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Minimum-Fuel Aeroassisted Coplanar
Orbit Transfer Using Lift-Modulation

Kenneth D. Mease*
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

and
Nguyen X. Vinht

University of Michigan, Ann Arbor, Michigan

Minimum-fuel trajectories and lift controls are computed for aeroassisted coplanar transfers from high orbit
to low Orbit. The optimal aeroassisted transfer requires less fuel than the all-propulsive Hohmann transfer for a
wide range of high orbit to low orbit transfers. The optimal control program for the atmospheric portion of the
transfer is to fly at maximum positive lift-to-drag ratio (LID) initially to recover from the downward plunge,
and then to fly at negative LID to level off the flight in such a way that the vehicle skips out of the atmosphere
with a flight path angle near zero degrees. To avoid excessive heating rates the vehicle flies initially at high angle
of attack in order to slow down higher in the atmosphere. This allows the subsequent recovery from the
downward plunge, using the maximum positive LID, to take place at a higher altitude, where the atmosphere is
less dense.
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Nomenclature

= PoSHeCl/(2m)
= drag coefficient
= value of CD when CL = 0
= lift coefficient
= value of CL at (L/D)max

- acceleration of gravity
= geostationary Earth orbit

= altitude
= convective heating rate for 1 m sphere
= high Earth orbit
= coefficient in parabolic drag polar
= lift-to-drag ratio
= low Earth orbit
= vehicle mass
= Orbital Transfer Vehicle
= adjoint variable associated with state j
- radial distance from Earth's center
= radius of HEO
= radius of LEO
= radius of spherical atmosphere
= effective vehicle surface area normal to velocity

vector _

inertial speed
rf/R
inertial flight path angle

= impulsive change in V
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= AF to deorbit from HEO
= A V to circularize at LEO
=cL/ct
=E*p,/(vpv)
— gravitational constant multiplied by mass of

Earth (398601. 3 kmVs2)
= atmospheric density
= value of p at //=40 km

AF,
A V2
x
A

p
P0
T

Subscripts

e = value at atmospheric entry
/ = value at atmospheric exit
p = value at hypothetical perigee of transfer orbit from

HEO to atmosphere

Introduction

WHEN orbital transfer is required and there is an at-
mosphere-bearing celestial body in the vicinity, it may

be advantageous to utilize aerodynamic force in effecting the
transfer. In this paper, we present an investigation of
aeroassisted coplanar transfer from a circular orbit of radius
r} to a concentric circular obit of radius r2> where r1 is greater
than r2 (Fig. 1). We will consider the orbits to be about the
Earth; however much of the analysis is more generally ap-
plicable. Our assumptions are as follows. The vehicle has a
lifting configuration; and the lift can be modulated by varying
the angle of attack. Lift modulation is the sole means of
controlling the flight path in the atmosphere, propulsion
being used only outside the atmosphere. The vehicle has a
high-thrust propulsion system so that applications of the
thrust can be considered to produce impulsive velocity
changes (AFs) and the fuel consumption for an orbital
transfer is thus indicated by the characteristic velocity, the
sum of the AFs needed to effect the transfer. The transfer
must involve only a single atmospheric pass. And finally, the
atmospheric properties, the vehicle's aerodynamic properties,
the equations of motion, and the initial position and velocity
of the vehicle are all known precisely.

Under these assumptions, we determine the minimum-fuel
aeroassisted transfer, the fuel requirements of which are then
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compared to those of the minimum-fuel, all-propulsive
transfer. The characteristics of the minimum-fuel trajectory
during the atmospheric portion of the aeroassisted transfer
are examined in detail. In addition, the effect of a vehicle
heating constraint on the atmospheric trajectory is deter-
mined.

The motivation for this study stems from the current in-
terest in an orbital transfer, vehicle (OTV).1-2 This vehicle
would transfer a spacecraft from a space shuttle to a higher
and/or a different inclination orbit. The vehicle would then
return, after delivering its cargo, to rendezvous with either a
shuttle or a space operations center. The OTV maneuvers
which could benefit potentially from aeroassist are the orbital
plane change and the transfer from high Earth orbit (HEO) to
low Earth orbit (LEO). The present study concerns only the
latter.

The basic sequence of events for the aeroassisted HEO to
LEO coplanar orbit transfer is as follows. Referring to Fig. 1,
the transfer begins with an in-plane tangential retroburn
(AF7) at HEO which injects the vehicle into an elliptical
transfer orbit with a hypothetical target perigee inside the
atmosphere. At point E, the vehicle enters the atmosphere. As
the vehicle flies through the atmosphere, some of its kinetic
energy is converted to heat, and, consequently upon skipping
out of the atmosphere (at point F), the apogee of the orbit is
decreased to the distance r2. Finally, at the new apogee, a
second in-plane tangential burn (AF2) is executed to cir-
cularize and thereby achieve the desired LEO. The minimum-
fuel aeroassisted transfer is that which has the minimum
characteristic velocity, AF7+AF2 . The flight path for the
minimum-fuel transfer is effected by the ~AK7 magnitude,
which controls the atmospheric entry, and the lift coefficient
as a function of time during the atmospheric flight, which
controls the exit and hence determines the required AK2.

Analytic Solution for an Idealized Optimal Transfer
Consider an aeroassisted HEO to LEO transfer which

proceeds as follows. Referring to Fig. 1, a tangential
retroburn AF7 at HEO injects the vehicle into an elliptical
transfer orbit with perigee at the distance R. When the vehicle
is at perigee, its lifting capability (in this case, negative lift) is
employed to effect flight along the boundary of the at-
mosphere (i.e., along a circular orbit of radius R). Flight
along the boundary is continued until sufficient velocity has
been depleted (by atmospheric drag) such that upon reducing
the lift to zero, the vehicle ascends on an elliptical orbit to an
apogee at r2. Finally, at r2, a tangential circularizing burn,
AF2, is executed to achieve the desired LEO. The idealizations
here are 1) that the atmospheric density at R is sufficient to

ATMOSPHERE

generate enough drag to slow the vehicle in a reasonable
amount of time, and 2) that the vehicle has sufficient lift to
maintain flight along the atmospheric boundary.

The characteristic velocity of this idealized transfer is now
compared with that of any realistic aeroassisted transfer. A
realistic transfer would require a larger AK7 to ensure suf-
ficient penetration into the atmosphere such that the required
velocity is depleted before skipping back out, given the limited
lifting capability of the vehicle. Thus the AF7 for the idealized
transfer is a lower bound for aeroassisted transfers. Secondly,
for the one-impulse transfer from atmospheric exit to LEO,
exit with a flight path angle of zero degrees (7/ = 0 deg) into
an elliptical transfer orbit, tangent to LEO at apogee, leads to
the minimum circularizing AF2. The corresponding exit speed
is Vf = ̂ 2fjLr2/ [R(r2 +R) ] . Any other exit pair ( Vf, yf) will
lead to a higher A V2 . Consequently , the characteristic
velocity, AF7 + AF2, for this idealized aeroassisted transfer is
a lower bound for the characteristic velocity of any realistic
aeroassited transfer.

An analytic expression for this lower bound can be derived.
Let

and

The elliptical grazing trajectory requires an impulse

?7- V2/ [a1 (aj + 7) ]

The second impulse used to circularize the orbit at r2 is

(1)

(2)

Thus the total characteristic velocity for the idealized
aeroassisted transfer is

(3)

Compare this to the characteristic velocity for the minimum-
fuel, all propulsive transfer, the Hohmann transfer, which is

a2(K1+a2)] - (4)

Fig. 1 Aeroassisted coplanar orbit transfer.

The curve plotted in Fig. 2 represents pairs (ot1,a2) for which
AvA =AvH. For pairs below the curve, AvA <Ay / /, i.e., the
idealized aeroassisted transfer requires less fuel. For example,
idealized aeroassisted transfer from geostationary orbit to
LEO requires less fuel than the Hohmann transfer, if the LEO
radius, r2, is less than about 12,000 km. In the case where
r2 =6728 km (a typical shuttle orbit radius), the characteristic
velocity, for the transfer from GEO is 1.55 km/s for the
aeroassisted mode, as compared to 3.87 km/s for the all-
propulsive mode.

It should be noted that in the case of the aeroassisted trans-
fer, the one-impulsede orbit to atmospheric entry and the one-
impulse LEO insertion following atmospheric exit are not
always the optimal modes. As has been shown in Ref. 3, for
the general case of deorbit from elliptical orbit, the optimal
mode can be one-impulse or two-impulse; or it can be via a
parabolic orbit (or more practically via an elongated ellipse).
In the case of parabolic deorbit, an impulse is applied
tangentially at the perigee to send the vehicle into a parabolic
orbit. Then at a large distance, an infinitesimal impulse is
applied to return the vehicle for entry at any prescrbed entry
angle. For a circular orbit,Jhe characteristic velocity for this
mode is Avp=^2/a] — v^/a,. With respect to the charac-
teristic velocity fpr the one-impulse mode, Eq. (1), the
parabolic mode is optimal whenever a />2(v /2 + 1)== 4.828.
Hence, optimally it should be used in the case of return from
GEO. However, in this case, the saving in the characteristic
velocity is only 21 m/s. Since the saving is small, while the
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time required to complete the deorbit is greatly increased, the
parabolic mode shall not be further considered.

The two-impulse mode of deorbit can be optimal for a
nonzero entry angle; but it can be shown that when it is, the
saving in characteristic velocity as compared to the one-
impulse mode is of the order of (ye) .l With regard to the one-
impulse LEO insertion following atmospheric exit, if the
apogee of the post-exit orbit is exactly at the distance r2, then
insertion is optimally made by a tangential impulse at this
point. If the apogee is at a distance slightly less than or greater
than r2, then a two-impulse insertion is required; but the
increment in characteristic velocity is only of the order of
(jf).2 Therefore, it is reasonable to consider only one-
impulse deorbit and one-impulse LEO insertion for the
aeroassited coplanar transfer.

We now proceed to consider a less idealized aeroassisted
orbit transfer in which the vehicle flies a skip trajectory
through the atmosphere. Determining the minimum-fuel
trajectory and control in this case requires the formulation
and numerical solution of an optimization problem.

Equations of Motion
The equations of motion for planar atmospheric flight are4

(5a)

malized lift control

dV pSCDV2

2m -gsm-y

At 2m - (g- — JCOS7

(5b)

(5c)

assuming a nonrotating atmosphere. It is assumed that when
r>R the flight is Keplerian. Hence, we shall consider a
Newtonian gravitational attraction, that is

(6)

Furthermore, it is assumed that the drag polar is parabolic,
namely

D = CDn+KCL
2 (7)

With this relation, using CL as a control corresponds
physically to using pitch modulation to shape the trajectory.
CL is allowed to assume both positive and negative values. A
negative CL value can be interpreted as resulting either from a
negative pitch angle or from a positive pitch angle with the
vehicle flying upside down. It is convenient to use a nor:

2.0

HOHMANN
TRANSFER

AEROASSISTED
TRANSFER

GEO

al = rl/R

Fig. 2 Comparison of characteristic velocities for Hohmann and
idealized aeroassisted transfers.

(8)

where C*L is the lift coefficient corresponding to the maximum
lift-to-drag ratio E*. In terns of CD and K, we have

E* = (9)

Using the following dimensionless variables and parameters

= p/p0 ; = R/He; B=
P0SHeCl

2m

the equations of motion can be rewritten as

dh
~dr

dv Bd • smy

dy COST
— =Bd\v+-——r——
dr (b-l + h) I (b-l + h)v\

(lOa)

(lOb)

(lOc)

Besides being preferable for numerical computation, the
dimensionless equations of motion, Eq. (10), focus attention
on the critical aerodynamic parameters which affect flight,
namely, the lift loading coefficient B and the maximum lift-
to-drag ratio E*. Again X is the modulated lift control, scaled
such that X = 1 corresponds to flight at the maximum lift-to-
drag ratio.

The Optimization Problem
The optimization problem is to find the values of the

tangential At>7, a scalar parameter, and the lift control X, a
function of time, which minimize the total characteristic
velocity

Avj + Av2 = ̂ Jl/oij- vecosye/aj + \ll/<x2 - vfcosyf/a2 (11)

Equivalently, we can maximize the function

/= vecosye/a} + vfcosyf/a2 (12)

The atmospheric entry and exit variables must satisfy the
relations

and

(2-v2)oi2
1-2aJ

(2-v})ot2
2-2a2

(13)

(14)

which are derived from the conservation of energy and
angular momentum equations for the HEO-to-entry and exit-
to-LEO transfer orbits, respectively. At entry we have

and at exit

r=0 and /L = 1

free and hf — 1

(15)

(16)

We now proceed to derive necessary conditions for the
optimal solution. Introducing adjoint variables ph, pv, and
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py, we form the Hamiltonian

With respect to the lift control X, JC is maximized when

v=££
vpv

(17)

(18)

However, realistically, the range of values which X can
assume is bounded; namely, the lift control must satisfy the
inequality constraint

I X I < X m a x (19)

where Xmax is a positive constant whose value is dictated by the
aerodynamic characteristics of the vehicle. According to the
Maximum Principle, we find that the optimal lift control is
determined by the rule

when X>Xmax

when IX I <X

when X< — Xm

(20)

where A=E*py/ ( v p v ) . In determining this rule, we have used
the fact that the Hamiltonian is a quadratic function of X
whose second derivative with respect to X is negative.

The adjoint variables satisfy the necessary conditions

dr dh ' dr dv ' dr
(21)

However, note that to compute the optimal control only the
value of A is required. This suggests replacing the three
differential equations, Eqs. (21), with two which involve only
ratios of the adjoint variables, namely A and F=ph/pv.
Differentiating the expresions for A and F with respect to time
and using Eqs. (21), we obtain

dA_-
dr

COS7 r
-l + h)2v I E* + bE*

(b- -l + h)v.
(22)

and

dr
2bsiny

~ (b-l + h)

Bv2

E*(b-l + h)2

_'E*

AFcOS'y

2b
(b-l + h)v.

FB
~E*

E* (b-l + h) (b-l + h)v (23)

where

dh dH

Writing the modified Hamiltonian in terms of A and F, we
have

ABdv\+ ————+_
E* E*(b-l + h) I (b-l + h)v\

(24)

Since the equations of motion, Eqs. (10), do not depend
explicitly on time and the final time is not prescribed, we have
the Hamilton integral

nr> _ f\ /1Oat = 0 (25)

Now, rather than the original six differential equations, we
have five, namely, Eqs. (10) for the three states, and Eqs. (22)
and (23) for A and F. Integation of these equations will yield
extremal trajectories for a number of problems which differ
only in the entry and exit conditions which must be satisfied.
Besides having reduced the dimension from six to five, this
formulation has the distinct advantage that four of the five
dependent variables are physical variables. (Actually, A has
physical meaning only if I A I <Xmax.) This situation eases the
difficulty in guessing unknown initial conditions during the
course of solving the boundary value problem. The non-
physical variable F can almost always (sin7 ̂  0) be computed
from the other four using the Hamiltonian integral, Eq. (24).
Indeed, one might use the Hamiltonian integral to eliminate
the need for solving the differential equation for F. However,
to avoid the difficulty in evaluating F at the singularity,
shi7 = 0, we shall integrate the equation for F, and instead use
the Hamiltonian integral as a check on the accuracy of the
numerical integration.

Table 1 Characteristics of minimum-fuel trajectories

LID capability Heating rate

Low Moderate High Unconstrained Constrained

(L/D)m
Target perigee rp , km
A,(Ap)
Exit flight path angle, deg
LEO orbit radius, km
AK2 ,m/s
Ideal AK2 for same LEO, m/s
Min altitude, km
Max dynamic pressure, kN/m2

Max convective heating rate
for a one meter sphere, W/cm2

Maxg's

6.845
6400.0

2.303247
0.3

6558.8
26.1
18.3
58.8
15.9

193.1

3.6

1.5
6400.0

2.701724
0.4

6578.7
31.0
24.0
58.2
18.6

222.8

2.7

2.9
6400.0

3.2586836
0.3

6557.6
25.2
18.0
51.5
44.2

361.4

1.8

1.5
6415.0

2.947660826
0.45

6608.0
40.5
32.6
61.2
13.1

190.8

1.9

1.5
6415.0

6.56(.79867315)
0.49

6625.0
45.1
37.7
64.0
8.8

150.0

3.7
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The heating rate, HR9 along the atmospheric trajectory, is
computed according to the equation

R = (3.08xlO-4)p'/2V3-08 (26)

where p is the atmospheric density in kg/km3 and V is the
speed in km/s. Equation (26) gives the convective heating rate
for a sphere with a radius of 1 m, under conditions of laminar
flow. Since only relative changes are of concern, this model
will suffice.

Method of Numerical Solution
We shall only concern ourselves with minimizing AF2.

Although AF7 is the larger of the two burns, for the HEO
considered the difference between the value of A V1, required
to target to a perigee at the atmospheric boundary, R — 6498
km, and that required to target to a perigee at the surface of
the Earth is a mere 13 m/s. In contrast, AF2 is very sensitive
to the values of the exit parameters vf and yf. For example,
the AF2 required for a given HEO to LEO transfer can in-
crease by 100 m/s or more for each degree above zero in the
exit flight path angle, T/.

Knowing that a skip trajectory with 7/ = 0 deg leads to the
minimum AF2 at the LEO to which the ascending orbit is
tangent, we employed the following approach to compute
minimum-fuel trajectories and controls. A target perigee, rp9
is chosen and from this the entry parameters ve and ye are
determined according to the equations

V2=2[l-l/(a]+ap)]

cos2ye=[2a]-(2-v2
e)a2

]]/v2
e

(27)

(28)

Then, using the computed values of ve and 7^, he = 1, and a
pair (Ae,Fe) as initial conditions, Eqs. (10), (22), and (23) are
integrated from r = 0 to h = 1, using Eq. (20) to determine the
lift control. The pair (Ae,Fe) is determined by choosing Ae
and using Eq. (24) to solve for the corresponding value of Fe,
with v, 7, and h as specified above. The integration is per-
formed by a variable order, linear, multistep predictor-
corrector routine of the Adams-Moulton type,5 with the local
absolute error controlled to less than 1.0 x 10 ~8 for each of
the five dependent variables. In all cases studied, it has been
possible to find a value of Ae such that yf = 0 deg at exit by
iterative search. The corresponding value of vf determines the
apogee of the transfer orbit following exit, and hence, the
LEO to which the vehicle is optimally transferred. As the
value of rp is lowered from R, 7/ = 0 deg continues to be
reachable, but the exit speed decreases, resulting in lower
LEO transfers. There is a certain critical value of rp below
which the lifting capability of the vehicle is insufficient to
effect a skip trajectory. However, for the vehicle studied in
the following, the range of reachable LEO's extended all the
way down to altitudes of less than 200 km.

A trajectory and control computed in this manner are
optimal in the following sense. First, the necessary conditions,
[Eqs. (10), (22), and (23)], the. entry and exit conditions
[Eqs. (15) and (16)], and Eqs. (13) and (14) are satisfied.
Second, the lift control satisfies the constraint [Eqs. (19)].
Third, the near-zero degree flight path angle at exit ensures
that the circularizing AF2 to achieve the LEO to which the
post-exit orbit is tangent is the absolute minimum, when
compared to those for all other aeroassisted transfers from
the same HEO to the same LEO. (The exit flight path angles
achieved, as indicated in Table 1, are a few tenths of a degree.
The iteration on Ae was stopped at this point because the
associated value of AF2 was within 8 m/s of the lower bound
set by the idealized transfer.) Fourth, although only AF2 has
been minimized, the characteristic velocity, AF7+AF2 , is
very close to the absolute minimum. The value of AF7 for the
cases shown in Table 1 is within 10.4 m/s of the lower bound

on AF7 given by the idealized transfer. Thus, the charac-
teristic velocity cannot get much smaller. Equally important,
however, is whether or not the trajectory and/or control
would change significantly if the characteristic velocity were
reduced the last few meters per second. Numerical experience
indicates that they do not. As the exit flight path angle is
reduced, the atmospheric trajectory changes very little. In-
deed, the value of Ae is being changed only slightly (parts in
106 or less) to get the exit angle below a few tenths of a degree.
This level of change in Ae affects most of the trajectory
almost negligibly, but extends the trajectory in order to
achieve the lower exit angle. Furthermore, as mentioned
above for zero exit flight path angle atmospheric trajectories,
there is a one-to-one mapping, based on numerical experience,
from values of rp to values of vf, and hence, to the LEO's for
which the AF2 is a minimum. Therefore, if rp were increased
in order to decrease AF7, the corresponding AF2 would be
greater. Given the low sensitivity of AF7 to changes in the
value of rp9 it is unlikely that the characteristic velocity could
be reduced much, if any, by adjusting rp. In conclusion, a
trajectory and control solution computed in the manner
described above is a realistic approximation to that which
gives the absolute minimum characteristic velocity, and
henceforth we shall refer to such a solution as a minimum-
fuel solution.

When a heat rate constraint is imposed, the solution
procedure is somewhat different. We follow an approach used
in Ref. 6. The heating rate, for a skip trajectory, reaches its
maximum value shortly after entry, in a monotonic fashion. It
then decreases during the remainder of the flight, although
some oscillation may occur. In order to satisfy a heating rate
constraint, HR < (HR) max, we shall assume that it is sufficient
to control the first peak of the heating rate function, such that
the peak value is equal to (HR)max. Furthermore, we shall
assume that, once this peak value is reached, flight does not
continue on the heating constraint boundary. These
assumptions allow us to solve the constrained problem in two
stages, each requiring an iteration on only one parameter.

10.0
9.5

9.0

8.0

1
o

=

E

£

10 15
TIME FROM ENTRY (min)

20 25

Fig. 3 Time histories of state variables, (Z,//))max = 1.5.
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In the first stage, we begin at r = 0 as in the unconstrained
case, except that now the goal is to choose Ae such that
HR = (HR)max at the time when the derivative of the heating
rate with respect to time is equal to zero. Once this value of Ae
is found the minimum-fuel trajectory up to the peak heating
rate is determined. The second stage is to find a value for A,
A = A,, such that, when Eqs. (10), (22), and (23) are integrated
from the time of the peak heating rate to atmospheric exit, the
value of the exit flight path angle is zero degrees. Indeed, in
the cases studied, it has been possible to find such values of Ae
and Ap. Thus, while the functions A and F are, in general,
discontinuous at the time of the peak heating rate, the states
h, v, and 7 are always continuous.

Minimum-Fuel Trajectories
For all the cases reported below, the transfer is from

goestationary Earth orbit (GEO), for which rl =42,241 km.
The radius of the atmosphere is 6498 km. Above this distance,
the density is identically zero. Over the altitudes of at-
mospheric flight, 40-120 km (where the radius of the Earth is
taken to be 6378 km), the density is approximated by a fifth-
degree Chebyshev polynomial whose coefficients were
determined by a least-squares fit to the U.S. Standard At-
mosphere, 1976 (Ref. 7). The vehicle mass-to-surface area is
300 kg/m2 for all cases.

Concerning the radius of the atmosphere, a few remarks are
in order. Since the atmospheric density variation with altitude
is exponential in nature, according to the U.S. Standard
Atmosphere, the interface between the atmosphere and the
vacuum is not well defined. It is common practice to choose
the entry (and exit) radius such that the aerodynamic force
produces a slight but detectable acceleration to modify the
Keplerian orbit. Thus, the critical parameter in determining
the radius value is the lift loading coefficient B. Accordingly,
the value of 6498 km for the radius is consistent with the
values of B used for numerical computations in this study.
With regard to the optimization results, the characteristic
velocity for the aeroassisted transfer shows little sensitivity to
the value of R. For the GEO to 350 km altitude circular LEO
transfer, changing the value of R by 10 km in either direction
alters the characteristic velocity by less than 3 m/s.

Unconstrained
We begin by presenting some minimum-fuel trajectories

under conditions of unbounded lift and unconstrained heating
rate. Three vehicle configurations were considered, as
distinguished by their respective maximum LID capabilities,
namely, 0.845, 1.5, and 2.9. Data from wind tunnel tests is
available for vehicles with these maximum LID capabilities
(Refs. 8, 9, and 10, respectively) and the values for the
parameters CDo and K which appear in the parabolic drag
polar were chos°en to best fit the data. The values used for the
pair (CDo, K) were (0.21, 1.67), (0.10, 1.11), and (0.017,
1.76), respectively.

Note that although constant values for CD and K are used
here for the numerical computations, the preceding theory is
more generally applicable. For precise computation of an
optimal trajectory, it is necessary to model the coefficients
CDo and K as continuous functions of the altitude h and the
speed v since at low altitude and low hypersonic speed these
coefficients are functions of the Mach number and the
Reynolds number. In Eqs. (10), we then have B and E* as
functions of h and v. The Hamiltonian integral Eq. (25), with
3C as given in Eq. (24), remains unchanged. The use of the
adjoint ratios A and F is still valid. The only change is that in
Eqs. (22) and (23), we would have additional terms containing
the nonvanishing partial derivatives Bh and E* h, with respect
to h, and Bv and E*, with respect to v. The method of
numerical solution remains applicable and involves no ad-
ditional difficulty. Examples of modeling the aerodynamic
coefficients as functions can be found in Ref. 4. For our
purposes here, it suffices to use the best fit constant values for

10 15
TIME FROM ENTRY (min)

20 25

Fig. 4 Time histories of heating rate, dynamic pressure, and g load,
(L/D)mm=l.5.

CDo and K in the altitude range of effective aerodynamic
maneuvering. Since the aeroassisted coplanar transfer
requires only energy depletion, it is reasonable to expect that a
more precise treatment of the vehicle aerodynamics would not
drastically alter the characteristic behavior of the lift control
or the resulting performance.

For each of the three maximum LID cases, we have fixed
rp = 6400 km and have searched and found the Ae such that
7/ = 0 deg. In this manner, a minimum-fuel trajectory for
each case was generated. The corresponding LEO orbits, to
which the transfers are optimal, are not exactly the same, but
are close enough to permit comparisons. The alternative
approach of specifying the LEO orbit a priori would require
seaching on two parameters, rp and Ae, in order to determine
the minimum-fuel trajectory.

Certain characteristics of the minimum-fuel unconstrained
trajectories are given in the first three columns of Table 1. We
see that the high LID vehicle penetrates farthest into the
atmosphere and experiences the highest dynamic pressure and
heating rate. The low LID vehicle experiences the highest g
load. For comparison, the shuttle design limits for dynamic
pressure and g-load are 16 kN/m2 and 2.5, respectively.11

Time histories of the state variables for the (L/D)max = 1.5
case are shwon in Fig. 3; those for the heating rate, dynamic
pressure, and g load are shown in Fig. 4. The behaviors
illustrated in these two figures are qualitatively representative
of all the cases discussed in this paper.

Figure 5 shows the lift-to-drag ratio as a function of the
time from atmospheric entry for the three cases. A similar
pattern is followed in each case. The maximum positive LID
is used initially to recover from the downward plunge. As the
flight path angle becomes positive, the maximum negative
LID is used to level off the flight. These first two phases occur
within the first four minutes of flight. Of course, although the
basic pattern is similar, quantitatively there are definite
differences in the flight characteristics of the three LID
vehicles, as indicated in Table 1. After the first four minutes,
a negative LID is used to maintain flight at a small positive
flight path angle in order to achieve the desired shallow exit.
The required negative L/D increases as the flight proceeds to
compensate for the decreasing atmospheric density.
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Bounded Lift
For the vehicle, with (L/D)max = 1.5, wind tunnel data

show that the lift coefficient does not exceed 0.9 in absolute
value. Thus, we impose the constraint

\CL\<0.9

which corresponds to setting Xmax = 3.0 in Eq. (20). The
resulting lift control is given by the dashed curve in Fig. 6. For
comparison, the corresponding curve with CL unbounded is
given by the solid curve. We see that flight is along the
constraint boundary for much of the flight. The important
point, however, is that a near-zero exit flight path angle is still
reachable by proper choice of Ae.
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Fig. 5 Time histories of lift-to-drag ratio.
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Fig. 6 Time histories of optimal lift control for unbounded and
bounded cases.
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Fig. 7 Time histories of optimal lift control for unconstrained and
constrained heating rate cases (only first two minutes shown).

Constrained Heating Rate
Using Eq. (26), the heating rate along the minimum-fuel

trajectory can be calculated. Referring to this as the un-
constrained heating rate, we can ask the question: What is the
minimum-fuel trajectory if the maximum heating rate is
constrained to be no greater than some fraction of the
maximum unconstrained heating rate?

In order to see the effect of a heating rate constraint, we
again consider the configuration with (L/D)mSLX = 1.5, as
described earlier, except that the target perigee is taken to be
6415 km. The minimum AF2 trajectory is computed first with
the heating rate unconstrained. The maximum heating rate is
found to be 190.8 W/cm2 for a reference 1 m sphere. Next,
the minimum-fuel trajectory is computed with all conditions
identical, except that the heating rate is constrained not to
exceed 150.0 W/cm2. In both cases, a the lift coefficient is
bounded, as described earlier.

Certain characteristics of the unconstrained and con-
strained cases are given for comparison in the last two
columns of Table 1. In both cases, a near-zero exit flight path
angle is reachable and the AF2 is within 8 m/s of that for the
idealized transfer. With the heating rate constrained, the
vehicle does not penetrate the atmosphere as deeply; the
maximum dynamic pressure is reduced; but the maximum g
load is increased.

The optimal lift control, for each case, is plotted vs time in
Fig. 7. We see that the vehicle flies initially at (CL)max in the
constrained case; whereas in the unconstrained case, CL is
decreasing steadily during the same period. By flying at
(CL)max initially, and correspondingly at a higher CD, the
vehicle slows down higher in the atmosphere, allowing
recovery from the downward plunge, which occurs sub-
sequently at the maximum positive LAD, to take place at a
lower atmospheric density, or equivalently, at a higher
altitude. In this manner, higher heating rates are avoided.

As a final note, the minimum entry flight path angle from
which the vehicle can recover and achieve the prescribed exit
state conditions, is raised when a heating rate constraint is
imposed (that is, raised with respect to the unconstrained
case). The reason is that if the entry is too steep, excessive
heating rates cannot be avoided, even by flying at the
maximum positive CL. In the particular case investigated
here, an optimal solution was found for entry angles as low as
-6.5° (^ = 6400 km) in the unconstrained case. In the
constrained case, the lowest entry angle that could be
tolerated was -6.0° (^=6415 km).

Summary and Conclusions
Under the given assumptions and restrictions, minimum-

fuel aeroassisted coplanar transfer from high orbit to low
orbit using lift modulation has been considered. An idealized
version of the transfer lent itself to analytic treatment and
allowed a lower bound on the characteristic velocity for any
given HEO to LEO aeroassisted transfer to be determined. In
order to examine minimum-fuel transfer under more realistic
conditions, an optimization problem was formulated and
solved numerically. It was found that for each given HEO to
LEO transfer considered, even with bounded lift and/or a
heating rate constraint, a characteristic velocity within 10-
20 m/s of the lower bound is achievable. The optimal
aeroassisted mode of transfer requires less fuel than the
optimal all-propulsive mode for a wide range of high orbit to
low orbit transfers. For the transfer from GEO to a circular
350 km altitude orbit, the characteristic velocity is 2.32 km/s
less for the aeroassisted mode.

The characteristic lift program for the atmospheric portion
of the minimum-fuel transfer is to fly at the maximum
positive LID initially to recover from the downward plunge,
and then to fly at negative LID to level off the flight such that
the vehicle skips out of the atmosphere with a flight path
angle near zero degrees. This program is modified at the
beginning if high heating rates are to be avoided. Flight,
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initially at maximum lift, and, correspondingly at high drag,
lowers the vehicle's speed higher in the atmosphere, allowing
recovery from the downward plunge (which occurs sub-
sequently using the maximum positive L/D) to take place at a
lower atmospheric density, or equivalently, at a higher
altitude.
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