable({h∗

i , d
∗
i , i ∈ [1, N ]}) then

6: βopt = β;
7: else
8: while βup − βlow >= ε do
9: β = (βup + βlow)/2;

10: {d∗i , i ∈ [1, N ]} = solveOptim(β);
11: if isSchedulable({h∗

i , d
∗
i , i ∈ [1, N ]}) then

12: βlow = β;
13: else
14: βup = β;
15: end if
16: end while
17: βopt = βlow;
18: end if
19: {d∗i , i ∈ [1, N ]} = solveOptim(βopt);
20: schedule = EDFSchedule({h∗

i , d
∗
i , i ∈ [1, N ]});

described next. The upper and lower bounds of βopt, denoted
by βup and βlow respectively, are initialized to βnec = 1 and
βsuf = min{1,mini∈[1,N ]

Δ
h∗
i
} based on Lemmas 1 and 2

respectively (Lines 1-2). The joint optimization problem (29)
with the value of β initialized to βup (Line 3) is solved
for the optimal delay values d∗i for all i ∈ [1, N ] (Line 4,
solveOptim(β) function returns the optimal delay values d∗i
corresponding to the optimal constellation size values b∗i for
all i ∈ [1, N ] obtained via solving the optimization problem
(29) with a particular value of β). The existence of a feasible
schedule using these optimal delay values and the optimal
period values obtained by the procedure described in Section
IV-A is then checked by performing the exact schedulability
analysis of the EDF scheduling algorithm (Line 5, isSchedu-
lable({hi, di, i ∈ [1, N ]}) function returns true if there exists a
feasible schedule corresponding to the given period and delay
values and false otherwise. The exact schedulability analysis
is based on the simulation of the EDF algorithm for the time
duration τ formulated as

τ =
c

1− c
max

i∈[1,N]
{hi −Δ} (30)

where c =
∑N

i=1
di

hi
[42]. However, since the scheduling of

the nodes repeats every time duration of length Ω given that
the optimal period h∗

i = Ω
k∗
i

for some positive integer k∗i
for all i ∈ [1, N ] due to Lemmas 3 and 5, it is enough to
perform the schedulability analysis over the time duration
of min {τ,Ω}. isSchedulable({hi, di, i ∈ [1, N ]}) simply
generates the EDF schedule for the time duration equal to
min {τ,Ω} and declares that there exists a feasible schedule
if and only if no deadlines are missed in this schedule. The
schedulability analysis has a pseudo-polynomial complexity of
O(N

∑N
i=1

min{τ,Ω}
hi

) [44]). If such a feasible schedule exists,

βopt = β (Line 6). Otherwise, β is set to βup+βlow

2 (Line 9). In
each iteration of the algorithm, the optimization problem (29)
with the current β value is solved to determine the optimal
delay values for all i ∈ [1, N ] (Line 10). Then, the feasibility
of constructing a schedule with the optimal delay and period
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values is checked (Line 11). If there exists a feasible schedule,
βlow is set to β (Line 12); otherwise, βup is set to β (Line
14). β is then updated with the value βup+βlow

2 (Line 9). The
algorithm stops when βlow and βup get sufficiently close to
each other such that βup − βlow < ε (Line 8) where ε is a
predetermined arbitrarily small constant. βopt is then set to
βlow (Line 17). Finally, the joint optimization problem (29)
is solved for β = βopt (Line 19). The corresponding feasible
schedule is constructed by the EDF scheduling algorithm over
one scheduling frame (Line 20, EDFSchedule({hi, di, i ∈
[1, N ]}) function constructs the EDF schedule corresponding
to the given period and delay values over one scheduling
frame. The function first generates the EDF schedule over
the time duration of length Ω and then repeats the schedule
nMATI times since the length of the scheduling frame is equal
to nMATIΩ).

EMSA algorithm requires at most K = �log2[(βnec −
βsuf )/ε]	 exact schedulability analyses performed by isS-
chedulable({hi, di, i ∈ [1, N ]}) function since the value of
(βnec − βsuf ) is decreased by half at each iteration until
it becomes less than ε and one EDF schedule construction
performed by EDFSchedule({hi, di, i ∈ [1, N ]}). For ex-
ample, for an ε value of 0.001, the maximum number of
exact schedulability analyses in EMSA is K = 10 since the
maximum value of (βnec − βsuf ) is equal to 1.

V. PERFORMANCE EVALUATION

The goal of this section is to evaluate the energy saving of
the proposed joint optimization problem over the traditional
separate design of controller and communication systems. In
the traditional separate design of these systems, which is
denoted by “TS”, the constellation size and sampling period of
the sensor nodes are predetermined. For instance, WirelessHart
[9] and ISA100.11a [8], which are the two competing wireless
standards for industrial control applications, employ O-QPSK
(Offset Quadrature Phase Shift Keying) without optimizing
the constellation size nor the sampling period. In “TS”, the
values of the fixed constellation size and sampling period
of the sensor nodes are determined such that the existence
of a solution is guaranteed for the worst case scenario with
no adjustment to different network and channel conditions.
For instance, when we analyze the variability of the energy
consumption as a function of MAD, we choose one of the
constellation size values that is feasible for all MAD values.
The proposed heuristic algorithm for the joint optimization
of these systems, which is denoted by “HS”, follows the
procedure described in Section IV-A to determine the optimal
parameters including bmin

i , k∗i (bi) = ki(b
min
i ), bmax

i , h∗
i and

q∗i for each i ∈ [1, N ] separately and the optimal constellation
size b∗i for all i ∈ [1, N ] by solving the relaxation of the
IP problem (29) with the optimal utilization bound βopt and
ceiling the non-integral solution values to obtain a feasible
integral solution. To understand the maximum deviation of
the HS algorithm from the optimal formulation, we have
also included the optimal solution, denoted by “OPT”. This
optimal solution is obtained by exhaustive search where every
feasible solution of the IP problem (29) with β = 1 that
yields a feasible EDF schedule is enumerated and the one
with the minimum power consumption is determined. This

TABLE I
SIMULATION PARAMETERS

σ2 −174 dBm/Hz B 10 KHz
W t,max 250 mW W c 50mW

Li, i ∈ [1, N ] 100 bits δ 0.95
Nf 10 dB Gc 1 (uncoded) [27]

exhaustive search has exponential computational complexity
in the network size.

Simulation results are obtained based on 1000 indepen-
dent random network topologies where the sensor nodes
are uniformly distributed within a circular area of radius r
transmitting to a controller located in the center of the area.
The parameters used in the simulations are given in Table-I.

The attenuation of the links are determined considering both
large scale statistics that arise primarily from the free space
loss and the environment affecting the degree of refraction,
diffraction, reflection and absorption, and small scale statistics
that occur due to multipath propagation and variations in the
environment. The dependence of the path loss on distance
summarizing large scale statistics is modeled as

PL(d) = PL(d0) + 10α log(d/d0) + Z (31)

where d is the distance between the transmitter and receiver,
PL(d) is the path loss at distance d in decibels, PL(d0) =
70 dB is the path loss at reference distance d0 = 1 m,
α = 3.5 is the path loss exponent [27] and Z is a Gaussian
random variable with zero mean and standard deviation equal
to 4 dB [47]. The small-scale fading on the other hand has
been modeled by using Nakagami fading with scale parameter
Ω set to the mean power level determined by using Eq.
(31) and shape parameter m chosen from the set {1, 3, 5}
[47], [48]. Note that Nakagami fading with shape parameter
equal to 1 corresponds to Rayleigh fading. In the first part of
the simulations including Figs. 3- 7, the channel is assumed
fixed at the mean value determined based on the large scale
statistics. In the second part of the simulations including
Figs. 8- 10, the robustness of the proposed algorithm to the
time-varying channel conditions is analyzed by considering
small-scale statistics.

Fig. 3 shows the average power consumption in a network
of 20 nodes at different average distances from the controller.
The average distance is calculated by taking the average
of the distances of the nodes randomly distributed within
a circle of different radii. The MAD and MATI values are
chosen as Δ = 5 ms and Ω = 100 ms. The effect of the
average distance on the average power consumption is twofold.
First, as the distance increases, the transmit power required
to compensate for the increasing attenuation increases. Since
the power consumption is proportional to the transmit power,
increasing the transmit power also increases the power con-
sumption. Second, as the distance increases, the maximum
feasible constellation size imposed by the maximum transmit
power constraint decreases shrinking the feasible region over
which the power consumption is minimized. This accelerates
the increase in the power consumption by increasing distance.
The constellation size for the TS algorithm is determined
such that it is feasible for the maximum distance value since
feasibility for maximum distance guarantees feasibility for
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Fig. 3. Average power consumption in a network of 20 nodes at
different average distances from the controller where Δ = 5 ms and
Ω = 100 ms.

lower distance values. Hence, the HS algorithm outperforms
the TS algorithm significantly for relatively small average
distance values. Moreover, the HS algorithm performs very
close to the OPT independent of the distance value, by an
approximation ratio of around 1.01 where approximation ratio
is defined as the ratio of the solution of the HS algorithm to
the optimal solution.

Fig. 4 shows the average power consumption in a net-
work of 20 nodes for different MAD values. The nodes
are uniformly distributed within a circular area of radius
10 m and the MATI value is chosen as Ω = 200 ms. The
MAD constraint determines the minimum constellation size
together with Ω/ki(b

min
i ) as explained in detail in Section

IV-A. As the MAD increases up to a certain value, around
2 ms, the average power consumption decreases since for
smaller MAD values, the nodes in the network are forced to
choose greater constellation size values, which increases the
power consumption dramatically. On the other hand, as the
MAD increases further, the average power consumption stays
constant due to the fact that the optimal constellation size
remains constant although the feasible region expands. The
constellation size for the TS algorithm is determined such
that it is feasible for the minimum MAD value since then
feasibility of all MAD values is ensured. Since the power
consumption function does not depend on the MAD value,
the resulting power consumption of the TS algorithm remains
constant for different MAD values and is dramatically worse
than the HS algorithm which performs very close to the OPT,
by an average approximation ratio of around 1.02.

Fig. 5 shows the average power consumption in a network of
20 nodes for different MATI values. The nodes are uniformly
distributed within a circular area of radius 10 m and the MAD
value is chosen as Δ = 10 ms. Since the power consumption
is a decreasing function of MATI, the average power consump-
tion decreases as the MATI increases. However, the effect of
the MATI on the average power consumption in a network is
not limited to this functional dependency for the HS algorithm.
The schedulability constraint given by Eq. (29b) suggests that
for small MATI values, the objective of power minimization
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Fig. 4. Average power consumption in a network of 20 nodes for
different MAD values where nodes are uniformly distributed within
a circular area of radius 10 m and Ω = 200 ms.

requires a joint decision among multiple nodes in the network
since minimizing the power consumption independently for
each node in the network may result in the violation of the
schedulability constraint. Hence, as the MATI decreases, the
amount of increase in the power consumption is much more
than the functional dependency of the power consumption
on the MATI. For example, when we increase the MATI
from 15 ms to 20 ms, the power consumption is expected to
decrease by 33% but actually decreases by 50%. On the other
hand, for the TS algorithm, the effect of the MATI on the
power consumption is limited to the functional dependency of
the power consumption on the MATI. Again, the HS algorithm
performs very close to the OPT, by an approximation ratio of
around 1.05, and outperforms the TS algorithm which has an
approximation ratio of more than 2 for large MATI values. The
performance of the TS algorithm is relatively better for smaller
MATI values since the predetermined constellation size value
is adjusted considering the feasibility for the minimum MATI
value but still much worse than the performance of the HS
algorithm.

Fig. 6 shows the average power consumption for different
number of nodes. The nodes are uniformly distributed within
a circular area of radius 5 m. The MAD and MATI values are
chosen as Δ = 25 ms and Ω = 25 ms. For the HS algorithm,
as the number of nodes increases up to a specific value, i.e. 25
in this case, depending on the MATI, the power consumption
increases linearly since the objective of the power minimiza-
tion does not require a joint decision among multiple nodes in
the network meaning that minimizing the power consumption
independently for each node does not result in the violation of
the schedulability constraint. However, as the number of nodes
increases further, a joint decision is necessary to satisfy the
schedulability constraint. The nodes in the network are forced
to choose higher constellation size than they would choose
when they minimize their power consumption independently.
This causes a much faster increase in the power consumption.
The average approximation ratio of the HS algorithm is
1.03. The resulting power consumption of the TS algorithm
on the other hand increases linearly as expected since the
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Fig. 5. Average power consumption in a network of 20 nodes for
different MATI values where nodes are uniformly distributed within
a circular area of radius 10 m and Δ = 10 ms.
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Fig. 6. Average power consumption for different number of nodes
where nodes are uniformly distributed within a circular area of radius
5 m, Δ = 25 ms and Ω = 25 ms.

predetermined constellation size is constant. The performance
of the TS algorithm is much worse than that of the HS
algorithm with an average approximation ratio of 1.65.

Fig. 7 shows the average power consumption in a network
of 20 nodes for different path loss exponent values. The nodes
are uniformly distributed within a circular area of radius 5 m.
The MAD and MATI values are chosen as Δ = 10 ms and
Ω = 100 ms. The constellation size of the TS algorithm is
determined such that it is feasible for the highest path loss
exponent and highest distance from the controller since then
feasibility for all path loss exponent values and all the nodes in
the network is guaranteed. For fixed values of the constellation
size and remaining communication parameters used in the
TS algorithm, the power consumption increases exponentially
with the path loss exponent. The reason for this exponential
increase is that the transmit power required to compensate for
the increasing attenuation in an environment of larger path loss
exponent increases exponentially based on the path loss model
given in Eq. (31) and the power consumption is proportional
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Fig. 7. Average power consumption for different path loss expo-
nent values in a network of 20 nodes where nodes are uniformly
distributed within a circular area of radius 5 m, Δ = 10 ms and
Ω = 100 ms.

to the transmit power. The average power consumption of the
HS algorithm on the other hand increases linearly with the
path loss exponent since the constellation size is optimized at
every node in the network for all the path loss exponent values.
The average approximation ratio of the HS algorithm is 1.01.
The difference between TS and HS algorithms increases as the
path loss exponent increases since higher path loss exponent
creates more variation of the optimal constellation size of the
nodes in the network increasing the value of optimizing the
communication parameters of the sensor nodes in the network.

Figs. 8, 9 and 10 show the robustness of the proposed
algorithm over time by considering the time-varying channel
condition modeled using Rayleigh fading, Nakagami fading
with shape parameter m = 3 and m = 5 respectively. We
assume that the fading level is available to the transmitter
through a causal Channel State Information (CSI) feedback at
the beginning of each transmission interval. As the distance
of the node from the controller and fading level increases, the
maximum feasible constellation size imposed by the maximum
transmit power constraint decreases shrinking the feasible
region over which the power consumption is minimized.
Therefore, the constellation size of the TS algorithm is chosen
as the minimum value in the feasibility region. Similar to the
analysis of the effect of the path loss exponent on the power
consumption, the power consumption of the TS algorithm
employing fixed constellation over all fading levels increases
significantly when the fading level is high. The reason for
this increase is that the transmit power required to compen-
sate for the increasing attenuation increases and the power
consumption is proportional to the transmit power. This also
causes large fluctuations in the power consumption of the TS
algorithm over time. The amount of these fluctuations on the
other hand depends on the variance of the fading distribu-
tion. The fluctuations increases when the fading distribution
changes from Nakagami fading with m = 5 to Nakagami
fading with m = 3 and from Nakagami fading with m = 3 to
Rayleigh fading. Furthermore, the average power consumption
of the HS algorithm is stable over time and very close to the
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Fig. 8. Power consumption in a network of 20 nodes under Rayleigh
fading where nodes are uniformly distributed within a circular area
of radius 5 m, Δ = 10 ms and Ω = 100 ms.
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Fig. 9. Power consumption in a network of 20 nodes under Nakagami
fading with m = 3 where nodes are uniformly distributed within a
circular area of radius 5 m, Δ = 10 ms and Ω = 100 ms.

optimal with average approximation ratio less than 1.01 for all
three fading distributions since the values of the parameters
are optimized according to the channel information at the
beginning of each interval.

VI. CONCLUSION

A joint design of communication and control application
layers is studied by considering a constrained optimization
problem, for which the objective function is the power con-
sumption of the network and the constraints are the reliability
and delay requirements for the stability of the control systems
and the schedulability and maximum transmit power con-
straints of the communication systems. The decision variables
of this optimization problem are the sampling period of the
control layer, the constellation size of the modulation and
the probability of error of the communication layer. The
optimization problem is first formulated as a Mixed-Integer
Programming problem. Upon deriving the relation of the
optimal sampling period and packet error probability to the
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Fig. 10. Power consumption in a network of 20 nodes under
Nakagami fading with m = 5 where nodes are uniformly distributed
within a circular area of radius 5 m, Δ = 10 ms and Ω = 100 ms.

optimal constellation size, the problem is reduced to an IP
problem. We propose an efficient solution method based on
the relaxation of this IP problem. Extensive simulation results
show that the performance of the proposed solution procedure
is very close to the optimal solution and much better than the
traditional separate design of controller and communication
systems for varying network and control system parameters
and under different fading channel models.
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