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We investigate the problem of minimizing the entropy production for a physical process that can
be described in terms of a Markov jump dynamics. We show that, without any further constraints,
a given time-evolution may be realized at arbitrarily small entropy production, yet at the expense
of diverging activity. For a fixed activity, we find that the dynamics that minimizes the entropy
production is given in terms of conservative forces. The value of the minimum entropy production
is expressed in terms of the graph-distance based Wasserstein distance between the initial and
final configuration. This yields a new kind of speed limit relating dissipation, the average number
of transitions and the Wasserstein distance. It also allows us to formulate the optimal transport
problem on a graph in term of a continuous-time interpolating dynamics, in complete analogy to the
continuous space setting. We demonstrate our findings for simple state networks, a time-dependent
pump and for spin flips in the Ising model.

I. INTRODUCTION AND OVERVIEW

Entropy production quantifies how much a physical system is driven out of equilibrium. In practice, entropy
production manifests itself in the form of dissipation, that is, energy that is irreversibly lost into the environment.
Thus, minimizing the entropy production for a physical process is highly desirable from a practical point of view. But
minimum entropy production is also interesting from a more fundamental point of view. There is a long-standing
history of attempts to characterize non-equilibrium steady states via a minimum entropy production principle, see
Ref. [1] for a historical and Ref. [2] for a more recent overview.

In this work, we consider the minimization of entropy production on a theoretical level, but motivated from the
practical point of view. The general question we want to address is, given a physical process, what is the minimum
amount of entropy production that is required to realize it? Obviously, in order to answer this question, we need to
specify some details about the process and what are the parameters of the minimization. We will focus on Markovian
dynamics in continuous time, for which entropy production can be defined, at least mathematically, in an unambiguous
manner. For this class of dynamics, we can further differentiate between diffusion processes, where the state space
is continuous, and jump processes, where the state space is discrete. In most cases, the continuous state space of
diffusion processes is the d-dimensional real space Rd and the dynamics can mathematically be described in terms
of a Langevin equation [3] for the degrees of freedom or a Fokker-Planck equation [4] for their probability density.
A physical process may then be characterized by the time-evolution of the probability density, or, if only the initial
and final configuration are of interest, the initial and final probability density. In the latter case, it has been shown
in Refs. [5–7], that the problem of minimizing the entropy production during the process is equivalent to calculating
the Wasserstein distance between the two probability densities. The Wasserstein distance is a concept from optimal
transport theory [8], which characterizes the optimal way of transforming an initial configuration into a final one.
Since the Wasserstein distance characterizes the minimum entropy production, it also provides a lower bound on the
entropy production [7]s. More recently, this approach has also been applied to the case where the detailed process
instead of just the initial and final configurations is specified [9, 10].

For the case of a jump process, a similar formulation has only been developed very recently [11]. There, it was
shown that a quantity resembling the Wasserstein distance, which is obtained by solving a modified optimal transport
problem, provides a lower bound on the entropy production. However, this approach has two issues: First, the
definition of the Wasserstein-distance-like quantity depends on the process itself and thus, unlike the Wasserstein
distance in the continuous case, is not just a function of the initial and final configuration; it is further not directly
related to the types of Wasserstein distance that are typically considered in the mathematical literature. Second, the
argument of Ref. [11] only applies to systems whose transition rates satisfy detailed balance and thus does not allow
for non-conservative forces. The latter point is important in light of another recent work [12], where it was shown
that the entropy production is generally minimized by rates that do not satisfy detailed balance. This is in contrast
to the continuous case, where the force that realizes minimum entropy production is always conservative and thus
satisfies detailed balance [10, 13].

In this work, we address both of these issues. In Ref. [12] the entropy production was minimized under the
condition that the symmetric part of the transition rates is fixed. We show that by adopting a slightly weaker
condition, minimum entropy production does indeed correspond to rates that satisfy detailed balance. Specifically,
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instead of the symmetric part of the rates, we fix the activity, which can be interpreted as the overall rate at which
transitions occur in the system. Crucially, the minimum entropy production can be expressed in terms of the usual,
graph-distance based Wasserstein distance, which only depends on the connectivity of the state space and the initial
and final configuration. This generalizes the results of Refs. [5–7, 9, 10] to the case of a discrete state space.

Our paper is structured as follows: We consider a Markovian dynamics on a discrete state space, that is characterized
by the time-dependent occupation probabilities pt = (pt(1), . . . , pt(N)) of the states labeled by 1, . . . , N . This
dynamics is introduced in detail in Section II. For a given time evolution of the occupation probabilities pt, we want
to know is the minimum entropy production compatible with this time-evolution. As we discuss in section III, without
any further constraints, the answer to this problem is trivial: we can make the entropy production arbitrarily small,
so there is no finite lower bound. However, the price we have to pay for this is that the overall rate of transitions
between states, quantified by the activity, diverges as the entropy production tends to zero. By contrast, as we show
in Section IV, there exists a minimum value of the activity, that is, a given time-evolution requires a certain overall
transition rate. The main result of this section is that the minimum activity can be expressed in terms of the usual
Wasserstein distance on a graph between the initial and final occupation probability. While the minimum activity
requires a diverging entropy production, we show in Section V that this formalism can also be used to construct the
dynamics that minimize the entropy production for a given activity. This allows us to express the minimum entropy
production in terms of the Wasserstein distance. These concepts are generalized to finite time-differences in Section
VI, where, instead of the entire time-evolution, we only specify the initial and final occupation probabilities. This
leads to a new type of speed limit for the transition between two states. In Section VII, we discuss the relation
between a discrete and continuous state state space and derive a generalization of the Benamou-Brenier formalism to
the former case. Section VIII discusses the application of the results to a few simple state networks and to the Ising
model.

II. CONTINUOUS-TIME MARKOV PROCESSES AND DETAILED BALANCE

We consider a continuous-time Markovian dynamics on a set of N states. Transitions between states j and i occur
at a rate Wt(i, j) ≥ 0 which may depend on time t through some external protocol. Then, the probability pt(i) of
being in state i evolves according to the master equation [14, 15]

dtpt(i) =
∑
j

(
Wt(i, j)pt(j)−Wt(j, i)pt(i)

)
, (1)

with a prescribed set of initial occupation probabilities p0 = (p0(1), . . . , p0(N)). In the following, we assume that the
rates satisfy the condition Wt(i, j) = 0⇔Wt(j, i) = 0, i. e. that there are no unidirectional transitions. Then, we can
parameterize the rates as [12]

Wt(i, j) = k(i, j)ωt(i, j) exp
(

1
2At(i, j)

)
, (2)

with k(i, j) = k(j, i) ∈ {0, 1}, ωt(i, j) = ωt(j, i) ≥ 0 and At(i, j) = −At(j, i). Physically, k(i, j) encodes the connec-
tivity of the state network, i. e., between which states transitions are allowed (k(i, j) = 1) or forbidden (k(i, j) = 0).
The parameters ωt(i, j) constitute the symmetric part of the transition rates, which we can interpret as energetic
barriers between the states. By contrast, the antisymmetric part At(i, j) can be interpreted as the forces driving
transitions between the states. Note that the parameterization Eq. (2) can represent an arbitrary set of transition
rates, specifically, the symmetric and antisymmetric part are determined from the rates as

ωt(i, j) =
√
Wt(i, j)Wt(j, i), At(i, j) = ln

(
Wt(i, j)
Wt(j, i)

)
. (3)

Note that, in the following sections, we will sometimes omit the subscript t in favor of a more compact notation when
we consider the dynamics only at a specific time t. In general, the dynamics described by Eq. (1) are irreversible:
Let us consider a trajectory Γ = {i(t)}t∈[0,τ ], i. e. we trace the instantaneous state of the system over a time-interval
of length τ . Then, we can define a probability P (Γ) of observing a specific trajectory. We can also imagine the
time-reversed version of the dynamics, in which the system starts from the final state of Eq. (1), p†0 = pτ , and
evolves according to the time-reversed protocol W †t (i, j) = Wτ−t(i, j). The probability of observing the time-reversed
trajectory Γ† = {i(τ − t)}t∈[0,τ ] in the time-reversed dynamics is given by P †(Γ†). The irreversibility of the system is
measured by the entropy production [16]

∆Sirr =
∑

Γ
P (Γ) ln

(
P (Γ)
P †(Γ†)

)
. (4)
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Mathematically, this is the Kullback-Leibler divergence between the path probabilities of the forward and reverse
dynamics; this quantity is positive and vanishes only if, for every trajectory, the probability of observing its time-
reversed version in the time-reversed dynamics is the same as for the forward trajectory in the original dynamics. In
terms of the occupation probabilities and rates, the entropy production can be expressed as

∆Sirr =
∫ τ

0
dt σt with σt = 1

2
∑
i,j

(
Wt(i, j)pt(j)−Wt(j, i)pt(i)

)
ln
(
Wt(i, j)pt(j)
Wt(j, i)pt(i)

)
, (5)

where σt ≥ 0 is the rate of entropy production. The entropy production rate only vanishes, if for every pair of states
(i, j), the probability of a transition from j to i is precisely the same for as the reverse transition,

Wt(i, j)pt(j) = Wt(j, i)pt(i), (6)

which is the detailed balance condition and equivalent to the system being in equilibrium [14]. From Eq. (1), this
immediately implies dtpt = 0 and thus, a vanishing entropy production rate can only occur if the occupation probabil-
ities are independent of time, which is called a steady state. However, a steady state does not imply detailed balance;
a steady state with a constant, non-vanishing rate of entropy production is referred to as a non-equilibrium steady
state. We assume that, fixing t = t̂, the dynamics described by Eq. (1) reaches a steady-state pst

t̂
in the long-time

limit. The detailed balance condition Eq. (6) in the steady state then is equivalent to

exp
(
At̂(i, j)

)
= exp

(
φst
t̂

(j)− φst
t̂

(i)
)
, (7)

where we defined φst
t̂

(i) = − ln(pst
t̂

(i)). This means that the forces At(i, j) have to derive from a potential function
φt(i) and are thus conservative. If At(i, j) cannot be written in this way, that is, for non-conservative forces, detailed
balance is broken and the steady state is out of equilibrium. We remark that both Eq. (6) and Eq. (7) are called
detailed balance condition, the difference being that for Eq. (6) the system is already in the equilibrium state, whereas
Eq. (7) only implies that an equilibrium state exists and will eventually be reached if the rates are kept constant. For
convenience, we refer to Eq. (7) as the detailed balance condition in the following.

III. TIME EVOLUTION AT VANISHING ENTROPY PRODUCTION

From Eq. (5) it is obvious that the entropy production rate depends on both the transition rates and the occupation
probabilities. These dependencies can be made explicit by writing [16]

σt = σm
t + σs

t with (8)

σm
t =

∑
i,j

Wt(i, j)pt(j) ln
(
Wt(i, j)
Wt(j, i)

)
and σs

t = −
∑
i

ln
(
pt(i)

)
dtpt(i).

The first term is generally referred to as the rate of entropy production in the medium; it quantifies the asymmetry
in the transition rates. The second part is the rate of change of the Gibbs-Shannon entropy of the system; it depends
explicitly on the time-evolution of the probabilities. The central question that we wish to answer in this work is, given
a time-evolution of the occupation probabilities {pt}t∈[0,τ ], what is the minimum value of the entropy production
compatible with this time-evolution. The motivation for this question is twofold: On the one hand, we may think of
the evolution pt as the desired effect of driving the system, for example, when we want to pump the system into a
higher-energy state. Form this point of view, we want to minimize the dissipation associated with the driving. On
the other hand, since any change in the probabilities pt implies a non-vanishing entropy production, we may ask
how much we can infer about the dissipation in the system, which is often challenging to measure directly, from the
observed evolution of pt. As it turns out, without any further qualifiers, the answer to the above question is trivial:
The minimum entropy production associated with the time-evolution pt is zero. To see this, we define a new set of
transition rates WAt (i, j), which leads to the same time-evolution at an arbitrary entropy production. First, we define
currents Jt(i, j) and traffic Dt(i, j) as

Jt(i, j) = Wt(i, j)pt(j)−Wt(j, i)pt(i), Dt(i, j) = Wt(i, j)pt(j) +Wt(j, i)pt(i). (9)

Jt(i, j) can be interpreted as the directed current across the transition from j to i, while Dt(i, j) measures the rate of
transitions along the transition in either direction. We then define the rates

WAt (i, j) = 1
2pt(j)

(
A+ sign

(
Jt(i, j)

))∣∣Jt(i, j)∣∣, (10)
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with some real parameter A ≥ 1. A straightforward computation shows that the resulting currents are given by

JAt (i, j) = Jt(i, j). (11)

So, the rates Eq. (10) leave the currents invariant. Since, via Eq. (1), we have dtpt(i) =
∑
j Jt(i, j), this also means

that the time-derivative of the probabilities, and thus their time-evolution, remains unchanged. However, the entropy
production rate associated with Eq. (10) is

σAt = 1
2
∑
i,j

∣∣Jt(i, j)∣∣ ln(A+ 1
A− 1

)
. (12)

It is easily seen that, for given currents, this can take all values between zero (for A → ∞) to positive infinity (for
A → 1). For large A, in particular, we have

σAt ' A−1
∑
i,j

∣∣Jt(i, j)∣∣+O(A−3). (13)

Thus, we can make the entropy production rate arbitrarily small without altering the time-evolution of the occupation
probabilities. However, there is a price we have to pay for this: If we consider the activity, which is defined as

χt =
∑
i,j 6=i

Wt(i, j)pt(j) (14)

and measures the overall rate of transitions in the system, we find

χAt = A2
∑
i,j

∣∣Jt(i, j)∣∣. (15)

Thus, even as the entropy production vanishes, the overall rate of transitions in the system diverges, with the product
of the two quantities approaching a constant value

lim
A→∞

σAt χ
A
t = 1

2

(∑
i,j

∣∣Jt(i, j)∣∣)2
. (16)

We remark that at the special value of the parameter A at which the activity resulting from Eq. (10) is the same as
the activity in the original system,

A∗ = [Dt]
[|Jt|]

with [Dt] ≡
∑
i,j 6=i

Dt(i, j), (17)

the corresponding entropy production is a guaranteed lower bound on the entropy production in the original dynamics,

σA
∗

t = 1
2[|Jt|] ln

(
[Dt] + [|Jt|]
[Dt]− [|Jt|]

)
≤ σt. (18)

This inequality can be proven using elementary inequalities, see Appendix A. This means that, using Eq. (10), we have
a dynamics with the same currents, time-evolution and activity as the original dynamics, yet at a reduced entropy
production rate. The fact that we can reduce the entropy production at a given activity poses the question of whether
Eq. (10) already constitutes the optimum or whether the entropy production may be reduced further.

IV. WASSERSTEIN DISTANCE AND MINIMAL ACTIVITY

Before we address the minimization of the entropy production, we are going to introduce the concept of Wasser-
stein distance on a graph. The intuitive idea of optimal transport [8, 17] is to find the optimal way of transforming a
probability vector q into p, minimizing the cost of transporting probability in the process. If the cost of transporting
probability is given by the distance over which the probability is transported, then the minimal cost is called Wasser-
stein distance. In the present setting, the connectivity matrix k(i, j), which specifies which transitions are allowed
or forbidden, is the adjacency matrix of a graph, whose vertices vi are the states i ∈ 1, . . . , N [18]. If k(i, j) = 1,



5

then the vertices vi and vj are connected by an edge e(i, j), if k(i, j) = 0, then there is no edge between vi and vj .
For now, we consider a simple undirected graph, that is e(i, j) and e(j, i) are equivalent and there is at most one
edge between any pair of states. We call the collection of vertices and edges the graph G(v, e). We further define
the graph distance dG(i, j) as the minimum number of edges in any path from vi to vj . Note that the shortest path
between two vertices is generally not unique, so that there may be multiple shortest paths with length dG(i, j). This
function is satisfies all the axioms of a distance, dG(i, j) ≥ 0 with equality if and only if vi = vj , dG(i, j) = dG(j, i)
and dG(i, k) ≤ dG(i, j) + dG(j, k) [18]. We assume that the graph is connected, that is In terms of this distance, the
Wasserstein distance of order 1 or Kantorovich-Rubinstein distance [8] between two probability vectors p and q is
defined as

W(p, q) = infΠ
∑
i,j

dG(i, j)Π(i, j). (19)

The infimum is taken over all couplings Π between p and q, which satisfy

Π(i, j) ≥ 0,
∑
i

Π(i, j) = q(j),
∑
j

Π(i, j) = p(i). (20)

This means that we are looking for the joint probability with marginals p and q that minimizes the expectation of
the graph distance. As the name implies, the Wasserstein distance is a proper distance, satisfying the corresponding
axioms [8]. An important property of Eq. (19) is that, in the above setting, the infimum always exists, however, the
optimal coupling Π∗ that realizes the minimal value is not unique. One reason is that the shortest path between any
two vertices is not necessarily unique, so that we have several equivalent ways of transporting probability between the
two vertices. Another reason is that, even if the shortest path is unique, we can easily construct a coupling that leads
to the same value. To do so, assume we have two vertices with Π(k, l) > 0, which implies that we are moving some
probability from l to k. Then, we consider one of the (possibly many) shortest paths from l to k which we denote
by π(k, l). By definition π(k, l) consists of dG(k, l) ≡ m edges. We denote the directed edge from j to i by ~e(i, j)
and write π(k, l) = (~e(k, jm−1), ~e(jm−1, jm−2), . . . , ~e(j1, l)). Now, we define a new coupling by setting Π̃(k, l) = 0 and
Π̃(i, j) = Π(i, j) + Π(k, l) for all ~e(i, j) ∈ π(k, l). Intuitively, this means that, instead of moving probability directly
from vl to vk, we first move it from vl to vj1 , then from vj1 to vj2 and so on, finally arriving at vk. Since, along the
shortest path, the graph distance is additive, we are moving the same amount of probability by the same distance
and thus the value of Eq. (19) is the same for Π and Π̃. This means that for any coupling Π (which does not have to
be the optimal one), we can always construct an equivalent coupling that is non-zero only the edges of the graph. In
the following, we can thus assume that Π(i, j) = 0 whenever the edge ~e(i, j) is not part of the graph.

Now we make the connection to the Markov jump dynamics Eq. (1). We specialize Eq. (19) to the case p = pt+dt
and q = pt, that is, we consider the solution of Eq. (1) at two infinitesimally different times. From Eq. (20), we then
obtain the condition

dtp(i) = pt+dt(i)− pt(i)
dt

= 1
dt

∑
j

(
Π(i, j)−Π(j, i)

)
. (21)

Since, by the above discussion, we can assume that Π(i, j) > 0 only if k(i, j) = 1 (Wt(i, j) > 0) we may thus identify

Π(i, j) = Wt(i, j)pt(j)dt. (22)

This provides a one-to-one correspondence between the off-diagonal elements of the coupling and the transition rates.
Eq. (20) further fixes the diagonal elements as

Π(i, i) =
(

1−
∑
k 6=i

Wt(k, i)dt
)
pt(i), (23)

which is positive for sufficiently small dt. We can thus compute the activity associated with a given coupling,

χt =
∑
i,j 6=i

Wt(i, j)pt(j) = 1
dt

∑
i,j 6=i

Π(i, j) = 1
dt

∑
i,j

dG(i, j)Π(i, j). (24)

In the last step, we used that all pairs of vertices for which Π(i, j) > 0 we have either dG(i, j) = 1 (if i 6= j)
or dG(i, j) = 0 (if i = j). Apart from the factor dt, this is precisely the same as the functional in Eq. (19). Thus,
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minimizing the activity for a given connectivity and time-evolution is precisely the same as computing the Wasserstein
distance between pt and pt+dt and

χ∗t = 1
dt
W(pt+dt,pt). (25)

Next, we want to exploit the known properties of the optimal coupling Π∗. A central result of optimal transport
theory is the Kantorovich duality [8]. For the present case, this result states that there exists a function ψ(i) defined
on the vertices that satisfies

ψ(j)− ψ(i) = dG(i, j) for all (i, j) with Π∗(i, j) > 0. (26)

In other words, for all edges on which the optimal coupling is non-zero, the graph distance can be written in terms of
a potential function ψ(i). Since we may assume that the optimal coupling is non-zero only on the edges of the graph,
this implies

ψ(j)− ψ(i) = 1 for all (i, j) with Π∗(i, j) > 0, (27)

that is, we may characterize the optimal coupling by a potential landscape with energy difference ±1 between neigh-
boring sites. More precisely, we have ψ(j) − ψ(i) = 1 if probability is transported from j to i (Π∗(i, j) > 0) and
ψ(j) − ψ(i) = −1 if probability is transported from i to j (Π∗(j, i) > 0), so that flow of probability described
by the optimal coupling is always downhill in the potential. This also implies that for given i and j, probabil-
ity flows between them in only one direction and the transition rates Eq. (22) defined by Π∗ are unidirectional
W ∗t (i, j) > 0 ⇒ W ∗t (j, i) = 0. From the point of view of minimizing the activity, this is reasonable, as any reverse
transitions also contribute to the activity. However, this also means that at the minimal activity, the entropy produc-
tion rate diverges. Since our original goal was minimizing the entropy production, it seems we have only achieved the
opposite. However, as we will see in the next section, the information about dynamics realizing minimal activity will
actually be useful for minimizing the entropy production. We remark that, if the optimal coupling Π∗ is known, the
energy landscape ψ(i) is determined uniquely up to a constant shift [8]. Conversely, the knowing the energy landscape
also determines the Wasserstein distance, which can be written as

W(pτ ,p0) =
∑
i

ψ(i)
(
pt+dt(i)− pt(i)

)
. (28)

V. MINIMUM ENTROPY PRODUCTION AT FIXED ACTIVITY

Minimizing the entropy production rate requires minimizing Eq. (5) with respect to the transition rates under the
constraints that (i) the rates lead to the correct time-evolution Eq. (1) and that (ii) the resulting activity Eq. (14) has
the same value as in the original dynamics. To simplify the notation we introduce the parameters C(i, j) = −C(j, i)
via

A(i, j) = 2C(i, j) + ln
(
p(i)
p(j)

)
, (29)

and omit the subscript t in the following. In terms of these parameters, the master equation, entropy production rate
and activity can be written as

dtp(i) = 2
∑
j

√
p(i)p(j)k(i, j)ω(i, j) sinh(C(i, j)), (30a)

σ = 2
∑
i,j

√
p(i)p(j)k(i, j)ω(i, j)C(i, j) sinh(C(i, j)), (30b)

χ =
∑
i,j 6=i

√
p(i)p(j)k(i, j)ω(i, j) cosh(C(i, j)). (30c)

Then, we minimize Eq. (30b) with respect to ω(i, j) and C(i, j) under the constraints Eq. (30a) and Eq. (30c). Taking
the derivative of Eq. (30) with respect to ω(i, j) and C(i, j) yields the conditions for a stationary point,

k(i, j)
(
C(i, j) sinh(C(i, j)) + γ cosh(C(i, j))

)
= k(i, j)

(
λ(j)− λ(i)

)
sinh(C(i, j)), (31a)

k(i, j)ω(i, j)
(
C(i, j) cosh(C(i, j)) + (γ + 1) sinh(C(i, j))

)
= k(i, j)ω(i, j)

(
λ(j)− λ(i)

)
cosh(C(i, j)), (31b)
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where γ and λ(i) are Lagrange multipliers. For all (i, j) such that k(i, j)ω(i, j) > 0, this results in the condition(
tanh(C(i, j))

)2 = γ

1 + γ
≡ q2 with 0 ≤ q ≤ 1. (32)

Thus for all pairs of states with a non-zero transition rate between them, C(i, j) has to be constant, specifically

C(i, j) = s(i, j)artanh(q) (33)

with s(i, j) = −s(j, i) ∈ {−1, 1}. Plugging this into Eq. (31a) yields

λ(j)− λ(i) = s(i, j)Eq with Eq =
(

artanh(q) + q

1− q2

)
. (34)

Thus the Lagrange multipliers λ(i) define an energy landscape, in which any two states with a non-vanishing proba-
bility flow between them are separated by an energy Eq. This is precisely the condition that is satisfied by the optimal
transport coupling Π∗! We choose

λ(i) = Eqψ(i), ω(i, j) =
√

1− q2

2qdt
Π∗(i, j) + Π∗(j, i)√

p(i)p(j)
. (35)

For this choice, we obtain from Eq. (30)

dtp(i) = 1
dt

∑
j

(
Π∗(i, j)−Π∗(j, i)

)
, (36a)

σ = 2artanh(q)
dt

∑
i,j 6=i

Π∗(i, j), (36b)

χ = 1
qdt

∑
i,j 6=i

Π∗(i, j). (36c)

The first equation is satisfied because of Eq. (21) and the third equation can be solved for q,

q = χ∗

χ
, (37)

where we used Eq. (24) and Eq. (25). This yields the minimal entropy production rate

σ∗ = 2χ∗artanh
(
χ∗

χ

)
. (38)

In summary, for a given connectivity of the state network k(i, j) and time-evolution pt, there exists a minimal activity
χ∗, which is equal to the Wasserstein distance between pt and pt+dt. The minimal entropy production rate at a given
activity χ is then determined by the ratio of χ∗ and χ and diverges logarithmically as χ → χ∗. We remark that
the above is different from the approach pursued in Ref. [12], where the symmetric part ω(i, j) of the rates was kept
fixed. Intuitively, fixing the activity is a weaker constraint compared to fixing the symmetric parts of all the rates.
Consequently, as we discuss in Appendix B, we expect that the minimum entropy production Eq. (38) is smaller than
the minimum entropy production of Ref. [12] in most cases, even though this relation is not strict.

The somewhat convoluted notation of the above derivation does not lend itself to physical intuition. However, we
can use Eq. (10) to gain a more intuitive understanding. Suppose that, in Eq. (10), instead of the original rates
W (i, j), we use the rates W ∗(i, j) corresponding to the optimal coupling Π∗ via Eq. (22). Since the rates W ∗(i, j) are
unidirectional, we then find

WA(i, j) =
{ A+1

2 W ∗(i, j) if W ∗(i, j) > 0
A−1

2 W ∗(j, i) if W ∗(j, i) > 0.
(39)

The corresponding entropy production rate and activity are given by

σA = 2χ∗artanh
(

1
A

)
(40a)

χA = Aχ∗. (40b)
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For A = 1, we re-obtain the unidirectional rates corresponding to minimal activity and diverging entropy production.
For any A > 1, however, the reverse transition rate becomes non-zero and thus the entropy production rate is finite.
Thus Eq. (39) corresponds to a symmetrized version of the unidirectional rates W ∗(i, j). For the choice A = χ/χ∗,
the activity is equal to the activity of the original dynamics and the entropy production yields the minimal value at
this activity. In that sense, the minimal entropy production is obtained by first solving the optimal transport problem
and then symmetrizing the resulting transition rates by just the right amount. In terms of Eq. (2), the symmetric
and antisymmetric part of the transition rates realizing the minimal entropy production rate are given by

ω∗(i, j) =

√(
χ

χ∗

)2
− 1Π∗(i, j) + Π∗(j, i)

2
√
p(i)p(j)dt

(41a)

A∗(i, j) = φ(j)− φ(i) + 2artanh
(
χ∗

χ

)(
ψ(j)− ψ(i)

)
, (41b)

with φ(i) = − ln p(i). This form explicitly shows that the forces A∗(i, j) are derived from a potential and thus satisfy
the detailed balance condition Eq. (6). This potential includes two contributions: The term involving φ(i) derives from
differences between the instantaneous occupation probabilities; it favors transitions from states with high probability
to states with low probability. The second term involving ψ(i) derives from the structure of the optimal coupling
Eq. (27). Since ψ(j)− ψ(i) = ±1, we may interpret the prefactor as the energy scale defining the energy landscape.
As we approach the minimal activity, χ → χ∗, the energy scale diverges, while the symmetric part ω(i, j) tends to
zero, which reproduces the finite unidirectional transition rates corresponding to the solution of the optimal transport
problem.

We remark that we can also calculate the pseudo-entropy production rate [19], which is defined by

ρ =
∑
i,j

(
W (i, j)p(j)−W (j, i)p(i)

)2
W (i, j)p(j) +W (j, i)p(i) . (42)

Like the entropy production, the pseudo-entropy production quantifies the breaking of detailed balance in the system.
While it cannot be expressed in terms of the time-forward and time-reversed path probabilities like Eq. (4), it has the
advantage that it remains finite in the presence of unidirectional transitions. It is further a lower bound on both the
entropy production rate and the activity: ρt ≤ σt and ρt ≤ 2χt, where the former bound turns into an equality close
to equilibrium. For Eq. (39), the pseudo-entropy production rate is given by

ρA = 2χ∗

A
. (43)

Solving Eq. (30) by minimizing ρ instead of σ yields precisely the same conditions, so that the entropy production
rate and pseudo-entropy production rate are simultaneously minimized for A = χ/χ∗,

ρ∗ = 2(χ∗)2

χ
. (44)

VI. FINITE TIMES

In the derivation of the minimum entropy production rate Eq. (38), we focused on the situation where the entire
evolution of the probabilities is specified. However, in many situations, only the initial and final configuration p0 and
pτ are of interest. In this case, instead of the instantaneous activity χt, it is more natural to fix its time-integral∫ τ

0
dt χt = 〈M〉 , (45)

which is equal to the average number of transitions in the time interval [0, τ ]. Then, we want to minimize the total
entropy production Eq. (5) during the time τ , keeping the average number of transitions fixed. As before, we first
establish some properties of the optimal transport problem. Suppose we know an optimal coupling Γ∗ between p0
and pτ . Then, from Eq. (20), we have

pτ (i)− p0(i) =
∑
j

(
Γ∗(i, j)− Γ∗(j, i)

)
. (46)
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Then, we define

Π∗(i, j) =
{ Γ∗(i, j)dtτ for i 6= j

1−
∑
k Γ∗(k, i)dtτ for i = j.

(47)

This satisfies

pτ (i)− p0(i)
τ

= 1
dt

(
Π∗(i, j)−Π∗(j, i)

)
. (48)

and, for sufficiently small dt/τ , Γ∗(i, j) > 0. If we can find a dynamics that satisfies

pt = p0 + t

τ

(
pτ − p0

)
⇒ dtpt = pτ − p0

τ
, (49)

that is, whose solution interpolates between p0 and pτ at a constant rate of change of the probability, then, by
Eq. (48), Π∗ is a coupling between pt and pt+dt. We further have

W(pτ ,p0) =
∑
i,j

dG(i, j)Γ∗(i, j) = τ

dt

∑
i,j

dG(i, j)Π∗(i, j). (50)

Suppose we divide the time interval [0, τ ] into K � 1 intervals [kdt, (k + 1)dt]. We can write the above as

W(pτ ,p0) = K
∑
i,j

dG(i, j)Π∗(i, j). (51)

Because the Wasserstein distance satisfies the triangle inequality, we also have

W(pτ ,p0) ≤ KW(pt+dt,pt), (52)

where we used that the distance between pt and pt+dt only depends on the (constant) rate of change dtpt because of
Eq. (21). Comparing Eq. (51) and Eq. (52), we then have∑

i,j

dG(i, j)Π∗(i, j) ≤ W(pt+dt,pt). (53)

Since Π∗ is a coupling between pt and pt+dt, it is already is an optimal one, since, by definition, the Wasserstein
distance is equal to the infimum of the quantity on the left. This means that for a constant rate of change of the
probability, Eq. (49), we have

W(pτ ,p0)
τ

= W(pt+dt,pt)
dt

. (54)

In other words, a constant rate of probability change between the initial and final state yields the geodesic between
the two states with respect to the metric defined by the Wasserstein distance. The coupling Π∗ also defines the rates
that lead to the dynamics Eq. (49) via Eq. (22).

The above discussion shows that the optimal process that minimizes the total number of transitions is one whose
rate of change in the probability is constant. For this process, we have

〈M〉∗ = τχ∗t = τ
W(pt+dt,pt)

dt
=W(pτ ,p0). (55)

That is, the minimal number of transitions required to transform the initial state p0 into the final state pτ is given
by the Wasserstein distance between the two states. This provides a direct interpretation of the Wasserstein distance
between two states in terms of the process connecting the two states. Further, since χ∗t and χt are independent of
time, we obtain from Eq. (38)

∆Sirr,∗ = 2W(pτ ,p0)artanh
(
W(pτ ,p0)
〈M〉

)
. (56)

Thus, the minimal amount of entropy production that is required to transform p0 into pτ is given in terms of
the Wasserstein distance and the average number of transitions. The proof that a constant rate of change in the
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probability indeed minimizes the entropy production is given in Appendix C. For an arbitrary dynamics, the right-
hand side Eq. (56) constitutes a lower bound on the entropy production during the process. Since the number of
transitions is in often proportional to time 〈M〉 = τ χ̄, with the time-averaged activity χ̄, Eq. (56) also translates into
a speed limit for the transition from p0 to pτ ,

τ ≥ W(pτ ,p0)
χ̄ tanh

(
∆Sirr

2W(pτ ,p0)

) . (57)

That is, the minimal time for a transition between two states is determined by the Wasserstein distance, the activity
and the amount of dissipation. Using the inequalitiesW(pτ ,p0) ≥ δ(pτ ,p0) with the total variation distance δ(p, q) =∑
i |p(i)− q(i)|/2 and tanh(x) ≤ x we re-obtain the speed limit derived in Ref. [20],

τ ≥ 2δ(pτ ,p0)2

χ̄∆Sirr . (58)

However, Eq. (57) is tighter than this bound. In particular, since the hyperbolic tangent approaches unity for large
arguments, we see that in the limit of large dissipation, the activity becomes the limiting factor for the transition
time,

τ ≥ W(pτ ,p0)
χ̄

. (59)

This means that, in contrast to what is suggested by Eq. (58), strong driving and large dissipation do not allow us
to realize arbitrarily fast transition times. Another appealing feature of Eq. (57) is that its derivation shows that the
speed limit is tight, that is, there always exists a process that realizes the minimal transition time. Instead of a speed
limit, Eq. (56) may also be interpreted as a tradeoff relation between dissipation and precision. Since the Wasserstein
distance is equal to the minimum number of transitions, we may write Eq. (56) as

∆Sirr ≥ 2〈M〉∗artanh
(
〈M〉∗

〈M〉

)
. (60)

If the dynamics transforms the initial into the final state with the minimum number of transitions, it has perfect
precision: Transitions only occur in the “correct” direction and never in reverse. Eq. (60) implies that this requires
infinite dissipation. If we sacrifice precision and allow transitions to also occur in the reverse direction, then the
dissipation becomes finite, however, we also require more transitions to realize the same change in the state. We
remark that similar tradeoff relations have been obtained for Brownian clocks [21] and stochastic currents [22].
The relation Eq. (60) establishes a tradeoff relation on the basis of the system state itself, rather than derived
quantities. In addition to the lower bound corresponding to Eq. (58), we can also give an upper bound on the
minimum entropy production. The maximal graph distance between any two vertices is defined as the diameter of the
graph max(i,j)∈G dG(i, j) = d(G) [18], which also is an upper bound on the Wasserstein distance [8]. We thus obtain
lower and upper bounds on the minimum entropy production,

2δ(pτ ,p0)artanh
(
δ(pτ ,p0)
〈M〉

)
≤ ∆Sirr,∗ ≤ 2d(G)artanh

(
d(G)
〈M〉

)
. (61)

The lower bound depends only on the initial and final state via their total variation distance and is independent of
the connectivity of the state space. δ(pτ ,p0) is the Wasserstein distance on a complete graph. By contrast, the upper
bound depends only on the connectivity of the state space and is independent of the initial and final state. d(G)
equals the Wasserstein distance between an initial and final state each concentrated on one of two maximally distant
vertices.

VII. RELATION TO LANGEVIN DYNAMICS

The results of the preceding section imply three alternative but equivalent ways of formulating the optimal transport
problem of computing the Wasserstein distance Eq. (19). All of them involve constructing a Markov jump process of
the form Eq. (1) interpolating between the two probability vectors q = p0 and p = pτ .

1. Find the Markov jump process with initial state p0 = q and final state pτ = p that minimizes the average
number of transitions 〈M〉. Then, the Wasserstein distance is given by W(p, q) = 〈M〉∗.
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2. Find the Markov jump process with initial state p0 = q and final state pτ = p that minimizes the entropy
production ∆Sirr, Eq. (5), at a given average number of transitions 〈M〉. Then, the Wasserstein distance is
related to the minimum entropy production via Eq. (56).

3. Find the Markov jump process with initial state p0 = q and final state pτ = p that minimizes the pseudo entropy
production ∆Rirr =

∫ τ
0 dt ρt, Eq. (42), at a given average number of transitions 〈M〉. Then, the Wasserstein

distance is related to the minimum pseudo entropy production via

∆Rirr,∗ = 2W(p, q)2

〈M〉
= 2W(p, q)2

τ χ̄
. (62)

The last formulation, in particular, is appealingly similar to the well-known Benamou-Brenier formula [23] for the
L2-Wasserstein distance in Rn. We recall Eq. (9) defining the probability current Jt(i, j) and traffic Dt(i, j),

Jt(i, j) = Wt(i, j)pt(j)−Wt(j, i)pt(i), Dt(i, j) = Wt(i, j)pt(j) +Wt(j, i)pt(i). (63)

We define the discrete gradient and divergence operator(
grad(a)

)
(i, j) = 1

2
(
a(i)− a(j)

)
, (64)(

div(A)
)
(i) = 1

2
∑
j

(
A(j, i)−A(i, j)

)
.

Note that the gradient operator defines an antisymmetric N × N -matrix in terms of the N -vector a, while the
divergence operator defines an N -vector in terms of the antisymmetric part of the N × N -matrix A. With this
notation, we can write Eq. (1) as a continuity equation

dtpt = −div(Jt). (65)

Let us further define the inner products for vectors and matrices, respectively

〈a, b〉 =
∑
i

a(i)b(i) and 〈A,B〉 =
∑
i,j

A(i, j)B(i, j). (66)

With this definition, it is straightforward to check that we have the discrete integration by parts formula

〈a,div(A)〉 = −〈grad(a), A〉 . (67)

The pseudo-entropy production and average number of transitions can be written as

∆Rirr =
∫ τ

0
dt

〈
Jt,

Jt
Dt

〉
(68a)

〈M〉 = 1
2

∫ τ

0
dt 〈Dt, 1N×N 〉, (68b)

where the division is taken as component-wise division and 1N×N is a matrix with all entries equal to 1. In summary,
the statement of the optimal transport problem in terms of the pseudo-entropy is the following: Find

∆Rirr,∗ = inf
Jt,Dt

∫ τ

0
dt

〈
Jt,

Jt
Dt

〉
(69)

such that the continuity equation Eq. (65) with boundary conditions p0 = q and pτ = p the constraint Eq. (68b)
are satisfied. Then, the Wasserstein distance is related to the minimum pseudo-entropy production by Eq. (62). By
comparison, for a Langevin dynamics (x ∈ Rn) with diffusion coefficient D, the probability density pt(x) satisfies the
Fokker-Planck equation

∂tpt(x) = −div
(
jt(x)

)
with jt(x) = ft(x)pt(x)−D grad

(
pt(x)

)
(70)

and the entropy production is given by

∆Sirr =
∫ τ

0
dt

∫
dx
|jt(x)|2

Dpt(x) =
∫ τ

0
dt

〈
jt,

jt
Dpt

〉
, (71)
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where the inner product is defined as

〈a, b〉 =
∫
dx a(x) · b(x), (72)

where · is the standard scalar product in Rn. As has been discussed in Refs. [5–7], we may consider the optimization
problem

∆Sirr,∗ = inf
jt,pt

∫ τ

0
dt

〈
jt,

jt
Dpt

〉
(73)

under the constraint that the continuity equation Eq. (70) with boundary conditions p(x)0 = q(x) and p(x)τ = p(x)
is satisfied. The solution to this problem is related to the Wasserstein distance of order 2 between p0(x) and pτ (x)
via

∆Sirr,∗ = W2(pτ , p0)2

τD
. (74)

The latter is defined as

W2(pτ , p0) =
(

inf
Π

∫
dx

∫
dy ‖x− y‖2Π(x,y)

) 1
2

, (75)

where Π(x,y) is a joint probability density with marginals pτ (x) and p0(y). The resemblance between Eq. (69)
and Eq. (73) is obvious. There are, however, two crucial differences between the two results: First, the Wasserstein
distance in Eq. (74) is defined in terms of the order 2 distance on euclidean space, whereas Eq. (62) involves the order
1 distance on a graph. And second, the quantity in the denominator is different, specifically, the diffusion coefficient D
appears in the Langevin case and the time-averaged activity χ̄ in the Markov jump case. However, given their striking
similarity, we conjecture that Eq. (74) indeed emerges from Eq. (62), provided that the jump dynamics Eq. (1) tends
to a Langevin dynamics in a suitable continuum limit. In this limit, we expect that the constraint on the number
of transitions is equivalent to fixing the diffusion coefficient D. We further remark that, in the continuum limit, the
quantities ∆Sirr and ∆Rirr become equivalent, so both problems involve a minimization of the entropy production
under constraints.

There is, however, another, more fundamental difference between the continuous and discrete case: Let us return to
the formulation of Section V, that is, we fix the time evolution of the occupation probabilities pt and the activity χt
and minimize the entropy production rate σt. For the Langevin case, a similar setup—fixing the diffusion coefficient
instead of the activity—was discussed in Refs. [10, 13]. In that case, it was found that the force that realizes the
minimum entropy production dynamics is the gradient of a potential, which is the equivalent of the detailed balance
condition Eq. (7). In the Langevin case, there is further a one-to-one correspondence between the potential and the
time-dependent probability density, that is, there is only one potential (up to an additive constant) that gives rise to a
given time-evolution. As a consequence, if the dynamics is described by a potential force, this force already minimizes
the entropy production rate. As we found in Section V, the antisymmetric part of the transition rates also satisfies
the detailed balance condition and thus is derived from a potential. However, in contrast to the Langevin case, the
one-to-one relation between the potential and the time-evolution of pt is lost. The reason is that, in principle, we
may vary the symmetric and antisymmetric part of the transition rates separately, so that different potentials may
give rise to the same time-evolution. This is clear from the potential landscape of the minimum entropy production
dynamics, which has a fixed energy difference between any two connected states, while this condition is not satisfied
by a general potential. This means that, even if the rates of the original dynamics satisfy the detailed balance
condition Eq. (7), we can generally reduce the entropy production rate further while keeping the time-evolution and
the activity invariant. The consequence of this difference is that, while in the Langevin case, the minimum entropy
production for a given time-evolution can be identified as the excess entropy production [13] (in the sense of non-
equilibrium thermodynamics, see also Refs. [24–26]) and the remaining entropy production as the housekeeping part,
this identification is not straightforward in the Markov jump case.

VIII. ILLUSTRATIVE EXAMPLES

A. Simple networks

While the matrix k(i, j) specifies the connectivity of the state network of the original dynamics, for the minimum
entropy production dynamics, it is the maximal connectivity. The difference between the two is that, even if a
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FIG. 1. Possible configurations for N = 2 and N = 3 states. Red dots represent states with dtpt(i) < 0 (sources of probability),
while blue dots represent states with dtpt(i) > 0 (sinks of probability). The numbers are the energies ψ(i) of each state, chosen
such that the lowest energy is zero. Solid lines are connect states with a non-vanishing probability flow between them in the
minimum entropy production dynamics, while the green dashed lines connect states between which a connection is permitted
in principle (k(i, j) = 1), but between which there is no probability flow in the minimum entropy production dynamics. From
top to bottom: For N = 2 states, there is only one possible non-trivial configuration and the Wasserstein distance is equal to
the total variation distance. For N = 3 states on a line, the Wasserstein distance may be equal (upper configuration) or larger
(lower configuration) than the total variation distance, depending on the change in the occupation probabilities. Note that
the second configuration has a maximal energy difference of 3. For a loop with N = 3 states, two states are always effectively
disconnected in the minimum entropy production dynamics and the Wasserstein distance is equal to the total variation distance.

connection between two states is allowed in principle (k(i, j) = 1), the transition rates Eq. (39) between the two
states may be zero. Physically, this corresponds to inserting a large energy barrier between the two states, effectively
preventing transitions between them. One particular example for this are loops consisting of an odd number of states.
Along such a loop, it is not possible to define an energy landscape with constant step size in a consistent manner.
Thus, the minimum entropy production dynamics never contains odd loops. While loops with an even number of
states are allowed in principle, we can always find a choice for the optimal coupling Π∗ that does not contain any
loops, such that the corresponding graph is a tree. Precisely speaking, we may also have a collection of trees without
any connection between them, provided that the total change in probability in any one tree is zero. The ambiguity
in the choice of the optimal coupling reflects the non-uniqueness of the graph distance in the presence of even loops:
States on opposite sides of the loop are always connected by (at least) two paths of the same length, so we can move
probability between them along either path without changing the value of the Wasserstein distance.

Let us consider a few simple state networks. For N = 2 states, we always have one state with dtpt(1) > 0 and
one state with dtpt(2) < 0. Then, we assign the energies ψ(1) = 0 and ψ(2) = 1, which ensures that probability
flows from state 2 to state 1. In this case, the Wasserstein distance is equal to the total variation distance. As
remarked before, this is always the case for a complete graph, i. e. k(i, j) = 1 for all pairs of states. More generally,
the Wasserstein distance is also equal to the total variation distance, if any state i with dtpt(i) > 0 is connected to all
states j with dtpt(j) < 0 and vice versa. In this case, the energies ψ(i) can be chosen such that ψ(i) = 0 for dtpt(i) > 0
and ψ(i) = 1 for dtpt(j) < 0, that is, the largest energy difference between any two states is 1. For N = 3, there
are two possible configurations that result in a connected graph: Either the three states can be arranged on a line,
e. g. k(2, 1) = k(3, 2) = 1 and k(1, 3) = 0. In this case, the connectivity of the minimum entropy production dynamics
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FIG. 2. Some configurations for N = 4 states. The symbols are the same as in Fig. 1. As for three states, a linear configuration
may lead to a Wasserstein distance that is equal to (upper configuration) or larger than (lower configuration) the total variation
distance. If the original graph contains any odd-numbered loop, those loops are cut in the minimum entropy production
dynamics. Finally, for an even-numbered loop, there always exists a tree-like configuration. However, in this case, we may also
transport (some or all of the) probability from the left to the right state via the lower path without changing the Wasserstein
distance, so we can also find an equivalent configuration which contains the loop.

is generally the same as the original graph. However, even for this very simple configuration, the Wasserstein distance
is generally larger than the total variation distance: If dtpt(1) > 0, dtpt(2) > 0 and dtpt(3) < 0, then we cannot avoid
moving some probability from state 1 to state 3, and thus over a graph distance of d(1, 3) = 2. The other possibility
is that the three states form a loop, e. g. k(2, 1) = k(3, 2) = k(1, 3) = 1. In this case, since the loop contains an odd
number of states, the minimum entropy production dynamics will always have zero probability flow across one of the
edges and we obtain a configuration that can be arranged on a line. However, since the original graph is complete,
the Wasserstein distance is always equal to the total variation distance in this case. The possible configurations for 2
and 3 states are shown in Fig. 1. For N = 4 there are already several qualitatively different possibilities, taking into
account the connectivity and distribution of probability changes. Some examples are shown in Fig. 2. The number
of possible configurations increases rapidly with the number of states, two random examples for N = 10 states are
shown in Fig. 3.
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FIG. 3. Two sample configurations for N = 10 states. The symbols are the same as in Fig. 1. For the upper configuration, the
Wasserstein distance is about 1.43 times, for the lower configuration about 3.52 times the total variation distance.

B. Pumping current on a ring

In the previous section, we only discussed the static structure of the minimum entropy production process for a
given initial and final state. Now we want to extend this to a dynamic situation, where a system is actually driven by
an external protocol. We consider a ring of N states, with transitions between nearest neighbors occurring according
to the time-dependent rates

Wt(i, j) = ω0 exp
(
− 1

2
(
Et(i)− Et(j)

))
(76)

with Et(i) = ε0

(
1
2 −

1
2 cos

(
2π
(
t+ j − 1

N

)))
.

The energy of each state varies periodically between 0 and ε0, with a phase-shift of 2π/N between two neighboring
states. As a consequence, the location of the minimum energy state moves around the ring and thus the rates Eq. (76)
correspond to pumping a probability current around the ring. Note that the rates satisfy the detailed balance condition
Eq. (7) for any time t. The parameter ω0 quantifies the rate at which transitions occur between the different states
and thus determines how well the system can follow the time-dependence of the rates. For ω0 � 1, the transitions
between the states are fast compared to the change in the rates and thus the occupation probabilities are close to the
instantaneous equilibrium probabilities, pt(i) ' peq

t (i) with

peq
t (i) = e−Et(i)∑

j e
−Et(j)

. (77)

For ω0 � 1, on the other hand, the rates change faster than transitions between the individual states occur; in this
case, the transitions are approximately determined by the rates averaged over one period and we have pt(i) ≈ 1/N .
In the long-time limit, the dynamics Eq. (76) lead to time-periodic occupation probabilities. While these do not have
an analytic expression, they are easily obtained numerically, which allows us to calculate the entropy production rate
σt Eq. (5) and activity χt Eq. (14) at any given time. With the time-evolution of the occupation probabilities and
the activity, we can then solve the optimization problem in Eq. (30) for any instant of time and thus compute the
minimum activity χ∗t , and the minimum entropy production rate σ∗t at the given activity χt. We can also compute
the energy landscape for the minimum entropy production dynamics, which is defined using Eq. (41) as

E∗t (i) = − ln
(
pt(i)

)
+ 2artanh

(
χ∗t
χt

)
ψt(i), (78)

where ψt(i) is determined by the optimal coupling via Eq. (27). The results are shown in Fig. 4 for fast transitions (ω0 =
10) in Fig. 4 and for slow transitions (ω0 = 0.1) in Fig. 5. First, we note that the activity is approximately constant
as a function of time. This means that in this case, we would obtain the same results by fixing the time-averaged
activity instead of its instantaneous value. Next, even though the rates Eq. (76) already satisfy detailed balance,
we can further reduce the entropy production rate while keeping the time-evolution of the occupation probabilities
and the activity invariant. The relative reduction σ∗t /σt ≈ 0.7 has the same order of magnitude for both fast and
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FIG. 4. Results for the pumping model Eq. (76) with N = 5, ε0 = 1 and ω0 = 10 as a function of time for one period of the
driving. (Top left) The activity χt (black) and the minimal activity χ∗

t (orange). (Top right) The entropy production rate σt

(black) and the minimum entropy production rate σ∗
t (orange). (Bottom left) The probability current Jt(2, 1) (dashed) and

the total probability current around the ring (solid) for the original dynamics (black) and the minimum entropy production
dynamics (orange). (Bottom right) The energy Et(1) (black, see Eq. (76)) and the energy E∗

t (1) in the minimum entropy
production dynamics (orange, see Eq. (78)).

slow transitions. If the transitions between states are fast compared to the driving, then we observe a finite current
and approximately constant around the ring, while for slow transitions, where the system cannot follow the driving,
the overall current vanishes. While this behavior is the same for the current in the minimum entropy production
dynamics when averaged over one period, the instantaneous current shows marked oscillations, both for fast and
slow transitions. At first glance, this is counter-intuitive, as it indicates that driving a current back and forth across
the ring can reduce the entropy production rate. However, the latter is actually determined by the local currents
between individual states, rather than the global current in the entire ring. Still, it is not trivial that optimizing
the local currents would lead to a more erratic behavior in the overall current. Finally, with respect to the energy
landscape, for fast transitions, we observe that the energy landscape of the minimum entropy production dynamics,
Eq. (76), closely follows the energies in the original dynamics. The reason is that, in this limit, the second term in
Eq. (78) is small, since the activity is much larger than the minimum value, so the energy E∗t is mostly determined
by the equilibrium probabilities Eq. (77) and thus the original energy landscape. By contrast, for slow transitions,
the occupation probabilities are approximately constant and equal and thus enter Eq. (78) only as a trivial constant
shift. In this limit, we observe a marked step-like behavior of the minimum entropy production energy landscape,
which reflects the fact that the direction of the probability flow and thus the optimal coupling change in a non-smooth
manner during the time-evolution.



17

FIG. 5. Results for the pumping model Eq. (76) with N = 5, ε0 = 1 and ω0 = 0.1 as a function of time for one period of the
driving. (Top left) The activity χt (black) and the minimal activity χ∗

t (orange). (Top right) The entropy production rate σt

(black) and the minimum entropy production rate σ∗
t (orange). (Bottom left) The probability current Jt(2, 1) (dashed) and

the total probability current around the ring (solid) for the original dynamics (black) and the minimum entropy production
dynamics (orange). (Bottom right) The energy Et(1) (black, see Eq. (76)) and the energy E∗

t (1) in the minimum entropy
production dynamics (orange, see Eq. (78)).

C. Spin flips in the Ising model

The Ising model is a paradigmatic example for a physical system on a discrete state space. We consider a collection
of K classical spins arranged on a d-dimensional square lattice. Each spin can have one of two directions, up (denoted
by σ(k) = +1) and down (denoted by σ(k) = −1). The spins interact via a pairwise ferromagnetic interaction between
nearest neighbors, characterized by the Hamiltonian

Ht(σ) = −Jt
∑
〈kl〉

σ(k)σ(l)− ht
∑
k

σ(k), (79)

where Jt quantifies the strength of the interaction, ht is an external field and 〈kl〉 denotes the sum over nearest-
neighbor pairs. Thus, the first term is minimized when all spins are parallel, whereas the second term is minimized
when all spins are aligned with the external field. For simplicity, we assume that the parameters Jt and ht are the
same for all spins, but may change as a function of time. The state i of the system is determined by the value of each
spin, that is, the vector σ = (σ(1), . . . , σ(K)), so that there are N = 2K different states. We assume that transitions
between different states can occur only via single spin flips, so that k(i, j) = 1 if and only if i and j differ by the
orientation of exactly one spin, and that the transition rates have the form

Wt(i, j) = k(i, j)ω exp
(
−βt2

(
Ht(i)−Ht(j)

))
, (80)

where βt = 1/Tt is the inverse temperature and the constant ω quantifies the overall speed of the dynamics. Since
the transition rates satisfy detailed balance, the steady state occupation probability (at fixed parameters) is the
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Boltzmann-Gibbs equilibrium

peq
t (i) = e−βtHt(i)

Zt
, (81)

where Zt =
∑
i e
−βtHt(i) is the partition function. The system can be driven out of equilibrium by varying the

parameters, typically the external field ht and temperature βt, as a function of time according to a given protocol. This
leads to a time-dependent occupation probability pt(i) which is generally different from the instantaneous Boltzmann-
Gibbs state. A typical example is a quench, where the system starts out in the equilibrium state corresponding to
initial parameters values hi and βi. Then, at t = 0, the value of the parameters is instantaneously changed to hf and
βf and we can observe the random evolution of the system’s state and, by repeating this procedure sufficiently often,
the occupation probability pt(i), as it relaxes to the new equilibrium state. Using Eq. (8), we can write the total
entropy production during the process as

∆Sirr = ∆Sm + ∆Ss with (82a)

∆Sm = −
∫ τ

0
dt βt

∑
i

Ht(i)∂tpt(i) (82b)

∆Ss = −
∑
i

(
ln
(
pτ (i)

)
pτ (i)− ln

(
p0(i)

)
p0(i)

)
. (82c)

For the case of a quench the value of the temperature and the functional form of the Hamiltonian are independent of
time during the process and we can further write

∆Sm = −βf
∑
i

Hf(i)
(
pτ (i)− p0(i)

)
. (83)

The advantage of this formulation is that it only depends on the initial and final occupation probabilities and the
Hamiltonian after the quench. Let us suppose that we wait for a sufficiently long time after the quench so that the
occupation probabilities have relaxed to their equilibrium values Eq. (81). Then, the total entropy production is a
function of only the initial and final Hamiltonian

∆Sirr = −βf〈Hf〉i + βi〈Hi〉i + ln
(
Zf

Zi

)
, (84)

where 〈. . .〉i denotes an average with respect to the Boltzmann-Gibbs equilibrium corresponding to the initial Hamilto-
nian. For the graph defined by the transition rates Eq. (80), the graph distance between any two states is the number
of spins whose direction differs between the two states. Further, the number of transitions 〈M〉 is the average number
of spin flips during the process and the Wasserstein distanceW(peq

f ,p
eq
i ) corresponds to the minimum average number

of spin-flips that is required to transform the initial occupation probability into the final one. Since the Wasserstein
distance likewise only depends on the initial and final occupation probability, we can thus derive a criterion for the
number of spin flips during the quench,

〈M〉 ≥
W(peq

f ,p
eq
i )

tanh
(

∆Sirr

2W(peq
f ,peq

i )

) . (85)

Note that, unlike the entropy production and the Wasserstein distance, 〈M〉 depends not only on the initial and
final state but on the dynamics of the system after the quench. Thus, this inequality provides a constraint on the
dynamics of the system after a quench. Note that, so far, we have not used the specific form of the Ising-Hamiltonian
Eq. (79), so the above result is valid for any quench dynamics between two equilibrium configurations, even though the
interpretation of 〈M〉 of course depends on the physical system. As a concrete example, we consider a one-dimensional
chain consisting of K = 4 spins. We fix the energy scale by setting J = 1 and consider a quench from hi = −h0 to
hf = h0, i. e. a reversal of the external field. The lower bound on 〈M〉 is shown as a function of the temperature for
various values of h0 in Fig. 6. We see that the number of spin flips is always bounded from below by the number of
spins. For low temperature, this result is expected, since the statistics are dominated by states in which most spins are
aligned with the external field, so, on average, we have to flip every spin to reach the new equilibrium configuration.
However, for high temperature, this bound is not so easy to understand, since the contribution from all states is of the
same order and the initial and final equilibrium configuration are only slightly different. Moreover, we find that the
bound on the number of spin flips is larger for a weaker external field. For a strong external field, the spins will align
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FIG. 6. (Left panel) The lower bound Eq. (85) on the number of spin flips for a field reversal in a four-state Ising chain
as a function of temperature. The lines correspond to h0 = 0.1, 0.2, 0.5, 1.0 from top to bottom. (Right panel) The graph
corresponding to the minimum entropy production dynamics for a three-state Ising chain under field reversal for h0 = 0.5 and
T = 1.0. The numbers in braces represent the spin configuration, the second number is the energy ψ(i) of the state; the symbols
are the same as in Fig. 1.

with the external field in an almost deterministic manner; for a weak field, by contrast, the dynamics of the spins is
dominated by the interactions between the spins and thus events where a spin randomly aligns with the external field
just to flip back because of the orientation of its neighbors increase the number of spin flips during the quench.

Since the number of states grows exponentially with the number of spins, it quickly becomes unfeasible to explicitly
compute the Wasserstein distance. However, as noted above, for low temperature, the statistics is dominated by
the states with the minimum energy, which corresponds to fully ordered states in the presence of an external field.
Then, reversing the direction of the field requires us to flip every spin, which means that the Wasserstein distance is
approximately equal to K. We thus obtain the simpler approximate bound in the low temperature limit

〈M〉 ≥ K

tanh
(

∆Sirr

2K

) . (86)

As noted in Eq. (60), this can be interpreted as a tradeoff between precision and dissipation: Reducing the number
of spin flips requires increasing the dissipation. While such a relation is intuitively expected, Eq. (86) puts it on a
quantitative footing.

IX. DISCUSSION

In this work, we have explored the connection between minimum entropy production, detailed balance and Wasser-
stein distance. Our results suggest several possible new research directions. First, as remarked in Section VII, there
is a striking resemblance between the discrete jump and continuous diffusion cases. While we conjectured that the
two results are indeed equivalent in the continuum limit, this should be shown explicitly. The most obvious candidate
are hypercubic lattice models that correspond to discrete representations of Rd. However, it would be particularly
interesting to explore other cases as well, for example triangulations of smooth surfaces.

Second, as remarked in the introduction, another approach to relate entropy production in jump processes to a
modified Wasserstein distance has been developed recently [11]. While technically different from our approach, it
would be interesting to see whether the two approaches can be related. Further, in Ref. [11], the same approach was
generalized to open quantum systems, so a natural question is whether the current approach also can be applied to
this setting. The main challenge here is to develop a reasonable graph-based representation of the density matrix as
opposed to the probability vector.

Finally, in the Langevin case, the concept of minimum entropy production was used in Ref. [13] to define a decom-
position of the entropy production into excess and housekeeping parts. The excess entropy production rate, which is
equal to the minimal entropy production rate, vanishes only in a steady state, while the housekeeping part vanishes for
a conservative force. This allows to separate the dissipation in the system into contributions due to time-dependent
driving and non-conservative forces. Further, the excess entropy can be expressed in terms of the Wasserstein dis-
tance [10]. Formally, we may also define the excess part as the minimum production rate in the Markov jump case
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and express it in terms of the Wasserstein distance. It is tempting to identify the remainder as the housekeeping
part. However, as we saw in Section VIII, the entropy production rate is generally not minimized for an arbitrary
conservative force, which implies that the housekeeping part can be non-zero even for conservative forces. Thus, it
needs to be clarified what the physical meaning of this “housekeeping entropy” is.
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Appendix A: Proof of Eq. (18)

Eq. (18) provides a lower bound on the entropy production rate for a specific choice of the parameter A in Eq. (10).
Adopting the notation of Eq. (30), the inequality Eq. (18) reads

2
∑
(i,j)

m(i, j)C(i, j) sinh(C(i, j)) ≥ 2
∑
(i,j)

m(i, j)
∣∣ sinh(C(i, j))

∣∣artanh
(∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣∑
(i,j)m(i, j) cosh(C(i, j))

)
, (A1)

where we defined the symmetric matrix m(i, j) =
√
p(i)p(j)k(i, j)ω(i, j), whose entries are positive, and the sum runs

over all unequal index pairs (i, j) with i 6= j. This is equivalent to

tanh
(∑

(i,j)m(i, j)
∣∣C(i, j)

∣∣∣∣ sinh(C(i, j))
∣∣∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣
)
≥
∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣∑
(i,j)m(i, j) cosh(C(i, j)) , (A2)

where we used that the hyperbolic sine is an odd function so that x sinh(x) = |x|| sinh(x)|. We define

P (i, j) =
m(i, j)

∣∣ sinh(C(i, j))
∣∣∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣ , (A3)

which is normalized probability with respect to (i, j),

P (i, j) ≥ 0 and
∑
i,j

P (i, j) = 1. (A4)

Denoting the average with respect to this probability by 〈. . .〉, we can write the left-hand side of Eq. (A2) as

tanh
(∑

(i,j)m(i, j)
∣∣C(i, j)

∣∣∣∣ sinh(C(i, j))
∣∣∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣
)

= tanh
(
〈|C|〉

)
(A5)

≥ 〈tanh(|C|)〉 =
∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣∣∣ tanh(C(i, j))
∣∣∑

(i,j)m(i, j)
∣∣ sinh(C(i, j))

∣∣ ,

where we used that the hyperbolic tangent is a concave function for positive arguments and employed Jensen’s
inequality. Plugging this into Eq. (A2), we have to show that

∑
(i,j)

m(i, j)
∣∣ sinh(C(i, j))

∣∣2
cosh(C(i, j)) ≥

(∑
(i,j)m(i, j)

∣∣ sinh(C(i, j))
∣∣)2

∑
(i,j)m(i, j) cosh(C(i, j)) . (A6)

However, this is nothing but the Cauchy-Schwarz inequality, for we can write,(∑
(i,j)

m(i, j)
∣∣ sinh(C(i, j))

∣∣)2

=
(∑

(i,j)

√
m(i, j)

∣∣ sinh(C(i, j))
∣∣√

cosh(C(i, j))

√
m(i, j) cosh(C(i, j))

)2

(A7)

≤
∑
(i,j)

m(i, j)
∣∣ sinh(C(i, j))

∣∣2
cosh(C(i, j))

∑
(i,j)

m(i, j) cosh(C(i, j)).

Thus, we have proven Eq. (18) by means of elementary inequalities.
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Appendix B: Relation to the minimum entropy production rate of Ref. [12]

In Ref. [12], the entropy production rate was minimized under the constraint that the symmetric part ω(i, j) of the
rates Eq. (2) remains fixed, i. e. the entropy production rate was minimized only with respect to the antisymmetric
part A(i, j). While, intuitively, this is a stronger constraint than fixing the activity, the relation between the resulting
minimum entropy production rates has to be determined explicitly. A central result of Ref. [12] is that, when fixing
the symmetric part of the rates, the optimal forces A(i, j) that minimize the entropy production rate do generally not
satisfy the detailed balance condition Eq. (7). Let us consider an alternative minimization problem. Instead of the
entropy production rate, we minimize the functional

g = σ − 2χ (B1)

under the constraint that the time evolution of the occupation probabilities and the symmetric part ω(i, j) are kept
fixed. This is similar to the problem considered in Ref. [12], the difference being that we subtract twice the activity
from the entropy production rate. We recall the notation introduced in Eq. (30)

dtp(i) = 2
∑
j

√
p(i)p(j)k(i, j)ω(i, j) sinh(C(i, j)), (B2a)

σ = 2
∑
i,j

√
p(i)p(j)k(i, j)ω(i, j)C(i, j) sinh(C(i, j)), (B2b)

χ =
∑
i,j 6=i

√
p(i)p(j)k(i, j)ω(i, j) cosh(C(i, j)). (B2c)

Minimizing g with respect to A(i, j) is equivalent to minimizing with respect to C(i, j) since the two are related via
the linear transformation Eq. (29). We obtain the condition for a stationary point

k(i, j)ω(i, j)C(i, j) cosh(C(i, j)) = k(i, j)ω(i, j)
(
λ(j)− λ(i)

)
cosh(C(i, j)), (B3)

which implies that, whenever k(i, j)ω(i, j) > 0, we should have

C(i, j) = λ(j)− λ(i). (B4)

This means that the transition rates that minimize g have to satisfy the detailed balance condition. Mathematically,
subtracting the term 2χ precisely cancels the term that leads to a breaking of detailed balance in Ref. [12]. Now
suppose that we have found the rates that minimize g. We denote the corresponding entropy production σg|ω and
activity χg|ω with a subscript g|ω indicating that they were obtained by minimizing g while fixing ω. Since the rates
satisfy detailed balance, the result of Ref. [12] implies that there exists another set of rates, possessing the same
symmetric part and the same time evolution, which do not satisfy detailed balance and lead to a smaller entropy
production rate σσ|ω < σg|ω. We denote the corresponding activity by χσ|ω. However, since we minimized g, we have
the inequality

gg|ω = σg|ω − 2χg|ω ≤ σσ|ω − 2χσ|ω = gσ|ω. (B5)

Since σσ|ω < σg|ω, this implies

χσ|ω < χg|ω. (B6)

So the minimum entropy production dynamics of Ref. [12] necessarily also has a lower activity than the dynamics
minimizing g. Now we fix the activity χσ|ω and again minimize the entropy production rate according to Section V.
We thus obtain a yet lower minimum entropy production

σ∗σ|ω = 2χ∗artanh
(
χ∗

χσ|ω

)
. (B7)

Note that since χ∗ only depends on the time evolution of the occupation probabilities and the connectivity of the
state network, it is the absolute minimum value of the activity and independent of whether we start from the original
dynamics or the minimum entropy production dynamics at fixed ω. Since we have χσ|ω < χg|ω, we have the inequalities

σσ|ω ≥ σ∗σ|ω ≥ σ
∗
g|ω. (B8)
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Thus, starting from the detailed balanced dynamics minimizing g, the procedure of Section V always yields an entropy
production rate that is smaller than the one of the non-detailed balanced dynamics minimizing the entropy production
rate for fixed ω. However, when compared to the original dynamics, we have

σσ|ω ≥ σ∗σ|ω = 2χ∗artanh
(
χ∗

χσ|ω

)
≶ 2χ∗artanh

(
χ∗

χ

)
= σ∗, (B9)

since the minimum entropy production dynamics of Ref. [12] does not always lead to a smaller activity compared to
the original dynamics. As a consequence, either one of the minimum entropy production values σ∗ and σσ|ω may
be the smaller one. However, we expect the relation σσ|ω ≥ σ∗ to hold in most cases. The reason for this becomes
apparent when looking at Eq. (B2): Both the entropy production rate and the activity are convex functionals of the
parameters C(i, j). Thus, minimizing the entropy production rate corresponds to choosing the parameters C(i, j) in
Eq. (B2b) as small as possible, while still satisfying Eq. (B2a). Except for special cases, this choice should also reduce
the value of the activity, Eq. (B2c). Thus, we may expect χσ|ω ≤ χ and thus σσ|ω ≥ σ∗ via Eq. (B9).

Appendix C: Minimum entropy production dynamics for finite time

In Eq. (56), we argued that the minimum entropy production for the process connecting an initial probability pi
to a final probability pf is realized by a process with a constant rate of change of the probability. Here, we want to
show this fact explicitly. We can divide the problem of minimizing the entropy production into two steps. First, for
a given time evolution of the probability pt and activity χt, we minimize the entropy production rate at each instant
of time. This leads to the value of σ∗t given by Eq. (38). Second, we minimize the resulting entropy production

∆Sirr =
∫ τ

0
dt σ∗t = 2

∫ τ

0
dt χ∗t artanh

(
χ∗t
χt

)
. (C1)

under the constraints that p0 = pi and pτ = pf and that the total number of transitions is given by

〈M〉 =
∫ τ

0
dt χt. (C2)

We note that, as discussed in Section IV the minimum activity χ∗t depends only on the time-derivative of the probability
vector dtpt. Next, we use Eq. (40), which allows us to construct a dynamics with χt = Atχ∗t , where the choice of
At ≥ 1 is arbitrary. This means that we can treat χt and χ∗t as independent. Then, we have from Eq. (C1),

∆Sirr =
∫ τ

0
dt σ∗t = 2

∫ τ

0
dt χ∗t artanh

(
1
At

)
(C3)

with the constraint on the activity now being

〈M〉 =
∫ τ

0
dt Atχ∗t . (C4)

First, we fix χ∗t , and, from the Euler-Lagrange equation for the minimization with respect to At we find

2artanh
(

1
At

)
+ λAt = 0, (C5)

where λ is a Lagrange multiplier. This condition implies that At ≡ A has to be independent of time. Plugging this
into the above equations, we obtain

∆Sirr = 2artanh
(

1
A

)∫ τ

0
dt χ∗t and 〈M〉 = A

∫ τ

0
dt χ∗t , (C6)

and, solving the second equation for A,

∆Sirr = 2
∫ τ

0
dt χ∗t artanh

(∫ τ
0 dt χ

∗
t

〈M〉

)
. (C7)
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This is a monotonously increasing function of
∫ τ

0 dt χ
∗
t , so minimizing it requires minimizing

∫ τ
0 dt χ

∗
t =

∫ τ
0 W(pt+dt,pt)

under the constraint of the initial and final probability. However, we already saw in Section VI that a constant rate
of change of the probability defines the geodesic in Wasserstein space, so the former indeed minimizes the entropy
production and we obtain Eq. (56).
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