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Abstract. Let a(n) be the minimum number of ideal hyperbolic tetrahedra necessary 
to construct a finite volume n-cusped hyperbolic 3-manifold, orientable or not. Let 
~ror(n) be the corresponding number when we restrict ourselves to orientable mani- 
folds. The correct values of a(n) and aor(n ) and the corresponding manifolds are given 
for n = 1, 2, 3, 4, and 5. We then show that 2n - 1 < a(n) < tror(n ) < 4n - 4 for n _ 5 
and that Oor(n ) >_ 2n for all n. 

1. Introduction 

An ideal t e t rahedron  in hyperbol ic  3-space is a t e t r ahedron  with its four vertices all 
lying on the b o u n d a r y  of H 3, its edges being geodesics and  its faces lying in geodesic 
planes. Such a t e t r ahedron  has the sum of its d ihedra l  angles a r o u n d  an ideal  vertex 
equal  to 180 ~ and its oppos i te  d ihedra l  angles equal.  In  [11], Thur s ton  proves  that  
a noncompac t  finite volume hyperbol ic  3-manifold can a lways  be de c ompose d  into 
a finite set of  ideal hyperbol ic  te t rahedra .  The least  number  of ideal  t e t r ahedra  that  
such a manifold  can be decomposed  into is an invar iant  for the manifold.  

Each finite volume hyperbol ic  3-manifold M has a fixed finite number  of cusps, 
which is nonzero  if and  only if M is n o n c o m p a c t  (see Cha p t e r  5 of [9]). We  are 
interested in de te rmining  the min imum number  of ideal  t e t r ahedra  necessary to 
construct  a finite volume hyperbol ic  3-manifold of n cusps. O u r  interest  in this 
quest ion is genera ted  by the re la t ionship  between the hyperbol ic  volume of  a 
manifold  and the min imum number  of  t e t r ahedra  in an  ideal  t r i angula t ion  of M. 
Specifically, in [-4], a lower b o u n d  on the number  of ideal  t e t r ahedra  decompos ing  
an n-cusped hyperbol ic  3-manifold was used to show that  the volume of an n- 
cusped hyperbol ic  3-manifold  is str ictly greater  than  n(1.01494. . .  ), for n > 3. 

* Both authors were supported by NSF Grants DMS-8711495, DMS-8802266 and Williams College 
Research Funds. 



136 c. Adams and W. Sherman 

Moreover, although the minimum number of ideal tetrahedra in a decomposi- 
tion of a hyperbolic 3-manifold of small volume need not be small, Thurston has 
proved that there exists a constant fl such that if M is a hyperbolic manifold of 
volume v, M comes from Dehn filling a manifold which decomposes into less than 
fly ideal tetrahedra (cf. [-12]). Hence, an understanding of hyperbolic manifolds 
obtained from few ideal tetrahedra may yield an understanding of the set of all 
hyperbolic manifolds of low volume. 

Throughout  what follows, we assume that all of the ideal hyperbolic tetrahedra 
involved have positive volume. Although a given ideal triangulation of a hyper- 
bolic 3-manifold may be realized by tetrahedra which fold back on one another, 
giving us some tetrahedra with negative volumes, it is true that there always exists 
an ideal tetrahedralization with all tetrahedra having positive volume. Such a 
triangulation can be obtained by triangulating a fundamental domain which is 
dual to the classical Ford domain. See [6] for more details. 

Let tr(n) be the minimum number of ideal tetrahedra necessary to construct a 
connected n-cusped hyperbolic 3-manifold, orientable or not. Let trot(n) be the 
minimum number of ideal tetrahedra necessary to construct a connected orientable 
n-cusped hyperbolic 3-manifold. 

The correct values of tr(n) and aor(n ) and examples of corresponding manifolds 
are given for n = 1, 2, 3, 4, and 5 in Tables 1 and 2 shown in Section 6. Additionally, 
the best-known upper bounds on aor(n) for n = 6, 7, 8, and 9 are given. In the 
following section we discuss the results indicated in these two tables. 

In Section 3 we point out that the manifolds corresponding to n = 2, 3, 4, and 5 
in the orientable case and n = 3 in the nonorientable case are all obtainable from 
the manifolds corresponding to one fewer cusp by the same type of geometric 
operation. Section 4 contains a proof of the fact that 2n - 1 < tr(n) < tror(n ) < 
4n - 4 for n > 5 and that tror(n ) >_ 2n for all n, along with the proof of the particular 
results for n = 1, 2, 3, 4, and 5. Section 5 then proves uniqueness of the 
corresponding manifolds in the nonorientable cases for n = 3 and 4. Section 6 
describes the tables. 

Recently, a census of all cusped hyperbolic manifolds which can be obtained 
from five or fewer ideal tetrahedra has been completed by Weeks and Hildebrand 
(see [7]). Their results give an independent verification of our results for n = 1 and 
2 in the orientable case and n = 1, 2, and 3 in the nonorientable case. 

We expect that the lower bounds on ao~(n) and tr(n) can be improved upon, with 
a better understanding of the combinatorics involved. It remains to determine their 
actual values for n > 6. In particular, it might be asked if trod(n) = tr(n) for n > 5. 
Additionally, it would be of interest to know which of the above results hold if ideal 
tetrahedra with nonpositive volume are allowed. 

In finding the results in this paper, we were looking for n-cusped manifolds 
which could be cut up into the fewest possible ideal tetrahedra. In another recent 
paper  [13], Thurston et al. were looking for ideal hyperbolic polyhedra which must 
be cut up into the largest possible number  of ideal tetrahedra. They show that, for 
sufficiently large m, it takes at least 2m - 10 ideal tetrahedra in order to be able to 
cut up particular given ideal hyperbolic polyhedra with m ideal vertices. This has 
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interesting applications to binary trees. In their result, it is not assumed that the 
tetrahedra have positive volume. 

We wish to thank the Topology Undergraduate Research Group  at Williams 
College, which included Manuel Alfaro, Mark Conger, Michael Gray, Karen von 
Haam, and Michael McDougall  for their help in confirming and tabulating our 
results. 

2. Small Numbers of Cusps 

Restricting ourselves to one cusp, we find a(1) --- 1, with the unique corresponding 
manifold being the Gieseking manifold. It is not hard to check that this is the only 
hyperbolic manifold obtained by gluing faces on a single ideal hyperbolic tetrahed- 
ron. This manifold is also the unique noncompact  hyperbolic manifold of mini- 
mum volume. For more details on this manifold, see [3]. 

For two cusps, we have tr(2)= 2, the corresponding manifold again being 
unique. A proof of uniqueness can be obtained by attempting all the possible 
gluings. The two possible gluings that are produced can be shown to yield the same 
manifold. This manifold is a nonorientable manifold with two nonorientable cusps 
and is the unique 2-cusped hyperbolic manifold of minimum volume (see [4]). 

For three cusps, tr(3) = 4. The corresponding manifold is obtained from a single 
ideal octahedron, with all dihedral angles equal to n/2. It is nonorientable with two 
nonorientable cusps and one orientable cusp. A proof of its uniqueness appears in 
Section 5. 

In the case of four cusps, we have tr(4) = 6. This is a nonorientable manifold 
obtained from six regular tetrahedra with all four cusps nonorientable. A proof of 
its uniqueness also appears in Section 5. 

For five cusps, a(5) = 10. This corresponds to an orientable manifold, a picture 
of which occurs in Table 1. There are at least two nonorientable manifolds with five 
cusps which can also be constructed with ten tetrahedra, one with three nonorient- 
able cusps and one with four nonorientable cusps. 

Each of the manifolds above, for n = 2, 3, 4, and 5, share their volume with a 
manifold of one fewer cusp. For n > 5, the correct value of a(n) is not known. 

We now restrict ourselves to orientable manifolds. For  one cusp, aor(1) = 2. 
There are two manifolds with this number of tetrahedra, the figure-eight knot 
complement, and its sibling manifold, which is obtained by a (5, 1) surgery on one 
component of the Whitehead link. Both of these manifolds are obtained by gluing 
together the faces of two ideal regular tetrahedra. Note that the smallest known 
closed orientable hyperbolic manifold comes from surgery on this sibling of the 
figure-eight knot  complement (see 1-14]). By checking all possible gluings on two 
tetrahedra, we can prove these are the only two possibilities. 

For two cusps, aor(2 ) = 4. Both the Whitehead link complement and the 62 link 
complement can be decomposed into four ideal tetrahedra. The census of [7] 
shows that in fact there are exactly two other orientable manifolds which have two 
cusps and which decompose into four ideal tetrahedra. 



138 C. Adams and W. Sherman 

In the case of three cusps, aor(3)= 6. An example of a link complement 
corresponding to this appears in Table 2. 

For four cusps, trot(4 ) = 8. A corresponding link complement which appears in 
Table 2 double covers the corresponding nonorientable 2-cusped manifold. 

In the case of five cusps, aor(5 ) = 10 since the previous 5-cusped manifold which 
demonstrated that a(5) = 10 was an orientable manifold. 

Note that each of the orientable examples contains incompressible twice- 
punctured disks. Hence, by cutting these link complements open along a twice- 
punctured disk, twisting a full twist, and then reidentifying, we obtain distinct links 
but with homeomorphic complements. In fact, if we reidentify the two copies of the 
twice-punctured disk by any homeomorphism of the twice-punctured disk, we 
obtain a hyperbolic manifold with the same volume as the original (see [1]). In 
these examples, such a reidentification does not destroy the triangulation and 
hence the manifolds giving the correct answers for aor(n) when n = 1, 2, 3, 4, and 5 
are not unique. 

When n > 6, the correct values for ao~(n ) are still unknown. Table 2 gives the 
conjectured answer of 16 for n = 6. When n = 7 and 9, the conjectured answers are 
20 and 30, respectively, the corresponding manifolds being obtained by taking a 
twofold cover and a threefold cover of the 5-cusped example. 

The best known example for n = 8 is obtained by gluing the 5-cusped example 
to the 6-cusped example along a twice-punctured disk in each. 

When n > 10, the best known upper bound, ao~(n) < 4(n - 1), is provided by the 
cyclic cover of one component  of the Whitehead link complement (see Theorem 
4.1). 

3. Drilling 

Let M be an n-cusped hyperbolic 3-manifold that is obtained from an ideal 
polyhedron P when pairs of faces on P are identified. Let A and A' be a pair of 
triangular faces or a pair of quadrilateral faces on P which are to be identified and 
which share exactly one vertex v. Assume further that there are exactly two other 
faces B and C which also share the vertex v. 

Theorem 3.1. I f  there exists an ideal triangulation of  P with r tetrahedra such that 
the edges which are added to B and C do not go to v and in the case A and A' are 
quadrilaterals, the edges added to A and A' do go to v, then M comes from Dehn filling 
one cusp of  an (n + 1)-cusped manifold which has a triangulation with r + 2 ideal 
tetrahedra. 

Proof. Add an ideal vertex to the center of A. Connect this central vertex to each 
of the vertices on the boundary of A by an edge. Do the same for A'. Let e and e' be 
the new edges on A and A' which run from the center of each face to v. Connect the 
two central vertices of A and A' by an unknotted edge f running through the 
interior of P. Let D be the disk in P which is bounded by e, e', and f. We then 
collapse D down to a single edge as we shrink f to a point which becomes a new 
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ideal vertex. In the process, we identify e to e'. Call the resultant edge e". If we add 
the edges to B and C corresponding to the tetrahedralization of P, we have one 
triangle from each sharing the vertex v. Hence there are two tetrahedra sharing the 
edge e". Cut the two tetrahedra off P and call the resulting polyhedron P'. Then P' 
is combinatorially equivalent to P and hence can be cut up into r ideal tetrahedra. 
Thus, M' can be obtained from r + 2 ideal tetrahedra. [] 

Note that if the gluing of A to A' is orientation-preserving, we are removing a 
solid torus from M to obtain M'. If the gluing is orientation-reversing, we are 
removing a solid Klein bottle. 

The manifold M' is not necessarily hyperbolic. In particular, if the map 
identifying A to A' fixes the vertex v, M will not be hyperbolic, since the new cusp 
together with the cusp corresponding to v will contain the boundary of an 
incompressible annulus. 

However, in many cases, the manifold M' will be hyperbolic. In particular, this 
procedure yields a minimally triangulated orientable hyperbolic (n + 1)-cusped 
manifold from a minimally triangulated orientable hyperbolic n-cusped manifold 
for n = 1, 2, 3, and 4. For these values of n, the resulting manifold M'  can be seen to 
be hyperbolic since, in each case, it is homeomorphic to an augmented alternating 
link complement, all of which are hyperbolic (see [2]). 

The same type of drilling operation on a pair of triangular faces sharing an edge 
produces the minimally triangulated nonorientable hyperbolic manifold of three 
cusps from the corresponding nonorientable manifold of two cusps, however, no 
such drilling operation works to go from the minimally triangulated nonorientable 
hyperbolic manifold of n + 1 cusps for n = 1, 3, or 4. 

4. Bounds 

Theorem 4.1. For all n >_ 2, aor(n) < 4n - 4. 

Proof We have already seen examples of manifolds which make this theorem true 
for n = 2. Hence, assume n > 3. Let L be a link obtained by taking an (n - 1)-fold 
cyclic cover over one component  of the Whitehead link. Then L has n components 
and its complement is obtained from n - 1 ideal octahedra. Thus, S 3 - L decom- 
poses into 4n - 4 ideal tetrahedra. [] 

We precede Theorem 4.6, which gives lower bounds for a(n) and aor(n), by some 
notation for ideal triangulations and several lemmas which may be useful in further 
investigations. Assume M is an n-cusped hyperbolic 3-manifold which decomposes 
into m ideal tetrahedra. Then, by Euler characteristic considerations, the number of 
edge types in the decomposition is also m. 

We separate the ideal tetrahedra making up our manifold M into five types. 
Type I tetrahedra have all four vertices corresponding to distinct cusps. Type II  
tetrahedra have their four vertices corresponding to only three distinct cusps. Type 
III  tetrahedra have three vertices corresponding to one cusp and the fourth vertex 



140 C. Adams and W. Sherman 

corresponding to a distinct cusp. Type IV tetrahedra have two vertices correspond- 
ing to one cusp and the remaining two vertices corresponding to a distinct cusp. 
Type V tetrahedra have all vertices corresponding to the same cusp. We denote 
cusps by capital letters and tetrahedra by the set of four capital letters coming from 
the cusps that correspond to their four vertices. 

Lemma 4.2. I f  M is orientable, a type II tetrahedron in the decomposition of M will 
have at least five distinct edge types on it. 

Proof If not, there must be exactly four distinct edge types on such a tetrahedron 
T. By the labeling of the vertices on T, the two faces which each have a pair of edges 
identified would form a thrice-punctured sphere in M. If any of the three loops 
circling the punctures of the thrice-punctured sphere were trivial in the fundamen- 
tal group of M, this tetrahedron would collapse to a triangle, contradicting the fact 
we are assuming all tetrahedra have positive volume. Hence, the thrice-punctured 
sphere is incompressible and must lift to a subset of H 3 with limit points on a circle 
in the sphere at ~ by the results of [1]. However, in order that the four ideal 
vertices of the tetrahedron lie on a circle, the tetrahedron must be flat, that is, have 
a dihedral angle of 180 ~ This again contradicts our assumption that all the 
tetrahedra have positive volume. [] 

Note that if M is not orientable, there is no such restriction on type II 
tetrahedra. See the 3-cusped manifold constructed from four ideal tetrahedra in 
Table 1 of Section 6, for instance. 

Lemma 4.3. I f  M is orientable, there cannot exist two type I I I  tetrahedra, denoted 
GBBB and HBBB, which share their BBB faces and which have only one GB edge 
type and one HB edge type. 

Proof If such a situation did occur, any one of the GBB faces together with the 
HBB face which shares the BB edge with it would form a thrice-punctured sphere 
in M. Again, the thrice-punctured sphere would have to be incompressible and, as 
above, the dihedral angle between the two faces would have to be 180 ~ . Since this 
would occur for all three GBB faces, we would have 540 ~ of BB edge type on these 
two tetrahedra. But since the BB edges on these two tetrahedra should add up to 
360 ~ 180 ~ at the base of each of the two tetrahedra, this is a contradiction. [] 

[ ,emma 4.4. In a minimum ideal triangulation of a 3-manifold M, there cannot exist 
an edge type which appears once on each of  exactly three tetrahedra. 

Proof If  such an edge type existed, we could glue the three tetrahedra together 
around it and then drop it as an edge type, replacing the three tetrahedra by two 
tetrahedra which share a single face dual to the edge. This would contradict the 
minimality of the triangulation. [] 

Lemma 4.5. I f  M is a 5-cusped hyperbolic 3-manifold and M is constructed out of 
type I tetrahedra, then there are at least ten tetrahedra. 
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P r o o f  If the number of edge types were less than ten, then there exists two cusps 
D and E which are not connected by an edge. Hence, D and E can never occur on 
the same tetrahedron. Each cusp occurs on a type I tetrahedron and therefore 
occurs on at least three distinct edge types. Since the Euler characteristic of the 
boundary of a neighborhood of each vertex is 0, each of D and E must occur on at 
least six tetrahedra. Hence, there are at least 12 tetrahedra, contradicting our 
assumption that there were less than ten. []  

Theorem 4.6. For n = 1, we have a(1) = 1. l f  n = 2, 3, or 4, ~r(n) = 2n - 2. I f  n > 5, 
then a(n) > 2n - 1. For  all positive values o f  n, aor(n) > 2n. 

P r o o f  Since there is only one manifold obtainable from a single ideal hyperbolic 
tetrahedron by attempting all the possible ways to glue faces and since there is a 2- 
cusped hyperbolic manifold obtained from two tetrahedra, we have cr(1) = 1 and 
cr(2) = 2. Hence, we restrict ourselves to n > 3 for the following. 

Assume M is an n-cusped hyperbolic 3-manifold which has been decomposed 
into m ideal tetrahedra. We build a polyhedron by attaching the tetrahedra, one at 
a time, and we count edge types whenever a new cusp appears. 

Assume first that there exists at least one type I tetrahedron. Then there are six 
distinct edge types on this tetrahedron interconnecting four cusps. Glue onto this 
tetrahedron all tetrahedra that do not involve new cusps. Then glue on any type I 
tetrahedron that does involve a new cusp. This will increase the number of edge 
types which have appeared on or in the resulting polyhedron by three. Continuing 
in this manner, we obtain 3(k - 2) edge types for each of the k new cusps appearing 
on a type I tetrahedron that we glue on. 

Assume now that there exists a type II tetrahedron with one vertex correspond- 
ing to a cusp which has not yet appeared and we can glue this tetrahedron onto the 
current polyhedron P. There are at least four distinct edge types on a type II 
tetrahedron because of the three distinct cusps. Of these four edge types, we have 
already counted at most one. Hence, at this point we have 3(k - 2) + 3 edge types 
coming from k + 1 cusps. Note that Lemma 4.2 implies that if M is orientable, we 
in fact have one more edge type than this at this point. 

After gluing on all tetrahedra which do not involve new cusps and repeating the 
previous steps for any type I tetrahedra that we can now glue on, we glue on an 
additional type II tetrahedron involving a new cusp. This tetrahedron will have 
two new edge types involving the new cusp. Hence, after repeating this procedure 
for all type II tetrahedra that we can glue on, we have 3(k - 2) + 2r + 1 edge types, 
where k is the number of new cusps first appearing on type I tetrahedra and r is the 
number of new cusps first appearing on type II tetrahedra. If M is orientable, we 
have at least one more edge type than this. 

Assume now we have a new cusp coming from a type III tetrahedron. Call the 
new cusp G and the single cusp that the other three vertices are associated to, B. 
There is at least one G B  edge type. 

Rather than counting the edge types of B B  edges, we count up the total angle 
around B B  edges, where each 360 ~ of B B  angle is considered equivalent to the 
existence of a B B  edge type. The type III tetrahedron must be attached to P along 
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the BBB face. Since the edges on the face of  P that we glue it to were not associated 
to any other cusp previously, we have a full 360 ~ of  edge type BB. Hence, we can 
associate a BB edge type and a GB edge type to G. Note  that we have already 
counted at most  one BB edge type when we were dealing with the type II 
tetrahedra. This single previously counted BB edge type, if it exists, will add some 
extra angle into our  BB angle sum and thus can remain a separate edge type. In this 
manner,  we obtain at least two additional edge types from each of the s new cusps 
coming from type I I I  tetrahedra. 

Note  that  if a type I, II, or I II  te t rahedron is present in the triangulation, then a 
new cusp can never occur on a type IV or  type V tetrahedron. If only type IV or 
type V tetrahedra are present, we can have at most  two cusps, hence we ignore this 
situation. 

Thus, we have at least 3(k - 2) + 2r + 2s + 1 edge types, if k and r are nonzero, 
where k + r + s - - n .  But if k > 0 ,  then k > 4 ,  and we have at least 2 n - 1  
tetrahedra in this case, 2n if we assume M ~ orientable. 

If both r and s are 0, then we have at least 3(k - 2) tetrahedra, which, for k > 5, 
yields at least 2n - 1 tetrahedra. Note  that when n = k = 4, there is a 4-cusped 
manifold obtained from 2n - 2 type I tetrahedra. 

In the orientable case, when r = s = 0, we know that, for k _> 6, 3(k - 2) > 2k as 
desired, and, for k = 5, we can appeal to Lemma 4.5. Thus, since k > 4, we need 
only check that when k = 4 there must  be eight tetrahedra. If there were six 
tetrahedra, there would be six edge types. All of the tetrahedra would be of the form 
ABCD and so all the edge types on a given te t rahedron would have to be distinct. 
Take two tetrahedra sharing an ABC face and glue them together along this face. 
The two ABD faces, one from each tetrahedron, cannot  be glued together as that 
would form an edge type of order two. Therefore, they will together form an 
incompressible thrice-punctured sphere in M. As mentioned previously, this forces 
the two faces to have dihedral angle 180 ~ Similarly for the pair of ACD faces and 
the pair of BCD faces. But this is not  possible for two tetrahedra. 

Again in the case k = 4, if there are seven tetrahedra, we have seven edge types, 
meaning there are, without  loss of generality, two AB edge types. Each tetrahedron 
has exactly one of  these two AB edge types on it. Hence, there exists a te t rahedron 
that is glued to a second te t rahedron that has the same AB edge type. Exactly as for 
the six tetrahedral case, this implies the existence of  several incompressible thrice- 
punctured spheres from pairs of faces on the two tetrahedra and hence a 
contradiction. 

I fk  :~ 0 and s r 0, but  r = 0, then there must  have been some type III  tetrahedra 
which did not  involve new cusps in order  to get f rom the type I tetrahedra to the 
type I I I  tetrahedra. As above, this forces the existence of at least one extra edge type 
if M is nonorientable and two extra edge types if M is orientable. Hence, we have 
3(k - 2) + 2s + 1 edge types which again yields at least 2n - 1 tetrahedra in the 
nonorientable case and 2n tetrahedra in the orientable case. 

If  k = 0, but  r r 0, then we start with a type II tetrahedron, say ABBC. This has 
three cusps and four (or five in the orientable case) distinct edge types. Since there 
are no type I tetrahedra, the ABC faces on this te t rahedron must  glue to type II 
tetrahedra, where the fourth vertex in each case is A, B, or  C. If in either case the 
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fourth vertex is A or C, we pick up an extra AA or CC edge type without increasing 
the number of cusps counted so far. Since all the remaining cusps will contribute at 
least two edge types, we would have a total of 2n - 1 or 2n edge types in the general 
and orientable cases, respectively. 

Assume the fourth vertex in each case is B. There is a remaining ABC face on 
each of the new tetrahedra. Again, only in the case that the fourth vertex of each of 
the tetrahedra gluing to these ABC faces are B vertices do we not have an extra 
edge class. Continuing in this manner, we either obtain an extra edge class or we 
have a set of ABBC tetrahedra which glue around the AC edge. In this last case, 
there must be at least four tetrahedra around this AC edge by Lemma 4.4. The BB 
edges opposite this central AC edge will have angle sum equal to the sum of their 
opposite angles, that is, 360 ~ The AB and BC edges on this wheel will each have 
angles summing to at least 360 ~ . Assuming we have more than three cusps, the next 
type II tetrahedron which is glued onto the wheel will force the existence of either a 
second AB or BC edge class, and the existence of a second BB edge class. If there is 
no other type II tetrahedron, the next type III tetrahedron that we glue on will 
force the existence of an extra AB or BC edge type. Each new cusp after this point 
will add at least two edge types, and thus we end up, whenever n _> 4, with at least 
2n - 1 tetrahedra. In the case that we have exactly three cusps, the example of a 
3-cusped manifold obtained from four tetrahedra is realized by four type II 
tetrahedra. 

In the orientable case, each of the original tetrahedra around the AC edge has 
five distinct edge types. If each of these tetrahedra does not have the same set of five 
edge types, we have at least six edge types from these three cusps and at least two 
edge types from each of the remaining cusps, yielding the requisite 2n edge types. 
Hence, we can assume all these tetrahedra have the same five edge types (again, 
counting angles in the case of the BB edge type, not actual edge types). Without loss 
of generality, we can assume there is only one BC edge type among these five and 
two AB edge types. If there were another AB or BC edge type in the manifold, we 
could count that and be done, since it would never be associated to any subsequent 
cusps. In order that there be only one BC edge type in the manifold, there must be 
exactly four tetrahedra in this wheel, by angle counting. The BBC faces on the 
wheel glue together in pairs. As above, we can assume there are no other type II 
tetrahedra. Similarly, there are no type IV or type V tetrahedra. In order for the 
angles to work out so that there are exactly two AB edge types, there must be 
exactly two ABBB tetrahedra. This gives us an extra BB edge type. But then we 
have 2n edge types unless there is an additional new cusp D occurring for the first 
time on a type lII tetrahedron which is associated to this new BB edge type. 
However, D must occur on at least two DBBB tetrahedra and, hence, there are too 
many BB edge types. 

Finally, if k = 0 and r = 0, we start with a type III tetrahedron GBBB. There 
must be at least one other GBBB tetrahedron since the number of GBB faces on a 
GBBB tetrahedron is odd while the number of GBB faces on a GGBB tetrahedron 
is even. Hence, we have at least two edge types to associated to G, 360 ~ of GB edge 
type and 360 ~ of BB edge type. If there is a third GBBB tetrahedron, there must be 
at least a fourth to match up the GBBB faces, giving us two extra edge types. If 
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there are any GGBB tetrahedra in addition, we also have two more edge types, a 
GG edge type and a second GB edge type. Since there are no type II tetrahedra, any 
cusp other than B which appears three times on a tetrahedron must also appear 
once on some tetrahedron. As we argued for G, such a cusp has at least two 
associated edges. Hence, every cusp with the possible exception of B has at least 
two associated edges and we have at least 2n - 2 tetrahedra. If there are any other 
type III or type IV tetrahedra, we pick up at least two additional edge types and 
have 2n tetrahedra. Thus, the only way to have less than 2n tetrahedra is if every 
cusp J other than B appears on exactly two JBBB tetrahedra with the possibility of 
the existence of one BBBB tetrahedron. 

Assume that in fact we do have exactly 2n - 2 tetrahedra forming a manifold as 
above. For each cusp J other than B, connect the two JBBB tetrahedra along a 
JBB face, and call the resulting object a "pyramid," with the two BBB faces 
forming its base. Only the BBB faces glue to other pyramids. In fact, the manifold 
must consist of n - 1 pyramids arranged in a cycle, meeting along BBB faces. Now, 
we require the existence of exactly n - 1 BB edge types, since we have GB, HB, and 
so on, making n - 1 edge types, and we must have a total of 2n - 2 edge types. The 
total number of BB edges on the tetrahedra is 6n - 6 and therefore there is an 
average of six BB edges in each BB edge class. 

Consider our G pyramid. The BB edge types in the neighboring pyramids 
propagate themselves through our pyramid by the way the BBB faces on these 
pyramids are glued to the BBB faces on the G pyramid and by how the GBBB faces 
on the G pyramid are glued. The G pyramid has one BB edge crossing the base 
diagonally, and four BB edges on the exposed GBB faces, which are identified in 
pairs. Thus there are at most three BB edge types with components in our pyramid 
(this applies, of course, to all pyramids). We call a BB edge type which appears on 
all the tetrahedra at least once a traverser. Note that there are therefore at most 
three traversers. Each traverser edge type must have at least 2n - 2 components. 

We call a BB edge type which is not a traverser a reverser, since an edge type can 
avoid traversing the cycle of pyramids only by reversing direction at least twice as it 
travels in the cycle of pyramids. That is, if the two exposed GBB faces on a single 
tetrahedron in the G pyramid glue to each other, then one BB edge type from the 
neighboring pyramid on that side will not propagate onto the neighboring pyramid 
on the far side of the G pyramid, but will instead return to the neighboring pyramid 
whence it came. Hence, in order that an edge type be a reverser, and not exist on 
every tetrahedron in the cycle, it must turn around twice via two self-gluing 
tetrahedra (one at each U-turn). The two self-gluing tetrahedra cannot share a BBB 
face: if they did, there would be less than 180 ~ of this reverse edge type on each 
tetrahedron and hence a total of less than the requisite 360 ~ of this edge type. 
Hence, there must be at least one pyramid between these self-gluing tetrahedra in 
the cycle of pyramids. Thus, each reverser edge type contains at least eight 
components. 

For n _> 5, 2n - 2 > 8. Hence the number of components in either a traverser or 
reverser edge class is at least eight, making it impossible to reach the average of six 
components per BB edge class. When n = 4, 2 n -  2 = 6 and hence we can 
construct a 4-eusped manifold out of six tetrahedra with three traverser edge types 
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and no reverser edge types. Thus, the only cases in which we can have 2n - 2 
tetrahedra is with the 4-cusped 6-tetrahedral manifold, or with fewer cusps. 
Excepting those cases, we have our 2n - 1 bound. 

In the case that the manifold is orientable, assume we have 2n - 2 (still possible 
for n = 2, 3, or 4) or 2n - 1 tetrahedra. A BBB face on the bottom of a pyramid 
cannot be glued to the BBB face of any other pyramid by Lemma 4.3. Assuming 
more than two cusps, the pair of BBB faces on the bottom of a single pyramid 
cannot be identified to each other as that would disconnect the manifold. Hence, 
for more than two cusps, the manifold must consist of one type V BBBB 
tetrahedron, and n - 1 pyramids. 

All of the BBB faces on the bottoms of pyramids must glue to the BBBB 
tetrahedron. This means there can be at most two pyramids and a total of three 
cusps. Therefore, we have at least 2n edge types for n > 4. In the case n = 2 or 3, we 
have to examine the possible gluings individually. 

For n = 2, we could have either a single pyramid or we could have one pyramid 
and one BBBB tetrahedron. The possible gluings are dictated by the orientability, 
the symmetry, and the arrangement of the cusps at the vertices. We can easily check 
that no gluing yields the requisite number of edge types. 

For n = 3, we have two pyramids and one BBBB tetrahedron. There must be a 
total of three BB edge types. Again, there are no gluings which yield this number of 
edge types. []  

Theorem 4.7. For n = 5, we have a(5) = 10. 

Proof The preceding theorem implies that we need only eliminate the possibility 
of a 5-cusped manifold constructed from nine tetrahedra. A careful and extended 
analysis of the dual graphs corresponding to the possible gluings is required to 
prove that no such gluing can succeed. Details appear in [8]. []  

5. Unguents 

Theorem 5.1. There exists a unique 3-cusped hyperbolic 3-manifold composed of 
four ideal tetrahedra. 

Proof Denote the three cusps by A, B, and C. Assume that there is a type II 
tetrahedron ABCC. Then the four edges AB, AC, BC, and CC are all the possible 
edges, since the number of edges equals the number of tetrahedra by an Euler 
characteristic argument. Furthermore, any tetrahedron with an AB edge must be 
an ABCC tetrahedron in order to prevent the introduction of additional edge 
types. By Lemma 4.4, there must be at least four tetrahdra of this type. 

We can assemble these four tetrahedra around the CC edge, obtaining an 
octahedron P such that each pair of antipodal vertices correspond to a cusp which 
is different from the cusps corresponding to any other antipodal pair. If a pair of 
faces on P sharing an edge were both glued to their opposite faces, we would obtain 
too many edge types in M. Hence, at most one pair of opposite faces are glued 
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together. For  the same reason, no face may glue to any of its neighbors. With these 
restrictions, in fact, no face may glue to its opposite face. 

Pick two faces which share a vertex v but not an edge. Without loss of generality, 
we can assume that they will be glued to one another. The cusp labeling on their 
vertices completely determine their gluing. Their identification and our restrictions 
force the two faces which share the antipodal vertex but which do not share an edge 
with either of the first two faces to be glued to one another. Additionally, the 
remaining two faces sharing v cannot be identified or else we would end up with 
two BC edge types. The two possible ways to glue these two faces to the remaining 
unglued faces sharing the antipodal vertex are completely symmetric, and hence it 
does not matter  which we choose. This gluing yields a valid manifold. 

The other possibility is that there are no type II tetrahedra. If so, then there must 
be a pair of cusps not connected by any edges (or else we have AB, AC, BC, and 
some loop, such as AA, and then any tetrahedron with the BC edge must be an 
AABC tetrahedron, which we have forbidden). So our edges are AC, BC, and two 
loops. There must be CC edges types or the manifold will be disconnected. Our 
tetrahedra are then two ACCC's and two BCCC's. We can note that an ACCC's 
neighbor across the CCC face is a BCCC, so after gluing along the CCC faces, we 
have two pyramids with identical vertex labelings. 

Now we have a total of six CC edges on our two pyramids, out of which we must 
form two edge classes. If we perform identifications on the ACC faces to make A a 
torus or Klein bottle cusps, the six CC edges fall into three CC edge classes, each 
containing two CC edges. When we perform the identifications on the BCC faces, 
two of these CC edge classes will be identified. Hence, there is a CC edge type which 
is made up of only one pair of CC edges from the two pyramids, or four tetrahedral 
edges, one from each tetrahedron. We can assemble our four tetrahedra around this 
edge class to obtain an octahedron. Discarding the interior CC edge of this 
octahedron and replacing it with an interior edge running from A to B allows us to 
cut the octahedron into four ABCC tetrahedra. This puts us in the previously 
considered case. [] 

Theorem 5.2. There exists a unique 4-cusped hyperbolic 3-manifold composed of 
exactly six ideal hyperbolic tetrahedra. 

Proof. We can assume that at least six tetrahedra are required, by Theorem 4.6. 
The example in Table 1 shows that there is at least one such manifold obtained 
from six ideal tetrahedra. We need only show that the example is unique. 

Assume we have such a manifold with an ideal triangulation that includes at 
least one type I tetrahedron. Then the six distinct edge types in the triangulation all 
occur on this tetrahedron. Hence all six of the tetrahedra must be type I. 

Label the cusps A, B, C, and D. Note that for any distinct pair of cusps, there 
must be exactly one edge type connecting the pair. We can assemble the six 
tetrahedra around the AB edge, obtaining an object as in Fig. 1. We henceforth call 
such an object a wheel. 

We have to pair up the six ACD faces and the six BCD faces for gluing. No two 
adjacent faces can be identified, since no edge type can occur on just two 
tetrahedra. The two possible patterns of identification on one "hemisphere" are (1) 
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C 

D 

Fig. 1. 

each face glues to its opposite and (2) one pair of opposite faces glue to each other 
and the other four glue to their opposite 's free neighbor. The only combination of 
these patterns on the two hemispheres which yield only one CD edge is using 
pattern (2) on each hemisphere, such that the opposite-glued pairs are different. By 
symmetry of the object and gluings, there is only one such manifold. 

Assume now that the triangulation of the 4-cusped manifold contains no type I 
tetrahedra but it does contain at least one type II tetrahedron. In the case n = 4, the 
proof of Theorem 4.6 shows that the number of tetrahedra would have to be at least 
seven and hence this case does not occur. 

Finally, assume no tetrahedra of type I or II appear in the triangulation. In this 
case, the proof of Theorem 4.6 shows that the triangulation must consist only of 
type III  tetrahedra. In particular, we can choose the cusp C so that the triangula- 
tion consists of two each of the tetrahedra labeled ACCC, BCCC, and DCCC. 

The two ACCC tetrahedra can be glued together along some ACC face, 
obtaining a "pyramid."  There are only three ways to glue the remaining ACC faces 
so that the boundary of a neighborhood of A is a torus or Klein bottle. The same 
can be said for B and D. Furthermore, a wheel is formed by attaching the pyramids 
via the CCC faces. The only combination of gluings (up to symmetry) which does 
not yield a contradiction is obtainable by the following reassembly of the gluing 
obtained from the six type I tetrahedra in Fig. 1. 

Beginning with the gluing from the type I tetrahedra, erase the "axis" AB edge. 
Add the three possible distinct CC edges and separate the wheel into two 
hemispheres, each of which decomposes into four tetrahedra. Separate all of these 
tetrahedra. Assemble the three tetrahedra with a BD edge around that edge, and 
likewise for the three with an AD edge. Then assemble our four polyhedra, two of 
which we just constructed and the two remaining tetrahedra, around any of one of 
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the CC edge types, and we have the only valid gluing for the six type III tetrahedra. 
Hence, there is only one 4-cusped 6-tetrahedral manifold. [ ]  

6. Tables 

In Tables 1 and 2 we give the correct values for trot (n) and tr(n), some examples of 
corresponding manifolds, and a description of a gluing of ideal tetrahedra which 

Table 1 

n tr(n) Manifolds Gluing 

1 1 Double covered by 

2 2 Double covered by 

3 4 Double covered by 

4 6 Double covered by 

5 10 See Table 2 

J 

i ,20 

~ 0,19 

3,1 
3,6~2,6 

0,0 

2,0 
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will yield the corresponding manifold. The method we employ to describe a gluing 
is based on a description of gluings due to Thurston. Each vertex in the oriented 
graph describing the gluing represents a tetrahedron and each edge represents a 
pair of faces which are glued together. The specific gluings are represented by the 
numbers indicated for each edge, in the following manner. 

Given a tetrahedral representation of a three-manifold, we wish to represent it 
unambiguously and concisely via a graph. We number the vertices of each 
tetrahedron 0, 1, 2, and 3, and the faces of the tetrahedron are numbered as the 
vertices opposite them. The first step is to find a "base"  tetrahedron, and to number 
its vertices. This is done by finding that edge type in the tetrahedralization which 
has the fewest tetrahedral edges as its members. The base tetrahedron is to have 
this edge type as the edge connecting vertices 0 and 1. Given this restriction, the 
next criterion is that the edge type of the edge connecting vertices 0 and 2 is to have 
as few members as possible, and so on, using the edges from 0 to 3, 1 to 2, 1 to 3, and 
2 to 3. If these criteria yield a unique base tetrahedron with a unique numbering of 
its vertices, all well and good. Otherwise, using the criteria as much as possible, we 
simply choose a base tetrahedron from among the candidates. In the case when the 
base tetrahedron is not uniquely determined, the resulting graph representation of 
the gluing may not be unique. 

We begin with the base tetrahedron, and list the four faces in order, as the first 
four elements in a queue of faces whose gluings are to be represented. We go 
through the queue, representing the gluings. If a gluing to be represented involves a 
tetrahedron not yet numbered and plotted, we number its vertices such that the 
numbers on the face involved match exactly with those of the face to which it is 
being glued. Furthermore, the free faces of the new tetrahedron are added to the 
end of our queue of faces to be glued. 

In any case, the gluing is described by drawing a directed edge from the graph 
vertex representing the source tetrahedron to that of the other, and two numbers 
are specified. The first is the number of the face on the source tetrahedron which is 
involved in the gluing. The second represents the actual arrangement of how the 
vertices are identified. If we imagine matching the vertices on the faces, and also 
pairing the one omitted vertex, which is the name of the involved face, from the first 
tetrahedron with that of the second tetrahedron, we would have a permutation on 
the numbers of 0-3. These permutations are numbered in this way: 3210-3210 
is gluing "0," 3210-3201 is gluing "1," and so on, in reverse lexicographical 
order, down to gluing "23" which is 3210-0123. Given one such permutation 
and the number of the face on the first tetrahedron, we can reproduce which 
vertices are identified to which. Note that the gluing by which any tetrahedron is 
first included, i.e., by which it is first given the numbering on its vertices, will be 
gluing "0." 

For example, if an edge is labeled "3, 12," then we look up permutation 12 and 
find that it is 3210-1320. Thus we have face 3 of the first tetrahedron gluing to face 
1 of the second, and the vertices are identified so: 0-0, 1-2, and 2-3. This 
information, along with the knowledge of the queue nature of gluings, allows a 
reconstruction of the triangulation from such a graph. 
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