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Motivated by the requirement for pinpoint landing in futureMarsmissions, we consider the problemofminimum-
fuel powered terminal descent to a prescribed landing site. The first-order necessary conditions are derived and
interpreted for a point-mass model with throttle and thrust angle control and for rigid-bodymodel with throttle and
angular velocity control, clarifying the characteristics of the minimum-fuel solution in each case. The optimal thrust
magnitude profile is bang–bang for bothmodels; for the point-mass, the most general thrust magnitude profile has a
maximum–minimum–maximum structure. The optimal thrust direction law for the point-mass model (alignment
with the primer vector) corresponds to a singular solution for the rigid-bodymodel.Whether the point-mass solution
accurately approximates the rigid-body solution depends on the thrust direction boundary conditions imposed for
the rigid-body model. Minimum-fuel solutions, obtained numerically, illustrate the optimal strategies.

Nomenclature
C = characteristic velocity, m=s
g = gravitational acceleration vector, m=s2

gE = gravitational acceleration at the Earth’s surface, m=s2

H = Hamiltonian
h = altitude, m
Isp = specific impulse of the engines, s
J = cost function, m=s
k = inverse of the ejection velocity, !m=s"#1
m = lander mass, kg
r = lander position vector, m
T = thrust vector, N
t = time, s
u = downrange velocity coordinate, m=s
V = lander velocity vector, m=s
v = crossrange velocity coordinate, m=s
ve = ejection velocity of the engines, m=s
w = vertical velocity coordinate, m=s
x = downrange position coordinate, m
y = crossrange position coordinate, m
! = cant angle for the engines, rad
! = specific thrust vector, N=kg
" = pitch angle, rad
# = costate variable
$ = yaw angular velocity, rad=s
 = yaw angle, rad
! = pitch angular velocity, rad=s

Subscripts

f = final condition
0 = initial condition

Introduction

M ARS pinpoint landing (defined as landing within 100 m of a
selected surface location) is a potential requirement for future

Mars missions [1]. Our focus in this paper is on the powered descent
phase which commences once the subsonic parachute has reduced
the lander velocity to 55–90 m=s and is jettisoned [1]. During the
terminal powered descent phase, in addition to achieving a soft
landing, it may be necessary to translate horizontally as much as
several kilometers to compensate for drift due to the effects of
unpredictable winds during the parachute phase. Fuel-efficient
powered descent guidance is important to keep the lander mass as
low as possible.

The powered descent guidance currently baselined for the Mars
Science Laboratory (MSL) lander [2] is a derivative of the Apollo
lunar descent guidance [3]. In both of these schemes, the vehicle
position, velocity, and acceleration variables are represented by
consistent polynomial functions of time with just enough free
parameters to meet the boundary conditions. Comparison [4] of the
feasible solution generated by this approach, with the minimum-fuel
solution, indicates significantly greater propellant consumption
when lateral flight of several kilometers is required,§ motivating the
development of alternative guidance algorithms that are more fuel
efficient. In designing a fuel-efficient guidance algorithm, it is useful
to know the control strategy that minimizes the fuel consumption. To
accommodate operational constraints and additional guidance
problem features, a different control strategy might be used in a
guidance algorithm, but still, an understanding of the minimum-fuel
solution can aid the algorithm design and serve as a standard for
performance evaluation. Several candidate guidance algorithms
have already been proposed [5–7].

The purposes of this paper are 1) to formulate the three-
dimensional minimum-fuel problem for the powered terminal
descent of a Mars lander, 2) to derive and interpret the first-order
necessary conditions, and 3) to obtain minimum-fuel solutions that
illustrate the optimal strategy. Both a point-mass model with throttle
and thrust angle control and a rigid-body model with throttle and
angular velocity control are considered. The rigid-body model with
angular velocity control allows us to consider the effects of boundary
conditions on the thrust direction and finite bounds on the angular
velocities. The theoretical results are derived in a self-contained
manner. Some of the results were first derived in the period 1950–
1970, the formative years of optimal control and its application to
flight mechanics. In the next paragraph, we mention some key
references that are relevant and that provide links to pioneering and
foundational work carried out in that era. Specific credit for results
will also be given during the course of our derivations in the body of
the paper.
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The general theory for minimum-fuel trajectories in a uniform
gravitational field is presented by Lawden [8], Miele [9], Leitmann
[10], and Marec [11]. Two-dimensional powered-flight for a point-
mass model with bounded thrust was considered by Leitmann
[10,12]. He showed that the optimal thrust magnitude profile is
composed of maximum and minimum arcs, and there are at most
three arcs. He proved that the use of intermediate thrust levels,
corresponding to a singular arc, is not optimal. Kelley [13]
considered optimal powered-flight for the rigid-body model with
torque control as a two-timescale singular perturbation problem.
When the optimal solution is of the two-timescale boundary-layer
type, he showed that the solution is similar to that for the point-mass
model except for initial and final boundary layers where the solution
is modified to satisfy the boundary conditions.

The contributions of this paper are 1) an analytical treatment of the
point-mass and rigid-body models in one place, with a more
complete analysis of the rigid-body case than previously available,
2) the similarities and differences between the point-mass and rigid-
body solutions, and the factors affecting them, are identified, and
3) computation of numerical solutions that illustrate the specific
minimum-fuel descents. With the computational power available
today, optimal trajectory studies are often carried out with numerical
methods alone. The minimum-fuel landing problem is one for which
analytical methods uncover the general qualitative characteristics of
the optimal solutions and complement the quantitative information
provided by numerical solutions for particular boundary conditions.
Although the motivation for this study and the data for the numerical
results concern Mars landing, the results are more generally
applicable, for example, to lunar landing.

Powered Descent Modeling
Characteristic Velocity

The rate of change of mass, due to propellant consumption, is

_m$#kT (1)

where k$ v#1e and T is the thrust magnitude. We assume constant
ejection velocity. The ejection velocity is related to the specific
impulse of the engines by ve $ gEIsp. FollowingMarec[11], we will
use characteristic velocity instead of mass as a state variable in
deriving the necessary conditions. The characteristic velocity is
defined as the solution to the equation

_C$ ! (2)

with initial conditionC!t0" $ 0, where!$ T=m is the magnitude of
the specific thrust. There are constant upper and lower bounds on the
thrust force that translate to time-varying upper and lower bounds on
the thrust acceleration, expressed as

0 % !min!t" % !!t" % !max!t" (3)

The time dependence of the bounds is due to the mass variation.
Given C!t", the corresponding mass is m!t" $m!t0" exp&#kC!t"',
!min!t" $ Tmin=m!t", and !max!t" $ Tmax=m!t". Thus, the bounds
should be viewed as C dependent, when C is used in place ofm as a
state variable. To convert bounds on thrust force to bounds on thrust
acceleration, the initial mass of the vehicle and propellant and the
engine Isp are needed. For the numerical solutions presented later, the
mass is used in place of C and thrust force is the control.

Vehicle Dynamics

The dynamics for the translational degrees of freedom and the
characteristic velocity are

_r$ V _V $ g( ! _C$ ! (4)

When ! is written without the bold/italic font, it denotes the scalar
magnitude of the vector ! , and this convention will be used for other
vectors as well. DefiningD as a unit vector in the thrust direction, we
can express the thrust vector by ! $ !D.

It is assumed that the gravitational field is uniform, i.e., that g is
constant, and that aerodynamic forces can be neglected. Further, we
assume 0 % !min!t"< g < !max!t" for all twithin the time interval of
interest. Assuming !max > g, or equivalently a thrust-to-weight ratio
greater than one, is generally required to achieve a soft landing.
Specifically, wewill impose the condition that the vertical velocity is
zero when the surface is reached; positive vertical acceleration is
required to go from the negative vertical velocity in descent to zero
vertical velocity. The case 0 % !min!t"< g is the most natural.
Ideally !min corresponds to thrust off and would in this case be zero.
However, it may not be possible, or at least safe, to throttle the
engines down to zero if thrust will be needed subsequently. Thus, we
leave some freedom in!min. For the numerical results presented later
!min corresponds to 30% throttle. The upper bound !min < g is not
necessary for any of the theoretical results presented in this paper.

The position and velocity vectors are expressed in Cartesian
coordinates for the purpose of obtaining numerical solutions. The
position vector coordinates are !x; y; h" as shown in Fig. 1. The
desired landing site is at the origin. The x axis is directed such that the
initial vehicle position has x > 0 and y$ 0. We assume this
coordinate frame is inertial. The velocity coordinates are
!u; v; w"T $ ! _x; _y; _h"T . The direction of thrust is expressed in the
same frame using angular coordinates as

D $
Dx

Dy

Dh

0

@

1

A$
sin " cos 

sin 
cos " cos 

0

@

1

A (5)

The angles " and  serve as the thrust direction and attitude
coordinates. See Fig. 1. Note that !";  " $ !0; 0" corresponds to a
vertically upward thrust direction. The angles have been defined so
that the singularities in the transformation are outside the operating
domain.

The dynamics in Cartesian coordinates are

_x$ u _y$ v _h$ w _u$ ! sin " cos 

_v$ ! sin _w$#g( ! cos " cos _C$ !
(6)

In the preceding formulation, we have neglected the dynamics
associated with the throttling of the engines and the rotation of the
thrust vector. The engines¶ for the MSL lander can be throttled
between minimum and maximum thrust in 30–40 ms, and so the
thrust magnitude dynamics are very fast compared with the
translational and mass dynamics we are considering. For rigidly
mounted (nongimballed) engines, the thrust vector is rotated by
rotating the lander. For MSL, the maximum attitude rate is
10–15 deg =s [2].

We will consider the attitude motion using the model

_"$ ! _ $ $ (7)

where the pitch and yaw angular rates are considered to be the
controls. We assume the bounds j!j % !max and j$j % $max. This
restricted model for attitude dynamics and control is sufficient to
handle boundary conditions on the thrust direction and impose the
angular rate limits. The additional complexity of using second-order
models for each degree of rotational freedom is not necessary for our
purposes in this paper.

Fig. 1 The thrust vector and its components in the x, y, and h axes.

¶Guernsey, C., personal communication, 2005.
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By point-mass modelwemean either the vector form in Eqs. (4) or
the coordinate form in Eqs. (6). By rigid-body model we mean the
combination of the point-mass model and the attitude dynamics in
Eqs. (7).

Boundary Conditions
The position and velocity vectors are specified at the initial and

final times. The initial conditions are denoted by r!0" $ r0 and
V!0" $ V0 and the final conditions by r!tf" $ 0 and V!tf" $ 0. The
initial conditions are given at the end of the parachute phase; the
magnitude of V0 is near terminal velocity for the lander/parachute
system, in the range 55–90 m=s for MSL [1]. Although we have
assumed zero vectors for the final position and velocity, the final
altitude could be positive to allow for afinal landingmaneuver and/or
the final vertical velocity could be a small negative nonzero number,
without altering the qualitative properties of the minimum-fuel
solution. The final time is not specified.

The initial mass is given as m!0" $m0. For the characteristic
velocity, the initial condition isC!0" $ 0. The initial thrust direction
is determined by the lander attitude at commencement of the
powered descent phase. The thrust vector should be vertically
upward at the final time; this is equivalent to specifying that the
horizontal acceleration components are zero at the final time.
However, the free initial and final thrust direction case will also be
considered.

Minimum-Fuel Landing Problems
The performance objective is tominimize propellant usage. This is

formulated equivalently as maximizing the final mass of the vehicle
(including the remaining propellant) or maximizing #C!tf". We
consider two minimum-fuel landing problems (MFLPs) as indicated
in Table 1. In the first (MFLP 1), the point-mass model is used, the
controls are assumed to be !, ", and , and the initial and final thrust
directions are unspecified (free); in the second (MFLP 2), the rigid-
body model is used, the controls are assumed to be !, !, and $, and
the initial and final thrust directions are specified (fixed).

Theoretical Properties of Minimum-Fuel Solutions
In this section, necessary conditions for minimum-fuel solutions

are derived and interpreted. The issue of whether a solution exists for
a particular problem is not addressed, except to say that a lander can
be too far horizontally from the landing site or too close to the surface
and going too fast, such that the final boundary conditions cannot be
satisfied with any control strategy. Our results parallel those of
Meditch [14], who characterized the minimum-fuel solutions for the
one-dimensional point-mass model. He derived the first-order
necessary conditions using the maximum principle, showed that the
minimum-fuel thrust profile is composed ofminimumandmaximum
thrust segments, and is either maximum (max) thrust all the way or a
minimum segment followed by amaximum segment (min–max). He
also proved that the use of intermediate thrust levels, corresponding
to a singular arc, is not optimal. Most of his results regarding the
necessary conditions were previously derived by Leitmann [10]
using the calculus of variations approach.

MFLP 1: Point-Mass Model with Thrust Angle Control
The cost function to maximize is

J$#C!tf" (8)

The Hamiltonian associated with the optimal control problem is

H!r;V; C;"r;"V;#C;!;D" $ "r ) V ( "V ) !!D( g" ( #C!

(9)

where"r, "V , and #C are the costate variables associated with the
state variables r, V, and C. This problem is a special case of optimal
transfer in a uniform gravitational field; the first-order necessary
conditions for which are given by Marec ([11], pp. 71–72).
According to Pontryagin’s maximum principle, the optimal thrust
maximizes the Hamiltonian. Let the superscript * denote optimal
value. Because ! is nonnegative,D should be in the direction of "V .
Thus, D* $ "V=#V . Lawden [8] calls "V the primer vector. After
specifying the thrust acceleration direction, the Hamiltonian can be
written as

H!r;V; C;"r;"V;#C;!;D*" $ !#V ( #C"!( "r ) V ( "V ) g
(10)

which is maximized by

!* $
!
!max if H! > 0
!min if H! < 0

"
(11)

where H! $ @H=@!$ #V ( #C is the switching function for !. If
H! $ 0 over a finite time interval, there is a !-singular arc and
intermediate thrust levels may be optimal; however, we will show
that !-singular arcs are not possible.

The costate equations, of the form _#$#@H*=@x, where H* $
H!r;V; C;"r;"V; #C;!*;D*" and x denotes the state variable
associated with #, are

_" r $ 0 _"V $#"r _#C $#!#V ( #C"k!* (12)

Because C!tf" is free, #C!tf" $ @J=@Cjt$tf $#1. The costate
vector "r is constant. It follows that "V!t" $ #"r!t# tf" ( "V!tf",
where "V!tf" is a constant vector to be determined. Thus [11], the
thrust vector rotates in a plane in the position space R3, the plane
containing the origin and the line segment traced out by the tip of the
primer vector. Note that if the thrust direction is represented by the
angles &"!t";  !t"', the optimal angles are given by

tan "!t" $ #x!tf # t" ( #u!tf"
#h!tf # t" ( #w!tf"

tan !t" $ #y!tf # t" ( #v!tf"##############################################################################################
&#x!tf # t" ( #u!tf"'2 ( &#h!tf # t" ( #w!tf"'2

q
(13)

where the costate vectors are represented by Cartesian coordinates,
namely"r $ !#x;#y;#h"T and"V $ !#u;#v;#w"T . The first of these
equations is the tangent steering law that arises in two-dimensional
vertical plane powered-flight optimization problems [15]. At a
switch time, i.e., at a corner, the costate variables, H*, and H! are
continuous [10].

Because of the translational and rotational symmetries in the
problem, there arefive integrals (constants) of themotion. Because of
the translational position symmetry, the three position costates are
constant. The symmetry in time leads to a constant Hamiltonian, and
because the final time is free, the Hamiltonian constant is zero.
Because of the rotational symmetry around the vertical axis, the
vertical component of r + "r ( V + "V is constant ([16], pp. 85–
86). Because the final position and velocity are zero, this constant is
zero. This integral can be written in Cartesian coordinates as

!x#y # y#x" ( !u#v # v#u" $ 0 (14)

Let p$ &rT;VT; C;"Tr ;"
T
V;#C'T , a 14-dimensional vector, and let

M$ fp 2 R14: fi!p" $ 0; i$ 1; . . . ; lg denote the set of points
that satisfy the constraints, the constraints specified by l smooth
functions fi!p", i$ 1; . . . ; l. If the vectors @fi=@p, i$ 1; . . . ; l are
linearly independent for each p 2 M, then M is a smooth (14 # l)-

Table 1 Three minimum-fuel landing problems

MFLP Model Controls Thrust direction

Initial Final

1 point-mass !, ",  free free
2 rigid-body !, !, $ fixed fixed
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dimensional manifold [17]. The Hamiltonian integral and the
rotational invariance integral imply that extremal solutions (those
that satisfy the first-order necessary conditions) lie on a 12-
dimensionalmanifold in the 14-dimensional state–costate space. The
extremals can be represented by 13 parameters, one more than the
dimension of the manifold because the final time is free.

The length of the velocity costate can be written as

#V!t" $
##########################################################################################
#2
r!t# tf"2 # 2&"r ) "V!tf"'!t# tf" ( #2

V!tf"
q

(15)

There are three cases to consider: 1) with #r ≠ 0 and #V!tf" ≠ 0, the
graph of #V!t" is a hyperbola whose major axis is vertical in the
!t;#V" plane, whose center is at !tf ( &"r ) "V!tf"'=#2

r ; 0", and
whose curvature is positive; 2) with #r ≠ 0 and #V!tf" $ 0, the
graph of #V!t" is a line with (nonzero) negative slope; and 3) with
#r $ 0 and #V!tf" ≠ 0, the graph of #V!t" is a line with zero slope, i.
e., #V!t" is constant. First we consider !-nonsingular, i.e., bang–
bang. For case 1, #V!t" a hyperbola, the most general form of the
optimal ! profile is max–min–max [10,11]. At a min–max or max–
min switch time,H! $ 0 and _#C $ 0.While!$ !max,# _#C > 0, and
while !$ !min, # _#C < 0. Looking at examples of the #V and ##C
curves in Fig. 2 and noting that at a switch time the curves cross, one
can see that the##C curve can cross the descending _#V < 0 segment
of the #V curve at most once and the ascending segment _#V > 0 at
most once. Hence, we conclude the optimal thrust magnitude profile
is bang–bang with at most three arcs, two maximum thrust arcs
separated by a minimum thrust arc. For case 2, #V!t" $ ##r!t # tf".
At t$ tf , H* $ !#V ( #C"!* $ 0, which under our assumption of
bang–bang control, requires that #V!tf" ( #C!tf" $ 0. However,
this cannot happen, because#V!tf" $ 0 and#C!tf" $ #1. For case 3,
#r $ 0 implies "r $ 0 and from the second of Eqs. (12) we have "V
constant. Noting, for this case, that H* $ !#V ( #C"!*(
"V ) g$ 0, that the second term is constant, and that
sign& _#C!t"' $ #sign!H*

!", one can rule out all bang–bang
possibilities except a max–arc. Thus, this is a special case of case 1.

For the singular ! case, the switching function H! $ #V!t" (
#C!t" $ 0 over a finite time interval. On such an interval, _#C $ 0,
hence, #C and #V are constants. If ! is singular on any interval, it
must be so on the entire interval. Applying the boundary condition on
#C, we have #C $#1 and #V $ 1. Also, _#V $ 0. Differentiating
#2
V $ "V ) "V and using _"V $#"r from Eqs. (12) yields

"r ) "V!t" $ 0. Hence "r, a constant vector, is orthogonal to "V!t".
A nonzero "r would cause the unit-vector "V!t" to rotate [see the
second of Eqs. (12)] and make it impossible for the orthogonality
condition to be satisfied over a finite time interval; thus, "r $ 0 and
"V is constant. Using the Hamiltonian integral and the conditions on
a singular arc, one can show that the optimal thrust vector, a constant
vector, would be orthogonal to g, i.e., the optimal thrust direction
would be in the horizontal plane. We can now rule out the existence
of a singular arc, because the vehicle would be in free fall in the
vertical direction, making it impossible to satisfy both final
conditions h!tf" $ 0 and _h!tf" $ 0. Leitmann [10,12] ruled out

singular arcs for the point-mass model for arbitrary boundary
conditions and any cost function of the Mayer form. Because our
proof relies on particular final conditions, it is not as general, but it is
simpler.

Our findings are summarized as follows:
1) Singular thrust magnitude arcs do not exist, i.e., using

intermediate values of ! (!min < !< !max) is never optimal.
2) Thrust magnitude is bang–bang:

!* $
!
!max if H! > 0
!min if H! < 0

3) The optimal !* profile has at most three subarcs, in the order
max–min–max.

4) There are five integrals for the optimal motion. The three
position costates are constant. The Hamiltonian is identically zero,
and !x#y # y#x" ( !u#v # v#u" $ 0. The last two integrals imply
that extremal solutions (those that satisfy the first-order necessary
conditions) lie on a 12-dimensional manifold in the 14-dimensional
state–costate space. The extremals can be represented by 13
parameters, onemore than the dimension of themanifold because the
final time is free.

MFLP 2: Rigid-Body Model with Angular Velocity Control

For the rigid-body model, we restrict our analysis to the planar
case. The planar case is sufficient to explain the features introduced
by the attitude dynamics in the numerical solutions presented later,
and the analysis is simpler looking in the planar case.

The cost function to maximize is again that given in Eq. (8). We
account for the attitude dynamics, but not the cost of controlling
them. Boundary conditions are imposed on the pitch angle: "!0" $
"0 and "!tf" $ 0. The Hamiltonian is

H $ #xu( #hw( #u! sin "( #w!! cos " # g" ( #C!( #"!

(16)

The switching functions for the controls ! and ! are

H! $
@H

@!
$ #u sin "( #w cos "( #C H! $

@H

@!
$ #" (17)

and for the nonsingular case, the control laws for maximizing the
Hamiltonian are

!* $
!
!max if H! > 0
!min if H! < 0

"
!* $

!
!max if H! > 0
#!max if H! < 0

"

(18)

The costate equations are

_#x $ 0 _#h $ 0 _#u $##x _#w $##h
_#C $#H!!

*=!gEIsp" _#" $#!*!#u cos " # #w sin ""
(19)

At a switch time for either ! or !, the costate variables,H*,H*
!, and

H*
! are continuous.
IfH! $ 0 over a finite time interval, then the control ! is singular

on this interval. On an !-singular arc, we have the conditions

H! $ #" $ 0 H!1"
! $#!*!#u cos " # #w sin "" $ 0

H!2"
! $#!*&!##x cos "( #h sin "" # !#u cos " # #w sin ""k!*

( !!##u sin " # #w cos ""' $ 0

(20)

where the superscript !i" denotes the ith derivative with respect to
time. These are Lie derivatives, meaning derivatives of scalar
functions along the state–costate trajectories. The expression forH!2"

!

is valid except at the switching times. Thus the!-singular arc is first-
order. On the singular arc, ! is given by

Fig. 2 Example sketch of possible costate behavior and associated
switching structure for thrust acceleration magnitude.
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!$ !##x cos "( #h sin "" # !#u cos " # #w sin ""k!*

#u sin "( #w cos "
(21)

Also, the second of Eqs. (20) implies that the thrust direction is either
parallel or antiparallel to the direction of the primer vector !#u;#w"T .
The generalized Legendre–Clebsch condition

# @

@!
H!2"
! $#!*!#u sin "( #w cos "" % 0 (22)

implies that it is necessary that the thrust direction is parallel to the
primer vector in order that the singular arc be minimizing. Hence, on
an !-singular arc, the minimizing thrust direction is the direction of
the primer vector as it is for the point-mass model.

Next, we prove that !-singular arcs are not possible. Because
H! $ 0 on a !-singular arc, #C!t" is constant. On an !-singular arc,
the switching function for the thrust magnitude is H! $ #V ( #C,
where #V $ !#2

u ( #2
w"1=2, the same form, Eq. (15), it has for the

point-mass model. Therefore, the proof given earlier, showing that !
cannot be singular, is valid on a singular arc for the rigid-bodymodel.
Now consider an !-nonsingular arc. Differentiating

H*
! $ #u sin "( #w cos "( #C $ 0 (23)

along an extremal (taking a Lie derivative) yields

H*!1"
! $##x sin " # #h cos "( !#u cos " # #w sin ""!* $ 0 (24)

Differentiating again we obtain

H*!2"
! $ &#2!#x cos " # #h sin "" ( #C!

*'!* $ 0 (25)

except at switch times. Because !#x;#h" is constant and !* is
piecewise constant and nonzero, H*!2"

! $ 0 implies that " is
piecewise constant. But this contradicts _"$ !* ≠ 0. Thus, we can
rule out ! singular in the !-nonsingular case.

From a geometric perspective, the 12-dimensional state–costate
space for the planar rigid-body minimum-fuel problem is reduced to
an 11-dimensional manifold by the Hamiltonian integral, H* $ 0.
The singular manifold, composed of the state–costate points that
satisfy thefirst two ofEqs. (20), is a nine-dimensional submanifold of
the 11-dimensional manifold. On the singular manifold, !* and "*

are specified by the same control laws for the rigid-body problem as
they are for the point-mass problem. With the initial and final values
of "* free, the extremal solution for the rigid-body model will lie on
the singular manifold and be the same as that for the point-mass
model, provided that the bound j _"*j % !max imposed for the rigid-
body model is not exceeded. With boundary conditions on ", such
that the thrust is not in the direction of the primer vector at the initial
and final times, the extremal trajectory will begin and end off the
singular manifold. Whether it will lie on the singular manifold in
between depends on how fast the attitude dynamics are relative to the
point-mass dynamics and the degree of separation between the
boundary conditions. This is a qualitative characterization. In the
next section, we compare solutions for the point-mass model and the
rigid-body model illustrating that they can be similar or different,
depending on the boundary conditions.

Numerical Solutions for Minimum-Fuel Landing
Solution Method

Numerical solutions of the minimum-fuel landing problems are
obtained using the graphical environment for simulation and
optimization (GESOP) software.∗∗GESOP approximates an optimal
control problem by a parameter optimization problem, i.e., a
nonlinear programming (NLP) problem, and then solves the NLP
problem. Of the two options provided for approximating an optimal
control problem as an NLP problem, we chose the direct collocation
method, trajectory optimization by direct collocation.

The resulting approximation for the optimal control problem is an
NLP problem of the form

min J!q" (26)

subject to

ci!q" $ 0; i$ 1; . . . ; nec (27)

ci!q" % 0; i$ nec ( 1; . . . ; nc (28)

where q is the vector of parameters, ci, i$ 1; . . . ; nc are the
constraint functions, nc is the total number of the constraints, nec is
the number of equality constraints, and nc # nec is the number of
inequality constraints. GESOP provides sequential quadratic
programming based NLP-solvers; of these we chose SNOPT [18].

InGESOP, the integration error and the optimization tolerance can
be specified by the user. The optimization tolerance determines how
accurately the Karush–Kuhn–Tucker conditions are satisfied. We
used an optimization tolerance of 10#6. The integration error was set
at 10#8. The user also specifies the number and location of the nodes
for the discretization. We used 70 evenly spaced nodes from 0 to tf
initially to estimate where the switch times occur for the bang–bang
controls. Extra nodes were added around the switch times. Then
another optimization was run. The extra nodes improved the
accuracy of the switch times, but introduced artificial high-frequency
oscillations, especially in the angular velocity controls. Further
manual adjustment of some node positions and reoptimization
essentially eliminated the high-frequency oscillations.

Solutions
Solutions for two sets of initial conditions (see Table 2) are shown

in position space in Fig. 3 and in more detail in later figures. The
vehicle model is similar to those used in other studies [2,6] and is
representative of the MSL lander. For the numerical solutions, mass
rather than characteristic velocity is used as a state variable, and
throttle is used as the control rather than specific thrust magnitude.
The throttle setting % is allowed to vary between 0.3 and 0.8 and the
effective thrust used in the equations of motion is computed by

T $ %Ttotal cos! (29)

Table 2 Initial conditions for the two study cases

Case 1 Case 2

x0, m 1900 1900
y0, m 0 0
h0, m 3100 3100
u0, m=s 40 0
v0, m=s 0 40
w0, m=s #50 #50

0
1000

2000
3000

0

100

200

0

1000

2000

3000

x, my, m

h,
 m

Case 1
Case 2

Fig. 3 Position coordinates for the two study cases.∗∗http://www.gesop.de
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whereTtotal $ 16; 423 N is the combined thrust of all the engines and
!$ 0:4712 rad (equivalent to 27 deg) is the cant angle for the
engines. The initial mass of the vehicle is m!0" $mV (mF!0"
where mV $ 1505 kg and mF!0" $ 400 kg are, respectively, the
mass of the vehicle without propellant and the propellant mass. The
mass change equation is

_m$# 1

gEIsp
%Ttotal (30)

where Isp $ 225 s and gE $ 9:807 m=s2. The introduction of
multiple engines and the cant angle and using the throttle as the
control variable do not invalidate any of the results from the
preceding section; it was necessary to compare fuel consumption
numbers with those from other studies. ForMFLP 2 (rigid-body), the
pitch and yaw rates are constrained by #!max % ! % !max and
#$max % $ % $max. We use !max $ $max $ 10 deg =s.

To check the accuracy of the GESOP solutions, we compared the
analytical solution for the 1 degree-of-freedom minimum-fuel
vertical descent problem [14] to the numerical solution for MFLP 1
obtained via GESOP for the following initial conditions. The vehicle
starts directly over the landing site with zero horizontal velocity,
h0 $ 3100 m and w0 $#50 m=s. In the numerical solution, the
thrust is directed vertically upward always ["!t" , 0; !t" , 0] and
a min–max thrust profile is used. The numerical solution closely
agrees with the analytical solution as indicated by the following
comparisons for the switching time, final time, and propellant mass
consumption. The values of these variables are rounded to three
decimal points. We used 500 nodes to compute the numerical
solution. The switching times for the analytical and GESOP
solutions are 29.682 and 29.721 s, respectively (0.131% error).

Furthermore, the final times for the analytical and GESOP solutions
are 56.183 and 56.181 s, respectively (0.004% error). Finally, the
propellant mass consumptions are 213.135 and 213.126 kg,
respectively (0.004% error).

Case 1, Figs. 4 and 5

The vehicle is initially 1900 m downrange, 3100 m above the
surface, and heading away from the landing site. Examining the
solution for MFLP 1, there is no crossrange motion in the optimal
descent [y!t" , 0, v!t" , 0]. The optimal thrust profile is max–min–
max. The thrust always has a positive vertical component to manage
the descent rate, i.e., #90 deg<"!t"< 90 deg. Initially there is a
significant negative horizontal thrust component to reverse the
horizontal velocity component u from 40 to #40 m=s, so that the
vehicle is heading toward the landing site. During the period from
12–32 s, minimum thrust is used and the pitch angle transitions from
negative to positive values. The last phase of the trajectory is flown
with maximum thrust and positive pitch angle to bring the horizontal
velocity to zero by the time the vehicle reaches the landing site. For
MFLP 2, we compute the solutions for the same boundary conditions
used for MFLP 1, except for the addition of thrust direction
constraints "!0" $ #40,  !0" $ 0, "!tf" $ 0, and  !tf" $ 0 deg.
There are maximum rate pitchmaneuvers to transition from the pitch
angle boundary condition to the pitch angle for the primer vector and
vice versa. Because the boundary layers for MFLP 2 are brief, the
solution is similar to that ofMFLP 1. Themost noticeable differences
are the switch times for the throttle. The propellant mass consumed
"m is 263.4 kg for MFLP 1. Accounting for the angle boundary
conditions, attitude dynamics, and angular velocity constraints in
MFLP 2 only increased the fuel required by 1.20% (i.e., the fuel
consumption is 3.16 kg greater for MFLP 2).
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Fig. 4 Solutions for MFLP 1 (solid line) and MFLP 2 (dashed line) for case 1: vehicle initially heading 180 deg away from site (essentially a two-
dimensional problem) with !40 deg initial pitch angle.
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For Case 1, we have increased the angular rate limit to 20 deg =s
and have seen that the boundary layers are shorter in duration and the
singular arc solution matches more closely the point-mass solution.
With a 10 deg =s limit, the differences in the! switch times (relative
to the solution forMFLP 1) are less than 1 s; for a 20 deg =s limit, the
delays are less than 0.5 s. We note that the node spacing for the
numerical solutions is 0.15 s, so that even in the unconstrained case it
takes this much time to switch between thrust limits.

The solutions portrayed in Fig. 5 are for the same problems
considered for Fig. 4 except that, for MFLP 2, the initial pitch angle,
"!0" $ 60 deg, is considerably farther from the pitch angle (#70 deg)
for the primer vector. Because the thrust is initially in an ineffective
direction, minimum throttle is used until the thrust vector is rotated to
closer alignment with the primer vector. The horizontal distance
from the landing site increases beyond what was seen in Fig. 4 while
the pitch angle is adjusted. The overall throttle profile is thus min–
max–min–max and the max to min and second min to max switch
times are significantly different. The flight time is 10 s longer. The
fuel consumption is 15.73% greater for the MFLP 2 problem. Thus,
Figs. 4 and 5 illustrate that the solutions for the point-mass and rigid-
body models can be very similar or very different, depending on the
boundary conditions for the pitch angle relative to the primer vector
pitch angle. A nonzero initial condition for would similarly require
an initial boundary-layer yawmaneuver to transition to the yawangle
for the primer vector, which is identically zero for this case.

Case 2, Fig. 6

The vehicle is initially heading in the crossrange direction, making
this a three-dimensional case. For MFLP 1, a nonzero yaw
component of thrust is used to drive the crossrange velocity
component to zero over the course of the trajectory. The optimal

throttle profile is max–min–max. For MFLP 2, there are initial and
final boundary-layer transitions to and from the singular manifold to
satisfy the boundary conditions on " and  , which are "!0" $ #40,
 !0" $ #20, "!tf" $ 0, and  !tf" $ 0 deg. Because the boundary
layers are brief, most of the solution is an!-singular arc andmatches
closely the solution forMFLP 1. The propellant mass consumed"m
is 241.45 kg for MFLP 1. Adding the constraints of MFLP 2 only
increased the fuel required by 0.80% (i.e., the fuel consumption is
1.93 kg greater for MFLP 2). With larger initial " and offsets from
the values consistent with the primer vector, there would be larger
differences in the solutions for MFLP 1 and MFLP 2.

Conclusions
Motivated by the requirement for pinpoint landing in future Mars

missions, we considered the problem of minimum-fuel powered
terminal descent to a prescribed landing site. The first-order
necessary conditions were derived and interpreted for a point-mass
model with throttle and thrust angle control and for a rigid-body
model with throttle and angular velocity control, clarifying the
characteristics of the minimum-fuel solution in each case. The
optimal thrust magnitude profile is bang–bang for both models; for
the point-mass, the most general thrust magnitude profile has a max–
min–max structure. The optimal thrust direction law for the point-
mass model (alignment with the primer vector) corresponds to a
singular solution for the rigid-body model. Whether the point-mass
solution accurately approximates the rigid-body solution depends on
the thrust direction boundary conditions imposed for the rigid-body
model. Minimum-fuel solutions, obtained numerically, illustrated
the optimal strategies.
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Fig. 5 Solutions for MFLP 1 (solid line) and MFLP 2 (dashed line) for case 1: vehicle initially heading 180 deg away from site (essentially a two-
dimensional problem) with an initial pitch angle of 60 deg.
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Fig. 6 Solutions for MFLP 1 (solid line) and MFLP 2 (dashed line) for case 2: vehicle initially heading 90 deg away from direction of site (a three-
dimensional problem) with initial pitch and yaw angles of !40 and !20 deg, respectively.
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