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Abstract

Improving the mechanical efficiency is not the most important objective in the design of wind turbine gearboxes since the
available wind energy is abundant and costless. The most important criteria for dimensioning the gearbox are the fatigue
strength—bending and pitting—, noise emission, vibrations, and maintenance requirements. Nevertheless, mechanical
losses increase the lubricant temperature and induce thermal stresses, which increases wear and cracking risk. This means
that friction losses should be reduced as much as possible, but always regarding the contact and tooth-root stress levels, as
well as the other operating parameters which should be kept for ensuring the required operating conditions.
In this paper, a study on the variation of the friction losses with the tooth shift coefficients is presented. All the other
geometrical parameters—number of teeth, tooth height, pressure angle, helix angle, face width, and center distance—are
unalterable, since all of them have been chosen according to more important design requirements. In addition, to keep the
contact and tooth-root stress levels, the shift coefficients of the sun, planets and ring are calculated in such a way that the
transverse contact ratios are kept, and therefore the critical load points for bending and pitting are also unchanged. The
radial clearance is also kept in order to allow the proper evacuation of the lubricant. Finally, all the geometrical constraints
(undercut, pointing, root interference, secondary interference, backlash) are also imposed. With all these restrictions, the
optimal shift coefficients for all the gears are calculated to minimize the friction losses.

Minimale Reibungsverluste in Getrieben vonWindkraftanlagen

Zusammenfassung

Die Verbesserung des mechanischen Wirkungsgrads ist nicht das wichtigste Ziel bei der Konstruktion von Getrieben für
Windkraftanlagen, da die verfügbare Windenergie im Überfluss vorhanden ist und nichts kostet. Andere Kriterien wie
die Lebensdauer (Verbiegungen und Lochfraß), Geräuschemissionen, Vibrationen und Wartungsanforderungen sind für die
Konzipierung des Getriebes wichtiger. Mechanische Verluste erhöhen jedoch die Temperatur des Schmierstoffs und führen
zu thermischen Spannungen, was die Gefahr von Verschleiß und Rissbildungen erhöht. Das bedeutet, dass die Reibungs-
verluste so weit wie möglich reduziert werden sollten, jedoch immer unter Berücksichtigung der kritischen Restriktionen
wie der Kontakt- und Zahnfußbeanspruchung und anderer Betriebsparameter, die die erforderlichen Betriebsbedingungen
sicherstellen.
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In diesem Text wird eine Studie über die Variation der Reibungsverluste mit den Zahnverschiebungskoeffizienten vor-
gestellt. Um die entworfenen Betriebsbedingungen beizubehalten, sind alle anderen geometrischen Parameter (Anzahl
Zähne, Eingriffswinkel, Schrägungswinkel, Zahnbreite und Achsabstand) unveränderlich, wobei davon ausgegangen wird,
dass all diese Parameter entsprechend den wichtigeren Konstruktionsanforderungen gewählt wurden. Um die Kontakt- und
Zahnfußspannungen beizubehalten, werden die Ausgangsradien so berechnet, dass die transversalen Kontaktverhältnisse
beibehalten werden und somit die kritischen Belastungspunkte für ein Verbiegen und für Lochfraß unverändert bleiben.
Bei der Berechnung der Zahnverschiebungskoeffizienten wurden zwei Kriterien berücksichtigt: die Beibehaltung der Ra-
dialluft, um eine ordnungsgemäße Entleerung des Schmiermittels zu ermöglichen, und die Beibehaltung der Zahnhöhe,
um Standardabmessungen zu gewährleisten. Mit all diesen Einschränkungen werden die optimalen Schaltkoeffizienten für
alle Zahnräder berechnet, um die Reibungsverluste zu minimieren.

1 Introduction

High efficiencies are not essential in wind turbine gear-
boxes. In fact, the turbine fuel—the wind energy—is abun-
dant and costless. However, several strict requirements are
imposed by the specific operating conditions:

� Very high power and gear ratio, which means high
torques and stress levels.

� Difficult access installations, which hinders maintenance
tasks and imposes wider safety margins.

� Severe environmental and structural requirements related
to noise and vibration levels.

From these requirements, the final design will ensure
high levels of strength, reliability, and durability [1], while
the mechanical efficiency will be a less important result of
the chosen solution. A good obtained efficiency will mean
less energy extracted from the wind, and a bad efficiency,
more energy extracted from the wind. But in both cases the
electric output power will be the expected one. Nonetheless,
on a second level of importance, the power losses will in-
crease the lubricant temperature and induce thermal stresses
on the tooth surface. The high lubricant temperature may
result in several failure modes as wear, scuffing and pit-
ting [2]. Thermal stresses may produce cracking failures
[3]. In addition, limitations on inlet temperature (usually
65–70°C) may result in a larger cooling system. To avoid
these problems, the mechanical power losses, and specif-
ically the friction losses, should be reduced as much as
possible, but in such a manner that the safety, reliability,
and durability levels were not decreased.

Some studies on the power loss can be found in literature
relating to cylindric parallel-axis gears [4–10]. But due to
the high gear ratio and high power-density required by the
wind turbine, gearboxes based on planetary gear sets are
commonly used [11]. Literature on power loss of planetary
gears are scarcer, although it has been of interest to some
researchers [11–15]. The work of Nutakor et al. [11] is
specifically focused on the power loss modelling of wind-
turbines two stage planetary gear sets, and includes a para-
metric study on the influence of various design parameters,

as the carriers speed, face width, module, pressure angle,
and helix angle. Although it may be interesting to know
how these parameters affect the power losses, all of them
will also have heavy influence on more important design
parameters, as the teeth dimensions and transmitted loads,
and consequently on the stress levels and load carrying ca-
pacities.

But owing to the specific operating conditions of the
wind turbine gearboxes it is not appropriate to improve
the mechanical efficiency at expense of worsen the teeth
strengths or load carrying capacities. In consequence, re-
sults of the mentioned studies [11–15] are not entirely ap-
plicable to win turbines. In this paper, a new optimization
method of the mechanical losses in wind turbine gearboxes,
regarding the design parameters to ensure the desired oper-
ating conditions, is presented. All the dimensions of each
gear will be unalterable, except the output radii: the number
of teeth, pressure angle, helix angle, face width, and center
distance. The output radii will be chosen in such a manner
that the transverse contact ratios do not change, thereby the
critical load points for bending and pitting will not change
their locations and therefore the stresses levels and the car-
rying capacities will be kept. This results in a single degree
of freedom for the analysis, for example, the output radius
of the sun. The output radius of the planet will be given by
one of the sun and the transverse contact ratio of the sun-
planet pair, while the output radius of the ring will be given
by one of the planet and the transverse contact ratio of the
planet-ring pair.

To adopt a specific value of the output radius a suitable
rack shift coefficient will be chosen. Two different possi-
bilities will be considered for the sun-planet pair: choosing
the rack shift coefficient to keep the tooth height or to keep
the radial clearance, to ensure proper evacuation of the lu-
bricant. The rack shift coefficient of the ring will always be
calculated to keep the tooth height. The tooth height or the
radial clearance of the initial design will be kept, regardless
whether they are the nominal ones or not. Obviously, ge-
ometrical constraints (undercut, pointing, root interference,
secondary interference, backlash) are regarded in the analy-
sis. For this study, the load distribution model developed by
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Fig. 1 Single meshing stiffness along the interval of contact

the authors for external [16–18] and internal [19, 20] gear
pairs will be used. The friction power losses have been cal-
culated as presented in [11]. Only the sliding friction losses
has been considered as they have the strongest influence
on the surfaces heating. Curves of friction power losses
for a specific multi-MW wind turbine gearbox of Siemens-
Gamesa, presently in the design stage, are also presented.

2 Models for load distribution and friction
power losses

The fraction of the load transmitted by a given spur pair
can be expressed as [16–20]:

Ri .�/ =
Fi .�/

FT

=
KMi .�/

P

j KMj .�/
(1)

where R is the load sharing ratio, Fi the load at spur pair i, FT

the total load, KM the single meshing stiffness, ξ the contact
point parameter and the sum is extended to all the tooth
pairs in simultaneous contact. The contact point parameter
ξ describes the contact point at the pressure line and is
defined as follows:

� =
z1

2�

s

r2
c1

r2
b1

− 1 (2)

in which z is the tooth number, rC the contact point radius,
rb the base radius, and subscript 1 denotes the pinion. Inside
the contact interval ξinn≤ ξ≤ ξo, the single meshing stiffness
can be approximated by the equation [16–20]:

KM .�/ = KM max cos .b0 .� − �m// (3)

with:

b0 =

�

1

2

�

�1 +
"˛

2

�2
− �2

�−1=2

�m = �inn +
"˛

2

(4)

where εα is the transverse contact ratio, ξinn, ξo, and ξm the
contact point parameters corresponding to the inner, the
outer, and the midpoint of the interval of contact, respec-
tively, and:

�1 = 1.11 and �2 = 1.17 forexternalgears
�1 = 1.00 and �2 = 1.00 for internalgears

(5)

The amplitude KMmax is not necessary to know the load
sharing, as seen in Eq. 1. The typical shape of the meshing
stiffness curve can be observed in Fig. 1.

According to Eq. 2, the difference between the contact
point parameters corresponding to two consecutive pairs in
contact will be equal to 1, while the difference between
the parameters corresponding to inner and outer points of
contact will be equal to the transverse contact ratio, in con-
sequence:

�i+1 = �i + 1 ) �i+j = �i + j

�0 = �inn + "˛ ) �m = �inn + "˛

2

(6)

Accordingly, Eq. 1 can also be expressed as follows:

F .�/ =
KM .�/

P

j KM .� + j /
FT (7)

in which KM (ξ)= 0 outside the contact interval (ξ< ξinn or
ξ> ξo). To generalize this equation for helical gears, the
single meshing stiffness can be expressed as follows:

KM .�/ = KM max cos .b0 .� − �m//

= K 0

M maxb cos .b0 .� − �m//
(8)

where b denotes the face width. Each transverse section of
the helical tooth can be considered as a spur gear with small
face width db, therefore Eq. 7 can be written as follows:

dF .� ,�0/ =
K0M max cos .b0 .�–�m// db

Z

lc.�0/

K0M max cos .b0 .�–�m// db

FT

=
cos .b0 .�–�m// db

Z

lc.�0/

cos .b0 .�–�m// db

FT

(9)
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a b

Fig. 2 Typical aspect of function IK (ξ0) for dα+ dβ< 1 (a), and dα+ dβ> 1 (b)

where ξ0 is the contact point parameter of the reference
transverse section and the integral is extended to the entire
line of contact lc, which is obviously a function of ξ0. (Do
not confuse ξ0 with ξo, the outer point of contact parameter).
It can be easily proved that, for the points of the line of
contact, it is verified:

d� =
"ˇ

b
db (10)

where εβ is the axial contact ratio and βb the base helix
angle. Accordingly, Eq. 9 can be written as:

dF .� ,�0/ =
cos .b0 .�–�m// d�

Z

lc.�0/

cos .b0 .�–�m// d�

FT

= FT

cos .b0 .�–�m//

IK .�0/
d�

(11)

The integral IK can be obtained from [16]:
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(12)

where Eα and Eγ are the integer parts of the transverse con-
tact ratio and the total contact ratio, respectively. Fig. 2
presents the typical aspect of function IK according to the
sum of the fractional parts of εα and εβ, (dα+ dβ), is greater
or smaller than 1.

The sliding friction losses corresponding to a small ro-
tation of a point of the line of contact can be expressed as
[8, 10, 11]:

d 2Ws = �dF
rb1

rb2
.rb2 ˙ rb1/
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ˇ
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ˇ

ˇ

ˇ

ˇ

d�0 (13)

in which μ is the friction coefficient and α’t the operating
transverse pressure angle. The plus/minus sign corresponds
to the external (sun-planet) and internal (planet-ring) gears,
respectively. Integrating the losses along the entire line of
contact and one complete meshing cycle, the friction losses
result in [8, 11]:
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(14)

For the analysis an average friction coefficient accord-
ing to ISO/TS 6336-21:2017 [21] which accounts velocity,
curvature roughness and lubricant properties, will be used.
The resulting equation for the friction coefficient, after ad-
justing the expression in [21] to the load distribution model
presented above, is:

� = 0.045

�

"ˇ

bV˙�C

dF

d�

�0.2

�−0.05
oil XRXL (15)

where the sum of velocities VΣ, the relative curvature radius
ρC, and dF/dξ are all calculated at the pitch point, ηoil is the
dynamic viscosity of the lubricant, XR the roughness factor,
and XL the lubricant factor.
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3 Analysis of the friction losses

An analysis of the influence of the output radii of the gears
of the planetary gearset on the friction losses will be per-
formed. Since the friction loses are less critical than the
teeth strength, the output radii will be chosen in such a man-
ner that the transverse contact ratios of all the gears (the sun-
planet gear and the planet-ring gear) will kept constant. In
this way, the critical load points will be kept fixed, and
the determinant contact and tooth root stresses will remain
approximately constant. This means that a single degree
of freedom will be available. The planet output radius is
chosen as independent variable.

The relative sliding between tooth surfaces is null at
the operating pitch point and increase as the contact point
moves away from it. The friction losses vary in the same
way. Consequently, a good criterion of design will be to
ensure the pitch point to be contained in the contact interval.
Therefore, considering that the contact point parameter of
the operating pitch point is:

�P 0 =
z1

2�

s

1

cos2˛0
t

− 1 =
z1

2�
tan ˛0

t (16)

Consequently, the interval of the output point parameter
of the sun ξoS for the analysis will be:

�P 0−SP − "˛−SP � �oS � �P 0−SP (17)

Hence forward subscripts S, P, and R will denote the
sun, the planets, and the ring, respectively, and subscripts
SP and PR the sun-planet gear and the planet-ring gear,
respectively. To keep the sun-planet gear transverse con-
tact ratio, the output point parameter of the planets should
verify:

�oS + �oP =
zS + zP

2�
tan ˛0

t−SP + "˛−SP (18)

and therefore:

�oP =
zS + zP

2�
tan ˛0

t−SP + "˛−SP − �oS (19)

Similarly, for the planet-ring gear:

�oR + "˛−PR =
zR − zP

2�
tan ˛0

t−PR + �oP

�oR =
zR − zP

2�
tan ˛0

t−PR − "˛−PR + �oP

(20)

The output radii of the sun, the planets, and the ring
can be obtained from their respective contact parameters,
as follows:

r0i = rbi

s

1 +

�

2�

zi

�oi

�2

.i = S; P; R/ (21)

The rack shift coefficients of the sun and the planets will
be computed from the output radii, according to a double
point of view: (i) to keep the radial clearance, and (ii) to
keep the tooth height. To keep the radial clearance, the
following condition should be regarded:

C = roS=oP +
�

rpP=pS − mhaoP=aoS + mxP=S

�

+ mhrS=rP

(22)

and consequently:

xS =
1

m

�

C − roP − rpS

�

+ .haoS − hrP /

xP =
1

m

�

C − roS − rpP

�

+ .haoP − hrS /

(23)

In Eqs. 22 and 23 C is the operating center distance, rp

the pitch radius, ha0 the dedendum coefficient, and hrS and
hrP the initial radial clearance at the sun and planet tooth tip,
respectively. These initial radial clearances will not neces-
sarily be equal to de standard ones, given by m (ha0 – ha), ha

being the addendum coefficient, and can be calculated from
Eq. 22, for the initial values of xS and xP.

To keep the tooth height, the condition to be regarded is:

roS=oP = rpS=pP + mxS=P + mhaS=aP − mhRS=RP (24)

where hRS and hRP are the initial tooth height reduction on
sun and planet and can be computed from Eq. 24 for the
initial values of xS and xP.

The rack shift coefficient of the ring will only be com-
puted from the keeping the tooth height point of view. In
this case, the condition to be regarded is:

roR = rpR + mxR − mhaR + mhRR (25)

The analysis will be performed in the following steps:

1. Divide the interval of ξoS given by Eq. 17 is small subin-
tervals (for example, 1000 subintervals).

2. For each one, compute xS, xP, and xR with Eqs. 18–25.
3. Check all the constraints (undercut with vacuum gearing,

pointing, root interference, radial clearance, base pitch
backlash, and tip interference).
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a b

Fig. 3 Evolution of the energy lost (a), and the sun nominal stresses (b), in the first stage, for equal radial clearance

a b

Fig. 4 Evolution of the energy lost (a), and the sun nominal stresses (b), in the first stage, for equal tooth height

4. If all the constraints are regarded, compute the friction
losses in both sun-planets and planets-ring gears.

5. Make a graphic representation of the results.

The next section presents the results of this analysis for
a multi-MW wind turbine gearbox.

4 Analysis of a wind turbine gearbox

The analysis presented in the previous section is being ap-
plied to the design of a new multi-MW wind turbine gear-
box of Siemens-Gamesa. The gearbox will be made up for
three stages: two of them by planetary gears and the output
one by helical gears.

4.1 Analysis of the first stage

The geometrical pre-analysis of the first planetary stage
reveals that, for keeping the radial clearance, the shift
coefficient of the sun must be included in the interval
0.8435≤ xS≤ 0.9706. For smaller values of xS base pitch
interference (negative base pitch backlash) occurs in the
planet-ring gear, while for higher values the sun teeth will
be pointed.

Fig. 3a shows the variation of the friction losses with
the sun shift coefficient. The y-axis represents the energy
lost along one mesh cycle (Δξ0 = 1), in N· m. It can be ob-
served that the energy losses decrease with xS until reaching
a minimum for xS = 0.95. The correct selection of the sun
shift coefficient may reduce the friction losses by 1%.

The goal of this analysis is to improve the friction losses
while keeping the stress levels, for which the transverse
contact ratio is unmodified. But keeping the location of the
determinant contact points do not ensure the same critical
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a b

Fig. 5 Evolution of the energy lost (a), and the sun nominal stresses (b), in the second stage, for equal radial clearance

a b

Fig. 6 Evolution of the energy lost (a), and the sun nominal stresses (b), in the second stage, for equal tooth height

stresses, because the tooth geometry is slightly modified,
and therefore the stresses should be checked. Fig. 3b shows
the variation of the nominal contact stress and the nominal
tooth-root stress of the sun along the interval of xS, accord-
ing to ISO 6336 [22, 23]. σF0D and σH0D are preestablished
reference stress levels, obtained from the tooth root and
pitting stress limits, and the corresponding chosen design
factors. It is observed that the variation of the stresses is
very small, and the load carrying capacity is kept. Similar
curves are obtained for the nominal stresses of the planets
and the ring.

For keeping the tooth height, the shift coefficient of the
sun must be included in the interval 0.8429≤ xS≤ 0.8822.
For smaller values of xS base pitch interference occurs in
the planet-ring gear, and the same interference for higher
values, at the sun-planet gear.

Fig. 4 shows the evolution of the energy lost and the
nominal stresses. In this case the energy lost decreases with
xS, and the friction losses can be reduced by 0.5%. The
nominal stresses remain quite uniform.

Although the losses in diagrams in Figs. 3 and 4 are
presented as a function of the sun shift coefficient, their
values include the friction losses on both the sun-planets
and planets-ring contacts.

4.2 Analysis of the second stage

For the second stage, for keeping the radial clearance, the
shift coefficient of the sun must be included in the interval
0.6502≤ xS≤ 0.6752. For smaller values of xS base pitch
interference occurs in the planet-ring gear, while for higher
values the sun teeth will be pointed.

Fig. 5 shows the evolution of the energy lost and the
nominal stresses. The energy lost increases with xS, but the
fluctuation is very small. In this case, the friction losses
cannot be reduced. The nominal stresses are quite uniform
again.

For keeping the tooth height, the shift coefficient of the
sun must be included in the interval 0.6464≤ xS≤ 0.6596.
Smaller values of xS produce base pitch interference in the
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Fig. 7 Evolution of the energy
lost for equal radial clearance
(black line), and for equal tooth
height (gray line), in the output
stage

Fig. 8 Evolution of the output
stage pinion nominal stresses
for equal radial clearance (solid

line), and for equal tooth height
(dashed line)

planet-ring gear, and higher values the same interference at
the sun-planet gear.

Fig. 6 shows the evolution of the energy lost and the
nominal stresses. The energy lost increases with xS, though
the fluctuation is small again, and the possible reduction
of the friction losses would be very small. Once again, the
nominal stresses remain uniform.

4.3 Analysis of the output stage

The output stage is a single helical gear of 3.5 gear ratio.
It can be analyzed in the same way as the sun-planet gears,
although the result of the analysis is quite predictable. Fric-
tion losses are zero at the operating pitch point and increase
as the contact point moves away from it. Consequently, the
friction losses will be minimum if the pitch point is placed
at the midpoint of the interval of contact. This condition
can be expresses as follows:

�o1 =
z1

2�
tan ˛0

t +
"˛

2
(26)

which in this case results in ξo1 = 2.99. Fig. 7 shows the
variation of the friction losses with the pinion output point
parameter for both approaches of equal radial clearance and

equal tooth height. In both diagrams the minimum losses are
obtained for the same value of ξo1 since condition in Eq. 26
is valid for both approaches. However, the shift coefficients
to get this value of ξo1 (and correspondingly ξo2 = 8.79) are
different for each approach:

Forequal radial clearance W x1 = 0.7048
Forequal toothheight W x1 = 0.7104

(27)

In this case, the fluctuation of the friction loses is large,
and the correct selection of the shift coefficient may reduce
the friction losses by up to 20% for equal radial clearance,
and up to 50% for equal tooth heigh.

Fig. 8 shows the variation of the ISO nominal tooth root
stress and nominal contact stress with the pinion output
point parameter for both approaches. In this output stage,
the nominal contact stress is very uniform, but the nominal
tooth root stress presents non neglectable differences of
about 20% in the case of equal tooth height. This is due
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to the interval of suitable pinion shift coefficient (regarding
all the geometrical constraints) is large:

Forequal radial clearance W 0.6587 � x1 � 1.3739
Forequal toothheight W −0.3814 � x1 � 0.6775

(28)

It can be observed in Fig. 7 that for pinion output radii
far from the optimum one (namely, ξo1 <<2.99 for equal
tooth heigh) the friction losses increase very strongly—up
to 100% higher—and therefore these points have no interest
for the analysis. If considered a narrower interval of pinion
shift coefficient as 0.2≤ x1≤ 0.6775 for equal tooth height,
in which the friction losses fluctuate around 20%, the nom-
inal tooth root stress fluctuates around 4%, which is small
enough.

In this third stage, the overlap ratio and the transverse
contact ratio may have significant influence on the acoustic
behavior of the gearbox. However, since the analysis is per-
formed in such a way that the values of both contact ratios
remain unchanged, the acoustic behavior is not affected.

5 Conclusions

A new optimization method of the friction power losses in
wind turbine gearboxes, regarding the design parameters to
ensure the preestablished operating conditions, is presented.
The dimensions of the gears, as the number of teeth, pres-
sure angle, helix angle, face width, and center distance, are
kept. Only variations the output radii are considered in such
a manner that the transverse contact ratios do not change,
in order to ensure the location of the critical load points
for bending and pitting not to change, and therefore the
stresses levels and the carrying capacities will to remain
more or less unchanged. To adjust the output radii to each
analyzed value the rack shift coefficient is chosen according
to two different criteria: to keep the initial radial clearance
and to keep the tooth height.

The analysis reveals that, for planetary stages, there is
an optimal sun shift coefficient for which the curve of fric-
tion losses reaches a minimum. Nevertheless, the interval of
valid sun shift coefficients is limited by the geometrical con-
straints (mainly tooth pointing and base pitch interference),
and it does not always contain the optimum one. This means
that the curve of friction losses may content the minimum,
or be increasing continuous, or be decreasing continuous,
depending on the specific case. The gearbox analyzed in
the paper present different trends for both planetary stages.

Due to the relatively small length of the interval of
suitable sun shift coefficients, the reduction of the fric-
tion losses on planetary gear stages is not very significant,
around 1%. The reduction on single helical stages is higher,
up to 50%. Nevertheless, for helical gears the analysis is

simpler because the optimal conditions correspond to the
pitch point located at the midpoint of the interval of con-
tact.
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