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Abstract

A rapid and accurate method of calculating optimal impulsive
transfers in the restricted problem of three bodies has been developed.
The technique combines a multi-conic method of trajectory integration
with primer vector theory and an accelerated gradient method of
trajectory optimization. A unique feature is that the state transition
matrix and the primer vector are found analytically without additional
integrations or differentiations. The method has been applied to the
determination of optimal two- and three-impulse transfers between the
L, libration point and circular orbits about both the Earth and the Moon.

A general error analysis of three multi-conic methods of three-
body trajectory integration has been carried out. Single-step error
functions for position and velocity have been derived as Taylor series
in powers of the time step and also in integral form, These error
functions are used to investigate the relative accuracy of the three
methods in various regions of the Earth-Moon space and to provide a
method of variable step-size control for the trajectory integration
procedure., Numerical results are used to compare the multi-step
performance of the methods for both large and small step sizes.
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CHAPTER 1
INTRODUCTION

1.1 Hisiorical Background

Almost all of the work done on space trajectory optimization to date
has been concerned with two-body trajectory optimization, Most of the
more than three hundred references in the Gobetz and Doll survey of
impulsive trajectories1 are concerned with inverse square fields. In fact,
the organization of their survey is based entirely on the two-body problem.

For the two-body problem, both the trajectory and its state transition
matrix can be calculated analytically. In spite of this, the determination
of optimal trajectories is far from easy. Although there are several
special cases for which analytic solutions are known, it is generally neces-
sary to use numerical methods to optimize two~body trajectories. Effective
techniques have been developed by combining primer vector theory with

accelerated gradient techniquesz’ 3

For the three-body problem, both the trajectory and its state
transition matrix must be calculated numerically. Some analytic approx-
imations have been used to represent lunar and interplanetary trajectories.
Among the approximations are the patched conic methods, and the method

6, 7, 8. Unfortunately, these methods

of matched asymptotic expansions
have inher-ent accuracy limitations and break down completely for some
missions of interest, such as trajectories to the collinear libration

9,10, 1 .. three-body problem.

points
Even numerical integration of the state and the transition matrix for
the three-body problem presents difficulties because of the singularities
at the center of each body. These difficultkes can be overcome by various
regularizations of the differential equations12 or by making the time step

a function of the potentiallo‘ 13. Unfortunately, numerical integration is
time-consuming. As a large number of trajectories and state transition

matrices must be calculated in the process of converging to an optimal



trajectory, the computer time with this approach can easily becone

prohibitive,

Recently, a new approach to the integration of the N-body problem
has been tried. This approach was conceived independently by several

14, 15, 16

investigations and actually constitutes a class of closely related

methods known as the "'multi'conic’ methods.

One of the most fruitful points of view is to regard them as large
step numerical integration formulas. Instead of being based on series,
as are most convential numerical integration formulas, these methods

are based on two-body conics.

The oldest of these methods is the "'N-body reference orbit" of

14. The N-body reference orbit is an analytic approxi-

Stumpff and Weiss
mation to the true three-body trajectory. In their approach, two-body
conics of each body with respect to each of the other bodies are used to
evaluate the N-body integrals of the differential equations of motion. All
the conics are propagated forward in time from the initial state. The
method also utilizes field-free trajectories which go backward in time.
Stumpff and Weiss also derived expressions for the deviations of the
position and velocity of the N-body reference orbit from the true trajectory
for a single time step. The position deviations are shown to be proport-
ional to the fourth power of the time step and the velocity deviations to

the third power. By using sufficiently small steps, these deviation

errors can be kept so small that they can be neglected. The sufficiently
small step size for acceptable truncation errors is still much larger than
for conventional numerical integration. It is also possible to integrate
numerically the differential equations for the deviations from the N-body
reference orbit, as in an Encke method, and use large steps in the
numerical integration. Stumpff and Weiss have shown that when only a
single trajectory is being calculated, as in an initial value problem, it is
more efficient to use larger steps and integrate the deviations. Weiss
later showed17 that if the deviations are neglected, then, since the position
and velocity can be calculated analytically, the state transition matrix



along the N-body reference orbit may also be obtained analytically. This
represents a very substantial savings in time since the state transition
matrix is normally found by an integration of the six-by-six matrix of
variational equations or by a numerical differentiation which requires

the calculation of seven trajectories.

The other two methods were developed subsequently to calculate
trajectories in the Earth-Moon space. Wilson15 developed his method
for the three-body problem and derived two alternate ways to calculate
the trajectory depending upon whether the spacecraft is moving from the
Earth to the Moon or vice-versa. The two-body conics used in this method
are propagated from different starting points and are connected by linear
field-free trajectories. In the N-body reference orbit of Stumpff and
Weiss, the conics and the linear trajectories all start from the same point
and thus are used in a parallel fashion, whereas in Wilson's method they
are used in a sequential fashion each one starting where the previous one
ended. Wilson did not show how the state transition matrix could be
calculated nor did he derive expressions for the deviations from the actual
three-body trajectory. Wilson then simplifies his basic method into what
he calls the ''pseudostate theory'' which has better accuracy then the
patched conic method with nearly the same computational effort. The
multi-conic method of Byrnes and Hooperla, which was conceived
independently, is in effect an extension of Wilson's method to account
for the effects of Earth oblateness and a fourth body, the Sun. However,
both these effects are included in a linear manner. Both Wilson's method
and the method of Byrnes and Hooper are designed for Earth-to-Moon

trajectories and need some modification for other applications.

The most recent publication along these lines is a paper by Fang18
in which the deviations of the Stumpff-Weiss N-body reference orbit are
calculated as a Taylor series in powers of the time step under the
assumption that the trajectory remains close to one of the bodies. The
number of terms used in the Taylor series and the size of the time step
are adjusted to maintain a maximum allowable error per step in position

or velocity.



This thesis is the first attempt known to the author to apply the

multi-conic approach to three-body trajectory optimization.

1.2 Thesis Objective

The objective of this thesis is to apply multi-conic methods of
trajectory calculation, primer vector theory, and an accelerated gradient
method of functional minimization to the determination of minimum
impulse trajectories for the restricted problem of three bodies, and to
perform an error analysis of these multi-conic methods in order to gain

insights into their performance.

1.3 Synopsis

In Chapter 2 the trajectory optimization problem is described and the
role of the primer vector in its solution is illustrated, It is shown that
the primer vector can be calculated from a knowledge of the state
transition matrix and that the primer vector is a useful tool for determining
not only the optimality of a given trajectory, but also the way the cost
of a non-optimal trajectory can be lowered. This Chapter is used primarily

to introduce the primer vector and contains no new results.

In Chapter 3 it is shown that the N-body reference orbit of Stumpff
and Weiss (specialized to three bodies) and Wilson's method are closely
related members of a family of three-body trajectory integration formulas,
Also, analytic expressions for the state transition matrix are derived for
each method. Previously there existed no such expressions for Wilson's
method. The usage of the multi-conic methods for the solution of initial

and boundary value problems is described,

In Chapter 4, a multi-conic method similar to Wilson's, primer vector
theory, and an accelerated gradient method of functional minimization are
combined to provide a rapid and efficient method of calculating optimal
three-impulse, three-body trajectories. The method readily extends to

any number of impulses or bodies,.



In Chapter 5 some results are presented for trajectories from the L,
libration point on the far side of the Moon to circular orbits about both
the Earth and the Moon.

In Chapter 6 a general error analysis of the multi-conic family of
trajectory integration methods is performed, and expressions for the
deviations of the approximations from the actual three-body trajectory
for a single time step are developed, first as Taylor series in powers
of the time step and then as a set of integrals. The [irst representation
is used to find contours of constant errors in the Earth-Moon space, to
find boundaries on which the error of any two methods are equal, and to

provide a method of internal step-size control

In Chapter 7 the trajectory optimization method of Chapter 4 is
modified to allow for a different set of end-point constraints by using

transversality conditions on the primer vector.

In Chapter 8 the major conclusions drawn from the results of this
thesis are summarized, and some suggestions for future research are
listed,



CHAPTER 2
THE TRAJECTORY OPTIMIZATION PROBLEM

2.1 Necessary Conditions for an Optimal Transfer

In order to solve the classic trajectory optimization problem, the
optimal number, location, direction, and magnitude of the velocity impulses
must be determined such that the spacecraft transfers from a given initial
position and velocity to a given final position and velocity in a fixed transfer
time while minimizing the fuel consumption. The purpose of this section
is to provide a heuristic derivation of the necessary conditions for an
optimal transfer through application of the Maximum Principle. A rigorous

derivation using the calculus of variations was performed by Lawden19

For a rocket engine having constant exhaust velocity but unbounded

thrust magnitude, the amount of fuel consumed during a transfer is given
by

-J/c
am = m (1-e ) (2.1)

where m is the initial mass of the spacecraft, c¢ is the exhaust velocity
of the rocket, and
b
J = S lz| at (2.2)

t
o)

where @ is the thrust acceleration vector. The quantity J is known as the
characteristic velocity. Minimizing J will minimize the fuel consumption
since the fuel consumption is a monotonic function of J. The trajectory
optimization problem may therefore be stated as an optimal control
problem in which J is the cost function and the thrust acceleration vector,

a, is the control variable,

The state equations may be written as



v (2.3)

H|-
I

v = B(F, t)+13 (2. 4)
where T and V are the position and velocity vectors, respectively, g is
the gravitational acceleration vector, and A is the thrust acceleration

vector. The Hamiltonian for this optimal control problem is
H =00 6Da+0 . v+XNE (2. 5)

where @ is the adjoint vector for position, X\ is the adjoint vector for
velocity, and u is a unit vector in the direction of the thrust. The

differential equations for the adjoint vectors are

g = -GX (2.6)
X = -z (2.7)

where G = 3g/3F is the gravity gradient matrix. According to the Maximum
Principle, the Hamiltonian is maximized over all possible directions of
the control by choosing

(2. 8)

u =

> >

Furthermore, for A<l the Hamiltonian is maximized by choosing a = 0,
and for A>1 the Hamiltonian is maximized by choosing a to be infinite.
An infinite a can be handled as a mathematical concept because it occurs
only in the form of an impulse and therefore produces a finite change in
velocity. Thus for an optimal trajectory, whenever A<1, the spacecraft
coasts, and whenever \=1 instantaneously, an impulse occurs in the
direction of X. Singular arcs for which A=1 for a finite time are not

considered,

These necessary conditions for the optimality of an impulsive

trajectory were first formulated by Lawden19 and are stated in terms



of X, the adjoint vector for velocity, which Lawden calls the "primer

vector'. The four necessary conditions are:
1. the primer vector and its first derivative are everywhere continuous;
2, whenever an impulse occurs, the primer vector is aligned with the

impulse and has unit magnitude;
the primer vector magnitude may not exceed unity on a coasting arc;
4, the time derivative of the primer vector magnitude is zero at all

interior junction points separating coasting arcs.

Figure 1 shows some typical time histories of the primer vector
magnitude, Figure 1(a) shows a primer history for an optimal two-impulse
trajectory. This primer history satisfies all the necessary conditions.
Figures 1(b) and (c) show non-optimal two-impulse primer histories for
which the primer magnitude rises above unity during coast. Figure 1(d)
shows a non-optimal three-impulse primer history. The derivative of the
primer magnitude at the interior impulse point is not continuous, Figure
1(e) shows an optimal three-impulse primer history which satisfies all the

necessary conditions.

2.2 Calculation of the Primer Vector

The differential equations of the adjoint vectors, Equations (2.6) and

(2.7), may be combined to yield

= G (2.9)

>|

Hence, the primer vector satisfies the same differential equations as do
small variations in the state from a reference solution. The transition
matrix for (—X, ) will therefore be identical to the state transition matrix.

If the state transition matrix is defined as
®qy(ts t.) qolz(t, t)
b(t, t) = (2.10)

@o(ts 1)) @polt, )
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then it follows that

Alt) cpu(t, t)) A +cp12(t, to) Ao (2.11)

Adt) <p21(t, to) AO + (pzz(t, to) >‘0 (2,12)

In order to generate a time history of the primer vector and its
derivative, 7\0, hY

01
conditions, on any two-impulse trajectory (or any two-impulse segment of

and ¢(t, to) must be known., According to the necessary

an n-impulse trajectory) the primer vector must have unit magnitude and
point in the direction of the impulse at both impulse points. It follows that

the primer vector must have the following boundary conditions:

_ L AVO
A(to) = xo = (2.13)

|7 |

(0]

- - AV,

|av,]

where AVO and A'ff are the impulses at the initial and final times respec-
tively. Evaluating Equation (2.11) at the final time, the initial value of

the primer derivative is obtained as

R | g _
Xo = Pralte to) [ X - @yt t) Xy (2.15)

Therefore, with -XO given by Equation (2.13), KO given by Equation (2. 15),
and ®(t, to) obtained from the trajectory calculation, a primer history
can be generated for each two-impulse segment according to Equations
(2.11) and (2.12)

2.3 Improvement of Non-Optimal Transfers

If the primer history of a given trajectory does not satisfy the
necessary conditions, then that trajectory is not locally optimal. However,
Lion and Handelsman have shown2 that primer histories of non-optimal

10



transfers are very useful in that they show how the cost of these non-
optimal transfers can be improved. Trajectories with primer histories
like that of Figure 1(b) can be improved by an initial coast. That is, if
the magnitude of the primer vector rises above unity immediately after
the initial impulse, the cost can be reduced by delaying the first impulse
until some time after to. Similarly if the magnitude of the primer vector
is above unity immediately prior to the final impulse, the cost can be
reduced by a final coast. It was also shown that if the primer magnitude
exceeded unity between the impulses as in Figure 1(c), the trajectory can
be improved by adding a third impulse. Furthermore, the greatest
reduction in cost cccurs when the impulse is added at the time when the
primer magnitude is maximum, i.e., at tm‘ and in the direction of the
primer vector at that time, i.e., in the direction of Am. The actual
trajectory optimization algorithm, which improves non-optimal trajectories
by adding impulses and converging to a local minimum of the cost, will be
thoroughly discussed in Chapter 4, The important points of this Chapter
are that, first, primer vector theory is useful not only for determining
the optimality of a trajectory but also for improving a non-optimal
trajectory, and, secondly, a primer history may be generated from known

boundary conditions and a knowledge of the state transition matrix,
Before the actual trajectory optimization method is described in

Chapter 4, the multi-conic method of trajectory calculation is introduced

in Chapter 3.

11



CHAPTER 3
MULTI-CONIC TRAJECTORY PROPAGATION

3.1 Calculation of Position and Velocity

The model for the Earth-Moon system used in this study is that of the
restricted problem of three bodies. The third body, the spacecraft, is
assumed to have a negligible mass so that it is affected by, but does not
affect, the motion of the other two bodies. The two massive bodies, the
Earth and Moon, move in circular orbits about their common barycenter.
The multi-conic approximation will provide a solution to this problem
useful as a state vector propagation algorithm which is much faster than
numerical integration of the equations of motion yet is of comparable
accuracy. In effect the multi-conic approximation is a numerical
integration technique which uses very large step sizes and yields very
good accuracy. The multi-conic approximation spans the range between
the extremely fast but relatively inaccurate patched conic methods and
the slow but very accurate numerical integration techniques, The multi-
conic methods derived in this Section will be valid for any three-body

system in which the mass of one of the bodies is negligible,

The geometry of the three-body problem is illustrated in Figure 2,
If the only forces acting are the central force fields of the Earth and the

Moon, and the mass of the spacecraft is negligible, the accelerations are

8 - -A%-afy-al’; (3.1)
R r P

'?=-aF-A§+A.§ (3.2)
= :
r R P

p=-af (3.3)
p

where A and a are the gravitational parameters of the Earth and Moon
respectively and o = A +a, The positions and velocities of the three
bodies at any time tyare related by

12



Fig. 2
GEOMETRY OF THE RESTRICTED THREE-BODY PROBLEM
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R, = Fy+ Py (3. 4)
R; = F;+P; (3.5)

Given the state vecior (position and velocity) at some time tn the state

vector at some later time tF is desired. This is the initial value problem.

Integrating Equations (3.1) and (3. 3) once, the following relationships
between the velocity vectors at ¢, and t_, is obtained:

I F
- - F EJ "F?J FEJ
R.-R, - -AS R—gdtJ-aS —B-dtJ-aS —Fdt, (3.6)
1 g 15 1Py
F _
PR - Py
O "“S —3 4t (3.7)
1Py

Integrating once more yeilds the relationships between the position vectors:

. F K g F K — F K -
B _-R =hI_{-ASS J dt _dt -ag U —J gt at —aSS eIdtdt
F oI I 7 3%k BF_B'JK g dtydty
1187 1 157 11PI 5
F K —
5 -5 = hp SR AP 3
pF-pI = hPI" O!B S -7 tJ tK (3.9)
11 P;

where h=tF-tI. Only the integrals in Equations (3. 7) and (3. 9) can be
evaluated in closed form since they represent the purely conic (two-body)
motion of the Moon. The solutions may be written as

Pp=Pr = Pigr = P = Pr = Prgi (3.10)

Pp=Pp = Pror = P = Pp ~ Brgr (3.11)

The compound subscript denotes a vector resulting from the conic

propagation of some initial state vector. For example, ﬁlaF is the

14



velocity vector obtained by propagating the initial state vector tI’ EI, 751

along a conic trajectory to tF using « as the gravitational parameter,

The integrals involving FJ and Ty in Equations (3.6) and (3. 8) cannot
be evaluated exactly because the three-body position vector of the space-
craft is of course unknown. However, a conic approximation propagated
from a suitable starting point could be used enabling the integrals to be
evaluated, Assume that the spacecraft is moving away from the Moon and
towards the Earth, As a first step in the solution, a selenocentric conic

approximation propagated from the point I, which is closer to the Moon

than the point F, is used for FJ: FJ E FIaJ‘ The integrals involving FJ in
Equations (3. 6) and (3. 8) become
F F F _
—ag —%rdtJ'&' -a —Iga—Jdt G (3.12)
1 g I "1ag
F K ¥ F K_
J = "lag .
- a S —g dtyaty = as 37 dtydty =Ty, p - T - b
I T°J I1I Ia,J (3.13)

The next step is to use for P_J a geocentric conic approximation
propagated from point F, which is closer to the Earth than point I, Sub-
stituting ﬁFAJ for E—{J, the integrals involving ﬁJ in Equations (3. 6) and
(3.8) become

F

R R . .
7 . FAJ _
-AS E_BvcitJ S AS R—B—dtJ—RF Rpa (3.14)
1 By 1 Rrag
F K = F Kg
—AS S " dt.dt. = —AS S FAJdt dt, =R - R
73 %% FAI FAI

11 By FAJ (3.15)

Finally Equations (3. 7) and (3. 9) are rearranged to yield

15



p . .

-ag —%di = p (B - B (3.16)
1 Py

F K —

- . pJ _ _ — 2

-aS S —%dt dt. = p (B - B, - hp) (3.17)
11 P
where
_ a o~ 1

T (3.18)

Now substituting Equations (3,12), (3.14), and (3.16) into Equation (3. 6)

and using Equation (3.5) results in

Rpar - Trap ¥ Pt H (P - B (3.19)

and substituting Equations (3.13), (3.15), and (3.17) into Equation (3. 8)
and using Equations (3.4), (3.5), and (3.19) yields

Rpar = Trap ¥ P - b * 1 (Pp - B - hpg) (3.20)

What has been obtained in the approximate expressions for ﬁFAI and

R
FAI — =
result of propagating the unknown but desired RF and RF backward in

are approximations to the position and velocity which would be a

time to tI along a geocentric conic. In other words, Equations (3.19) and
(3.20) give formulas for the particular geocentric position and velocity
which, if propagated forward in time by an amoung h = tF—tI along a
gencentric conic, would yeild a position and velocity close to that which
would result from propagating ﬁl’ F forward in time to t

I _ PO
three-body trajectory. The process of propagating RF,AI and RFAI forward

along the actual
on a two-body conic tc obtain the estimates of EF and I_{F may be written as
R

16



R. =

o LFFAJAF (3. 21b)

If it had been assumed instead that the spacecraft were moving away

from the Earth and towards the Moon and if Equation (3. 2) had been
and F

3~ Riag 3 - TFas
to evaluate the unknown integrals, a different set of formulas, this time for

integrated twice using the alternate substitutions R

and ¥ would have been obtained. An easier way to derive these

TFal Fal :
formulas is to solve for F. and T in Equations (3.19) and (3. 20) and

IaF I[aF
interchange the subscripts [ and F:

]
» ~  —

Tral - Bijap = Pp 8 (Pp - Ap) (3.22)

~

Fal = MAF - Pp - MEBap - Pp) tp (Pp - By - hpp)  (3.23)

3]

The position and velocity given by the above formulas have a similar inter-
pretation: if they are propagated forward in time by an amount h along a
selenocentric conic, estimates of the three-body final position and velocity

are obtained for the case of Earth-to-Moon motion.

A one-step Earth-to-Moon multi-conic approximation to a trajectory
from the L, libration point to the Moon is shown in Figure 3, The actual
procedure used to generate the multi-conic approximation illustrated in

Figure 3 is given below (the points a, b, ¢, d, e refer to Figure 3):

1. from the given initial state at point a, propagate a geocentric
conic forward in time by an amoung h = tF-tI to point b;

2. transform the position and velocity vectors at point b to the
selenocentric frame;:

3. from point b, propagate the position vector linearly backward
along the velocity vector by an amount h to point ¢ (field-free
trajectory);

4. modify the position and velocity vectors (point ¢ to point d) to

account for the indirect effect of the Moon's motion (terms
involving u);

5. from point d, propagate a selenocentric conic forward in time

by an amount h to point e to obtain estimates of the three-body
final position and velocity.

17
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Steps 1 through 4 explain in words the operations defined by Equations
(3.22) and (3, 23) for Earth-to-Moon motion. Equations (3.19) and (3. 20)
result in a similar set of sequential procedures to arrive at the final

position and velocity for Moon-to-Earth motion.

Thus far two alternative sets of approximations have been made in
order to integrate the three-body differential equations of motion, The

first alternative was to assume that

R, ¥ Rpag (3. 24)

.r-_J = FIaJ (3. 25)
and the second alternative was to assume that

R; ¥ Rppjg (3.26)

T = TraJ (3.27)

The first set of assumptions enabled the derivation of a multi-conic method
of calculating three-body trajectories suitable for Moon to Earth type
trajectories, and the second for Earth to Moon type trajectories. These
two methods were first derived by WilsonlB. There is a third alternative
set of assumptions, namely that

7 = Rag

n

R (3.28)

~ o

Liag (3.29)

g

One might use these approximations if one had no knowledge of which way
the spacecraft were moving or if the spacecraft's motion did not satisfy

either of the other two assumptions.

In any case, if one uses the approximations given by Equations (3. 28)

and (3. 29) to evaluate the unknown integrals involving FJ and FJ in Equations
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A

(3.6) and (3. 8), the following results are obtained:

F — F =
Ry . - Riag L Ll
—AS R_gdtJ > —AS %—rdtJ=RIAF—RI (3.30)
i By 1 Riag
F o F
J ~ - lad = oL
-aB r—g-dtJ = -a ——dty = T p - T (3. 31)
1 T I T1aJ
F K — F K=
A § NI g at =—ASSKRIAJdtdt -® . _ -R® -hR
S,JR'o"JK Rt S S I
11 Bg 11 Biag (3. 32)
FK _ F K.
' Ty ~ ¢ Tlag _ _ :
-a ) S F—-B-dtJdtK = —ag :T—dtJdtK—rIaF-rI—hrl (3.33)
1157 11 Flag

Equations (3.16) and (3.17) still apply, of course, for the integrals of EJ.
Now substituting Equations (3.30), (3. 31), and (3.16) into Equation (3. 6)
yeilds
Ry = Rpap v Tap "1 T H Pp - PP (3.34)

and substituting Equations (3.32), (3. 33) and (3.17) into Equation (3. 8)
yeilds

Rp = Rap *Tlap - Ty " DI * 4 (PR~ B~ P (3.35)
Unlike the other two methods, the third method yeilds formulas for the
final position and velocity directly rather than indirectly in terms of a
state to be subsequently propagated along a conic. Notice that for all
three methods two conics and a field-free trajectory are used. However,
for both the Earth to Moon and Moon to Earth method, they are propagated
sequentially and hence from different starting points. For the last method
both conics and the field-free trajectory are propagated from the same
starting point, the initial state, and they are utilized in a parallel fashion.
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The third multi-conic method is equivalent to the Stumpff-Weiss N-body
reference or'bit14 specialized to the restricted problem of three bodies,

If the terms involving p in the equations of the other two methods are
eliminated, the resulting relations constitute Wilson's pseudostate
theory15. Therefore, it is true that Wilson's two methods and the Stumpff-
Weiss method are all related members of a multi~conic family of trajectory
propagation techniques. Henceforth, these three multi-conic methods will
be denoted the Moon-Earth method (Equations (3.19) and (3. 20)), the Earth-
Moon method (Equations (3. 22) and (3.23)), and the Stumpff-Weiss method
(Equations (3. 34) and (3. 35)). The fact that Wilson's two methods and

the Stumpff-Weiss method can be obtained from the same derivation is

not surprising but nonetheless satisfying,

The trajectory initial value problem may be stated as follows: given
the initial position and velocity at time to’ what will be the position and
velocity at some later time tf? The total time interval is divided into
smaller segments (tI, tF), and any one of the multi-conic methods may
be applied successively over these steps to update the position and velocity.
Some sort of switching logic is needed to determine which of the multi-
conic methods to use for each step. The switching technique used in this
study will be explained in Chapter 4. Furthermore, for the purpose of
this study, it was assumed that the conic of the Moon's orbit about the
Earth is a circle; that is, the Earth and the Moon both move in circular
orbits about their common barvcentric. The geocentric position and
velocity of the Moon are therefore known functions of time. For example,
if a coordinate system is chosen such that the Moon is on the x-axis at
the initial time to' the xy plane is the plane of the Moon's orbit, and the
z-axis points in the direction of the Moon's angular momentum vector,
then the geocentric position and velocity needed in the above equations
are given by

cos (ty-t )

ﬁJ = p| sin (tJ-to) (3.36)
0
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-sin (t.~-t )
J o
= e _
p; = V3| cos(t; t) (3.37)
0

where p is the radius of the Moon's orbit about the Earth,

Each step in the multi-conic trajectory propagation methods requires
the solution of two two-body Kepler problems. The total solution to the
initial value problem therefore requires the solution of 2n Kepler problems
where n is the number of steps in the propagation. A rigorous error
analysis of the multi-conic methods will be deferred until Chapter 6. But
it may be stated here that, for a 48 hour trajectory from L2 to the Moon,
step sizes of the order of 2-3 hours produce results accurate to about
.1 feet/sec. in velocity and about .2 miles in position, while a step size
of the order of 6 hours produces results accurate to about 2-3 feet/sec,
in velocity and 2-3 miles in position, certainly good enough for mission
studies, The above errors are the errors in the final position and
velocity upon arrival at the Moon. Step sizes over 6 hours but less than
30 hours are useful for obtaining an intuitive feeling for the actual

trajectory.

3.2 Calculation of the State Transition Matrix

A great advantage of the multi-conic method is thut in addition to
the position and velocity at the final time, the state transition matrix may
also be found with no additional integrations or differentiations. For the
Earth-Moon or Moon-Earth method, each step of the propagation is itself
a five-part sequential procedure as illustrated above. In referring to this
five-part procedure it should be fairly obvious that the operations defined
by steps 2 and 4 do not make any contributions to the state transition
matrix, so that to obtain the state transition matrix for the entire five-step
sequence, the state transition matrices of steps 1, 3, and 5 need only be
multiplied sequentially, Steps 1 and 5 are two-body conics which are
solutions to Kepler's problem, and from each Kepler problem solution
the state transition matrix for that particular two-body conic is readily

obtained.
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Let Q-ZB(tF,tI) denote a two-body state transition matrix, ¢3B(tF’ tI)
a three-body state transition matrix, and <I=L(tF, tI) the transition matrix
along a linear trajectory. Since R =F + pand there are no variations in p,
then a small variation in R is identically equal to a small variation in T,

and the state transition matrix may be defined as

~aa'RF aITF‘ ‘aFF aFFT
2R, 3R, 3F, I
Bty t)) = = (3. 38)
S aF,  aFy |
_aR‘I afTI | _BFI a#I J

Along the linear trajectory (which occurs in the selenocentric coordinate
system for both the Earth-Moon and Moon-Earth methods), position and

velocity at the final time are given by

FF = FI +hFI (3.39)
Tp = T (3. 40)
and hence
(I hI
Gp (g, t) = (3. 41)
0 I

The three-body state transition matrix may be calculated from

2)

Y | (1)
T3pltp.ty) = ®yp

(tF, tI) tIJL(tI,tF) QZB(tF’ tI) (3. 42)
where the superscript (1) refers to the conic of the first step in the above

five step procedure and (2) refers to the second conic (step 5). The product
of the last two matrices on the right hand side of Equation (3. 42) causes

23



the position derivatives of &

(1)

2B(tF’ tI) to ne backdated along the correspon-

ding velocity derivatives by an amount h. For example, for the Earth-

Moon case ‘1)2(

1
B(tF’ tI) would be equal to

IAF IAF

3R, 3R,

(3. 43)
®Riap  3Rap
i oR, 3R, |
and premultiplying by @L(tl, tF) would yield
r‘ziﬁ: (Ri,pPRap) :—ﬁx (Riap~hRiap)

‘ . (3. 44)

Ry p R p

3R, aR,

Thus an analogous procedure may be stated for calculating the three-body

state transition matrix for each step in the propagation:

1.

from the first two-body conic obtain the two-body state transition
matrix;

backdate the position derivatives along the corresponding
velocity derivatives by an amount h = tF-tI;

premultiply by the two-body state transition matrix of the
second conic.

The state transition matrix for the whole trajectory is found by sequentially

multiplying the state transition matrices for each step.

The state transition matrix for the Stumpff-Weiss method is most

easily found by directly taking derivatives of the final position and velocity

with respect to the initial conditions according to the definition of the state

transition matrix in Equation (3. 38),
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The final position and velocity for the Stumpff-Weiss method are given

fiven by Equations (3. 34) and (3. 35):

R. = R

F IAF T T " T TH PR A

Rp = Rjpp * Fap - T~ T+ # (Pp - B - hpyp)

(3. 45)

(3. 46)

The derivatives of the final position and velocity with respect to the initial

conditions are

3Ry _ Fup , ¥ar

3R 3R, R,

Rp _ 3Rpp  ap 20

ok, ) 3R, oF,

AR i 3R A . 3F, & ) or,

3 o, 3R, oF,

FRp _ 3Bar |, Tar | o
3 3R, 2R, oR|

(3.47)

(3.48)

(3.49)

(3.50)

Since P is unaffected by the deviations in the state of the spacecraft, from

Equations (3. 4) and (3.5) it is true that

-
BRI arI
2 _ =3 _
aRI aFI

Therefore Equations (3.47) to (3.50) can be written as
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P iAF + iaF (3.53)
aR_I BRI arI
aR 3R, 3F
;F - iAF n I.aF -1 (3.54)
BRI BRI arI
3R 3R 3F

F _ TIAF |, °'laF _, (3. 55)
BRI BP—I arI -
3R 3R oT.
—‘-F - iAF + I.AF - I (3.56)
aRI BRI aFI

where I is a 3x3 identity matrix. The three-body state transition matrix

can therefore be calculated as
Bt t) = &2 t)+ @ 2, t) - & (o, t)  (3.57)
3B ''F’ "1 2BVF’ I 2BYV'EF? I L'VE I ‘

where ¢2%(tF' tI) is the two-body state transition mairix from the geo-
a

B

¢L(tF, tI) is defined in Equation (3, 41).

centric conic, <b2 (tF, tI) comes from the selenocentric conic and

Once again, to obtain the state transition matrix for the whole
trajectory, the state transition matrices for each step are multiplied
sequentially. Notice that the per-step state transition matrix for the
Earth-Moon or Moon-Earth method is calculated by a multiplicative
process (Equation (3. 42)) while for the Stumpff-Weiss method it is
calculated by an additive process (Equation (3.57)). The reason for this
behavior is that the trajectory calculation for either the Earth-Moon or
Moon-Earth method is a sequential procedure with each new trajectory
segment gtarting from the state at which the previous one ended. On the
other hand, for the Stumpff-Weiss method al! trajectory segments start
at the initial point and are added together to obtain the three-body estimate,
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3.3 Boundary Value Problems

The previous two Sections dealt with the solution of the trajectory
propagation problem for the restricted problem of three bodies by means
of multi-conic methods, That problem may be thought of as the three-
body initial value (Kepler) problem. This Section considers the two-point
boundary value problem of finding the initial velocity to fit a trajectory
between given initial and final positions in a given time of flight This
problem is the three-body Lambert problem. The multi-conic method is
ideally suited to solving this problem since, as was noted in the previous
Section, the solution to the initial value problem furnishes, in addition to the
position and velocity at the final time, also the state transition matrix
containing the partials of position and velocity at the final time with
respect to the initial conditions. Typically the boundary value problem is
solved by iterating on the unknown initial velocity to reduce the position
error at the final time to zero. Since analytic partials are available, a

Newton- Raphson method is attractive and is used in this study.

With the state transition matrix expressed as in Equation (2,10), the
deviations in position and velocity at the final time are related to the
deviations at the initial time by

GFf 1 GFO + 059 6vo (3.58)

ﬁvf ® 51 GFO tPgq Gvo (3.59)
Since Fo is fixed in the boundary value problem, i.e., 6?‘0 =0,

the final position and velocity before and after a change in VO are related

by

T T, +@,, AV (3.60)
f i £ " %12 %

T, . =V, +@., A7 (3. 61)
£ 1 £ " %22 &
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is the difference between the initial velocity which comes from the solution
to the Lambert problem and the given initial velocity of the boundary
conditions; the final impulse is the difference between the final desired
velocity of the boundary conditions and the velocity of arrival on the
trajectory which came from the solution to the Lambert problem, The
initial velocity of the I.ambert solution becomes the velocity immediately
after the initial impulse, and the velocity of arrival of the Lambert solution
is the velocity immediately before the final impulse. The Lambert solution
satisfies the position constraints at the end points, and the impulses

satisfy the velocity constraints.

Now, let us look at the modified Lambert problem which arises when
the boundary conditions at the final time are not given in terms of a desired
position. For instance, it might be desirable to specify that the desired
end conditions are defined by a circular orbit of given altitude and inclination,
If the destination body is the Mcon, the inclination is chosen to be that of
the orbit defined by the final position and velocity and is relative to the
plane of the Moon's orbit about the Earth. In this case, the magnitude of
the final position and velocity vectors and their dot and cross products are
important, and not the actual components of the vectors. For, in order to
achieve a circular orbit of given altitude and inclination, the following four
quantities must be specified: Les Ve, r"f, i. The quantity r"f is the radial
velocity at the final time; r"f must be zero., The inclination is i. Once re
is specified, Ve is fixed by the requirement that the orbit be circular. If
we decide that the impulse at the final time will adjust only the magnitude
of the velocity and will not affect its direction, then we are specifying that
the circular orbit be entered tangentially with no change in inclination. The
circular orbit is entered tangentially because such a maneuver will
minimize the final impulse since the greatest change in the energy of an
orbit is accomplished by an impulse along the velocity vector. Since the
final impulse will affect only the magnitude of the velocity, the solution to
the modified Lambert problem must insure that the correct position
magnitude and inclination and a zero radial velocity have been achieved
prior to the final impulse. The modified Lambert problem must therefore

fit a trajectory between a given initial position and the following end
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AV =V v (3.62)

The quantity Vs is the initial velocity on the nth iteration; '\TO is the
n ‘ n+l
initial velocity on the n+1St iteration; Ff and Vf are the final position and
n n
velocity of the trajectory defined by FO and Vo . The desired end corndition

n
1s

F = T (3.63)

where Tp is the desired final position. Substituting Equation {3. 60) into
Equation (3. 63) and solving for /:.VO leads to a formula for updating the

initial velocity: n -

- - -1, =
v =V, teo, (T Tp ) (3.64)

o)
n+l n n

The matrix 919 is the upper right hand 3x3 submatrix of the 6x6 state

transition matrix associated with the trajectory defined by FO and Vo .
n -
The iteration is halted when the final position has converged to within -

some acceptable tolerance.

The boundary value problem described above is the usual Lambert
problem. Given the initial and final positions and a time of flight, a
trajectory satisfying these boundary conditions is found by iterating on
the initial velocity. The velocity which the spacecraft has at the initial
time is, in general, not equal to that which is required to reach the final
position. Also, the velocity which is desired at the final time is, in
general, not equal to the velocity of arrival on the trajectory which has
been fitted between the initial and final positions. Therefore, velocity
impulses are required at the initial and final times to achieve the velocities
desired at those points. Thus, if the state is fully specified at the initial
and final times, a two-impulse trajectory satisfying these boundary
conditions may be found as follows: solve the Lambert problem to fit a

trajectory between the given initial and final positions; the initial impulse
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conditions:

IF. | = r (3. 65)
fn-rl f
F, T'vf -0 (3. 66)
n+l n+l
h
ﬁzThn—H = cosi (3.67)
n+l

The quantity re is the desired final position magnitude; U, is a unit vector

in the direction of the Moon's angular momentum vector; Hn+1 =T, XV,

n+l n+l
is the angular momentum vector of the spacecraft; i is the desired
inclination. The requirement that Ff va = 0 insures that the radial
n+l n+l

velocity is zero, There are three components of VO to adjust in solving the

modified Lambert problem and three end conditions to satisfy.

When Equations (3.60) and (3. 61) are substituted into Equations
(3.65), (3.66), and (3.67), and terms of second or higher order in AVO
n
are neglected, three scalar equations involving the three unknown compon-

ents of AT/O are obtained. These three scalar equations which are derived

n
in Appendix A, may be combined into the following vector equation:

P v = € (3.68)
o) n
n
where _ _
Te = Ty
n
_ - T
é‘n = - T Ve (3.69)
n n
cosi-cosi
L. n_.
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P = B@yy +C o
— 0 _
B = F} T
n
1 - T —
—'3'uz D(rf x)
h n
b n —
_ 1 - T
rf fn
n
C = v, "
n
1 _ T
-—-s-uz D(Vf X)
h n
| n
D=h?1-0 BT
n n n
[~ 0 -2 Ye
' n n
(rf x) = Zg 0 - X
n n n
Ye o % 0
| n
0 —zf yf
n n
(vf x) = Z¢ 0 —xf
n n
-yf if 0
| n n
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(3.70)

(3.11)

(3.72)

(3. 73)

(3.74)

(3.175)



(3.76)

|

I

<
-

e = | ¥ (3.177)

The solution to Equation (3. 68) for AVO provides a formula for updating
n
the initial velocity:

— — -1 _
v =V +P " @€ (3.78)
O 41 o, n

The iteration is halted when the error vector 'é'n is sufficiently close to zero.

Once the solution to the modified Lambert problem has been found,
the initial impulse is defined as the difference between the initial -velocity
from the modified Lambert solution and the given intitial velocity of the
boundary conditions. The final impulse is a tangential impulse in the
direction of the final velocity to adjust the magnitude of the final velocity

so that a circular orbit at the given altitude is established.
The solution to the initial value problem described in Section 3.1

was coded into a Fortran program and subsequently included in a program
to solve the two kinds of Lambert problems described in this Section,
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CHAPTER 4
THE TRAJECTORY OPTIMIZATION METHOD

4,1 Preliminary Remarks

The previous Chapter examined the multi-conic methods of trajectory
propagation and the procedures necessary to solve the three-body Kepler
(initial value) problem and Lambert (boundary value) problem. This
Chapter explains the application of primer vector theory, the multi-conic
trajectory methods, and an accelerated gradient functional minimization
algorithm to the determination of minimum impulse (fuel-optimal)
trajectories and describes the structure of the computer program which
finds these minimum impulse trajectories. The four necessary conditions
for optimality introduced in Chapter 2 are repeated here for reference:

1. the primer vector and its first derivative are everywhere
continuous:

2. whenever an impulse occurs, the primer vector is aligned with
the impulse and has unit magnitude:

3. the primer vector magnitude may not exceed unity on a coasting
arc:

4. the time derivative of the primer vector magnitude is zero at
all interior junction points separating coasting arcs.

As noted in Chapter 2, these four necessary conditions were derived
by Lawdenlg. It should be pointed out that necessary condition (4) is not
an independent condition, but is implied by the other three. For if at an
interior impulse point, (1) the primer derivative is continuous, (2) the
primer magnitude is unity, and (3) the primer magnitude does not exceed
unity immediately before or after the impulse, then it must be true that

the derivative of the primer magnitude is zero at the impulse point.

4,2 Forming a Three-Impulse Trajectory

For a two-impulse reference solution, by constructing the primer
history according to the rules of Section 2.2, necessary conditions (1)
and (2) will automatically be satisfied. Condition (4) does not apply to a

two-impulse solution and therefore, from condition (3), if the primer
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magnitude exceeds unity on the coasting arc between the two impulses,
then there is a neighboring three-impulse solution which has less cost.
This can be shown by deriving an expression for the differential cost
between a two-impulse trajectory and a neighboring three-impulse solution.
Jezewski and Rozendaal have shown3 that this expression may be written
as

8J = (1-X_T % bc (4.1)

m

where 6c is the magnitude of the additional impulse, Xm is the primer
vector at t  (the time at which the third impulse is to be added), and {
is a unit vector in the direction of the additional impulse. Equation (4.1)
expresses the first order difference only. Therefore, it can be seen that
if |Xm| exceeds unity, the two-impulse reference trajectory can be improved
by adding a third impulse in the direction of Am at tm. To first order,
the greatest improvement is made if the additicnal impulse occurs at the

point where Ixml is maximum.

The three-impulse trajectory is formed by perturbing the position on
the two-impulse trajectory at t This position perturbation is found to be

6F_ = ATL ™ 4 (4.2)
where
A = ¢22(tm’ tf) ‘p12-1(tm’ tf) B ¢22(tm’ to) (‘012_1(tm’ to) (4.3)

The procedure of forming the three-impulse trajectory is as follows: given
tm and Xm, GFm is calculated as above and two boundary value problems
are solved, the first between ¥ and ¥+ 6F__ with time of flight t__ -t ,

o m m m o
and the second between F_+ 6T, and F, with time of flight t.~t_. The

m m f f 'm

interior impulse is then just the difference in the velocities of the two
trajectory segments at tm' The resulting three-impulse trajectory will
have iess cost than the reference two-impulse trajectory as long as 6c

is not too large. Values of 6c equal to one percent of the cost of the two-
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impulse trajectory are not unreasonable.

4.3 Converging to a Local Minimum

The new three-impulse trajectory will in general not be optimal. By
construction, the primer vector at each impulse time (to, t tf) is a unit
vector in the direction of the impulse. From these boundary conditions the
initial value of the primer derivative for each two impulse segment of the
three-impulse trajectory may be calculated as in Equation (2.15) and the
primer magnitude is thus continuous. The first part of necessary
condition (1) and necessary condition (2) will be satisfied. However, the
primer derivative will in general not be continuous at the interior impulse
(second part of condition (1)), nor will the derivative of the primer
magnitude be zero at that time (condition (4)). The primer history for
this first three-impulse trajectory will look something like Figure 1(d).

On the optimal three-impulse trajectory both these conditions will be
satisfied (as in Figure 1(e)). Therefore, the position and time of the
interior impulse must be adjusted iteratively until the optimal three-

impulse trajectory is found.

The cost of the three-impulse trajectory is the sum of the three AV's.
The problem here is to minimize a scalar function of four variables: three
components of position and the time at the interior impulse. The gradient
of the cost on the three-impulse trajectory with respect to the position and
time of the interior impulse is found3 to be

3J - (i

= (X X)) (4. 4)

+
m m

. ,T
L e T
AL S AN (4.5)
m
where the - and + superscripts refer to times just before and after the mid-
course impulse, respectively. The quantities in Equations (4. 4) and (4.5)
are easily obtained once the two boundary value problems for the two

trajectory segments have been solved.
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Any efficient function minimization algorithm can be used to find

the minimum of J by iterating on Fm and tm' Since analytic partials for

J exist, an accelerated gradient procedure is suggested. In this study a
new function minimization algorithm of Jacobson and Oksrnan20 is used.
This algorithm approximates the actual function by a homogeneous function
in order to update the independent variables of each iteration. The itera-
tion is halted when the decrease in the cost on successive iterations has
become negligible. The trajectory optimization method uses the function
minimization algorithm as a "black box'" which has as inputs the current
set of independent variables (rm and tm)’ the cost, and the cost gradient,

and which yields as outputs the new set of independent variables:

r
m Independent
tm Variables Jacobson-Oksman
Functional = 7
J Cost ,| Minimization New Independent | "m
Algorithm Variables . |
dJ m |
arm Gradient R
aJ
Latm—

When the cost has been minimized, a converged three-impulse tra-
jectory will be obtained which will satisfy all the necessary conditions
except perhaps condition (3), that the p:'imer magnitude must not exceed
unity on any coasting arc. To prove the above statement, first recall that
by construction the primer vector will be aligned with the impulse and have
unit magnitude at all impulse points (condition (2)), and the primer vector
will be continuous (first part of condition (1)). When the cost of the three-
impulse trajectory has been minimized, the gradient of the cost will be
zero. Setting the expressions in Equations (4. 4) and (4.5) equal to zero
yields '
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T oexo (4. 6)
v =0 (4.7)

Equation (4.6) insures that now the primer derivative will be continuous
at the interior impulse point and hence condition (1) is fully satisfied.
Substituting Equation (4. 6) into (4. 7) results in

X Twr-v) =0 (4. 8)

But since the primer vector is a unit vector in the direction of the impulse
att ., the following relation may be written:

Ay © IA‘v‘mIAm (4. 9)

Substituting Equation (4. 9) into (4. 8) yields

L T e
)Lm )Lm =0 = )"m (4.10)
since liml = 1. Thus the derivative of the primer magnitude at the interior
impul: e point is zero and also condition (4} is satisfied, If the magnitude
of the primer vectcr exceeds unity on either coasting arc of the converged
three-impulse trajectory, another impulse could be added and a converged

four-impulse solution found, etc.

4.4 Summary of the Trajectory Optimization Method

The overall step-by-step procedure for finding fuel-optimal impulsive
trajectories is summaried below with pertinent formulas included (this out-
line also gives the structure of the Fortran program used to obtain the
results of the next Chapter):

1. Given the initial and final state vectors and the transfer time,
solve the boundary value problem to find a two-impulse reference
soluticn.
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Compute Xo' lf, )‘o from

_ AVO _ AVf
XO = — kf = - (4.11a, b)
|av_| | a7 |
S -1 — —
Ny = P1p (e t) (- @y (L] (4.12)
and generate a primer history according to
Alt) = (pu(t, to) >\0 + <p12(t, to) )‘o (4.13)

Examine the primer history and if |X(t)| exceeds unity anywhere
between the initial and final times, the two-impulse solution is
not optimal and a small third impulse is added at t o the time

at which |X(t)| is maximum, by perturbing the position at th:

or_ = ATl D5 (4,14)
A,

- -1 -1

Solve two boundary value problems:

(1) from™ toF + 6F with transfer time t_ -t
0 m m m o

(2) fromr + 6r_ to ¥, with transfer time t_ -t
m m f f m

This yields a non-optimal three-impulse solution.

Use the Jacobson-Oksrman algorithm to iterate on L. and tm

and minimize the cost of the three-impulse trajectory. The
cost and cost gradient are found at each iteration by first
solving the two boundary value problems and then using the
following relations:

J = |av |+ lav |+ |av] (1.16)

. o T
3l - ot (4,17)
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. T . T
3 L A+ - -
'd_t; - am Vm ™ Mm Vm)
where
_ Aﬁh _ LEZn _ Aﬁ}
A= A = Ap =
o} — m — f —
IAVO| IAvml IAvfI

R -1, — ‘ —

;\o - %12 ‘tm’ to) [Xm - ‘Pll(tm’ to) ko]
X T 021ty 1) Xg T @aolt ) Ay
Lx+=¢>'1(t t_ ) e - @t t_)X_]

m 12 f2 "m f 11"f 'm’ "m

(4.18)

4,19a,b, c)

(4.20)

4, 21)

(4.22)

5. Examine the primer history of the converged three-impulse
trajectory by computing A(t) from

A(t)

A(t)

‘pll('t' tm) >‘m +<p12(t, tm) >‘m tm

L to) A, t cp12(t, to) Ay, tostst

ststf

4,23)

4, 24)

With )\o, >‘m’ )to, and )'m calculated as in Equations (4.19) to

(4.21) in order to determine if necessary condition (3) is

satisfied or if a fourth impulse should be added.

It should be noted that the above theory and procedure will calculate

minimum impulse trajectories only between fixed initial and final states,

In particular, the position at the final time is fixed throughout the con-

vergence procedure.

Therefore, at this point, in order to find the

optimal transfer to a circular orbit at a given inclination about a body,

for instance, one would have to vary the final position on a circle of

desired magnitude and re-solve the problem until a minimum was found.

Of course, the corresponding velocity at each new position to establish a

circular orbit at that altitude must be supplied to complete the specification

of the final state.
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method of attacking the problem. A much better way of handling variable

end-point constraints will be discussed in Chapter 7.

Another version of the program was written which accepts a starting
non-optimal three-impulse solution and uegins convergence to the three-
impulse optimal trajectory immediately. This procedure is useful if a
previous problem has not fully converged. Also, some existing three-~
impulse solutions, the optimality of which may be of interest, do not
readily derive from two-impulse solutions, An example of such a tra-
jectory, which is investigated in Chapter 5, is a three-impulse trajectory
from L2 to the Earth with a powered lunar swingby.

The trajectory optimization method outlined above utilizes primer
vector theory, an accelerated gradient functional minimization algorithm,
and multi-conic trajectory propagation methods. The multi-conic methods
are used to solve the numerous three-body initial and boundary value
trajectory problems involved in the iteration so that an optimal trajectory
can be found. For the purposes of generating the numerical optimization
results of the nexi Chapter, the trajectory propagation routine used either
the Earth-Moon or Moon-Earth multi-conic method from Section 3.1 (with
a step size of 6 hours) and switched from one method to the other according
to whether the spacecraft was moving toward or away from the Moon. The
radial velocity of the spacecraft relative to the Moon was calculated prior
to each step in the propagation; if the spacecraft was moving toward the
Moon, the Earth-Moon method was used for the next step, and if the space-

craft was moving away from the Moon, the Earth-Moon method was used.
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CHAPTER 5
NUMERICAL RESULTS

9.1 Coordinate System, Image Trajectories, and Dimensionless Units

The basic coordinate system in which most of the results will be
displayed is a rotating barycentric coordinate system. The origin of this
coordinate system is at the Earth-Moon barycenter point. The x-axis
points along the Earth-Moon line towards the Moon; the z-axis is
perpendicular to the Earth-Moon plane and points in the direction of the
Moon's angular momentum vector; and the y-axis is in the Earth-Moon
plane so as to form a right-handed system. This coordinate system and

the Lo libration point are shown in Figure 4.

Miele has shown21 that for every trajectory which exists in this
coordinate system there are three image trajectories, one with respect
to the xy plane, one with respect to the xz plane, and one with respect to
the x-axis. Let the position and velocity on the original trajectory be

given by
(1) ]
y(t) (6.1)

F(t)

[ x(t) ]
y(t) (5.2)

| 3 |

v(t)

where to < tst. Then the position and velocity for the image with

respect to the xy plane may be defined as
x(t)
T{t) = y(t) (5. 3)

-z(t)
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Fig. 4 ROTATING BARYCENTRIC COORDINATE SYSTEM
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x(t)
v(t) = | wv(t) (5. 4)

-z(t)

For the image with respect to the xz plane, the position and velocity are

Xt
() = | ~yit") (5.5)
| z(t") |
T -%(t ‘)]
v(t) = y(t) (5.6)
_'é(tl)_i
where
t! = t tto -t (5.7)

Finally, for the image with respect to the x-axis, the position and

velocity are given by

~ x(t’)7]

F(t) = | -yt (5. 8)
L__--z(t')_~
[ -x(t")7]

() = | yth) (5.9)
B z(t')_

with t ' defined as in Equation (5.7). In the case of a trajectory which
remains totally in the xy plane, the images with respect to the xz plane
and the x-axis are identical, as are the original trajectory and the
image with respect to the xy plane. The image with respect to the xy
plane is flown in the same sense as the original trajectory and the images

with respect to the xz plane and the x-axis are flown in the opposite sense
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(the initial and final points are interchanged).

This knowledge of image trajectories is useful for two reasons.
First of all, whenever the solution to a boundary value problem is found,
three other trajectories are established as well, one or more of which
may be of interest. For instance, in order to find the particular point
on a circular orbit about the Moon from which to leave via a tangential
impulse to arrive at O in a given transfer time, the boundary value
problem from L, to a given position magnitude with no radial velocity is
solved as explained in Section 3.3 with the desired position magnitude
set according to the altitude of the circular orbit. Since this trajectory
is ar image of the desired trajectory, the problem can be solved in this
manner although it could not be solved in its original form, since both

options of the boundary value routine assume a fixed initial position,

The second reason image trajectories are useful is that even though
it may be possible to solve a boundary value problem as stated, it may be
more advantageous in terms of minimizing convergence difficulties to

solve for an image irajectory instead.

The system of units in the computer programs is dimensionless
and is defined as follows: the unit of mass is the sum of the masses of
the Earth and the Moon; the unit of distance is the Earth-Moon distance;
and the unit of time is the period of the Moon's orbit divided by 27 so that
the angular velocity of the Earth-Moon line is unity. Conversion factors

are given below:

384410 km
104, 362 hrs
1023.17 m/sec

]

1 UNIT OF DISTANCE
1 UNIT OF TIME
1 UNIT OF VELOCITY

In this system of units, the gravitational parameter of the Moon is

i (¥.01215), and the gravitational parameter of the Earth is1 - py. In the
rotating barycentric coordinate system (Figure 4), the Earth is situated
in the xy plane at (-y, 0) and the Moon is at (1-u, 0). The L, libration
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point is approximately at the point (1.156, 0).

All trajectories in this Chapter start at the LZ libration point and
end at either the Moon or the Earth; all trajectories are in the Earth-
Moon plane. Trajectories from a body to L, are found by forming the

image which is a reflection about the x-axis.

5.2 Two-Impulse Trajectories Between the Moon and L,

The modified three-body Lambert routine for solving boundary value
problems was used to find a family of relatively fast trajectories between
the L2 libration point and a 185.2 km (100 nautical mile) circular orbit
about the Moon. The first impulse at L2 is the difference between
the velocity the spacecraft has at L2 and the velocity required to transfer
to the Moon. The required velocity at L, comes from the solution to the
boundary value problem. The second impulse occurs at the Moon and
establishes the spacecraft in a circular orbit. The routine was used in
the mode which converges to a desired position magnitude with no radial
velocity and zero inclination. Therefore the impulse at the Moon is

tangential.

Trajectories were found for transfer times from 48 to 100 hours.
Three of these trajectories are shown in Figure 5, and the transfer time,
the magnitudes of the impulses at L,, and the departure and arrival angles

are indicated for each,

Only the magnitude of the impulse at L2 will be plotted versus
transfer time beccause minimizing this impulse minimizes the total cost,
which includes the impulse at the Moon. Jacobi's integral for the three-

body problem may be written as

2V - U(R, r) = C (5.10)

where V is the velocity of the spacecraft in the rotating barycentric
coordinate system; U(R, r) is the potential function; and C is a constant,



Fig. 5
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In the rotating coordinate system, the velocity of the spacecraft before
the impulse at L2 is zero, and therefore the velocity after the impulse
has the same magnitude as the impulse itself. Writing Equation (5.10)

at the initial and final times, we have

2v02 -U_ = C (5.11)

2 -
2Vf -Uf = C (5.12)

Substituting for C in Equation (5.12) from Equation (5.11) results in

2v,? = 2v 24U - U (5.13)
Now the potential U is a function only of the magnitudes of the position
vectors relative to the Earth and Moonlz. Since all these trajectories are
required to be exactly the same distance from the Moon at the final time
and since, to a good approximation, they are the same distance from the
Earth, the quantity Uf has the same value for all trajectories. Certainly
the quantity Uo is the same for all trajectories because they all have the
same initial point, Therefore, from Equation (5.13), if VO is minimized
(remember that Vo has the same magnitude as the impulse at L2) then Vf
is minimized. Minimizing the magnitude of the impulse at L2 minimizes
the magnitude of the arrivel velocity at the Moon. Since the impulse at
the Moon for all these trajectories is a tangential one which merely slows
the spacecraft, then minimizing the magnitude of the arrival velocity
minimizes the magnitude of the final impulse. Through a logical chain
of reasoning it has been shown that minimizing the impulse at L, minimizes
the impulse at the Moon and therefore also the total cost. The same

argument applies to trajectories from L, to the Earth.

In Figure 6, the magnitude of the impulse at L, and the departure
and arrival angles are plotted versus transfer time. With the information
presented on the two plots of Figure 6, anyone could reproduce any of
these trajectories as solutions to boundary value problems. The minimurn

two-impulse transfer for this family occurs at about 77 hours. The impulse
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Fig. 6
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at L, is 144.1m/sec, the impulse at the Moon is 618. 5m/sec, and the total

cost is thus 762, 6m/ sec.

The three trajectories in Figure 5 correspond to transfer times
less than, equal to, and greater than the transfer time for the minimum
two-impulse transfer. By computing the primer vector histories for
these trajectories, we can determine if an additional impulse will decrease
the total cost. If the magnitude of the primer vector rises above unity
anywhere between the initial and final times, adding an impulse will
decrease the total cost. The primer histories for the three trajectories

in Figure 5 are given in Figure 7.

Note, first of all, that the derivative of the primer magnitude at the
initial time is zero for the minimum two-impulse 77 hour transfer,
Although it can not be seen on the figure, the derivative is zero at the
final time alsc. This situation is true of all minimums with respect to
time of flight. The primer history indicates that either increasing or
decreasing the transfer time by slightly changing the initial or final times
will not affect the cost since the primer magnitude approaches unity
asymptotically at both the initial and final times. Since the cost is a
minimum at 77 hours, the gradient of the cost with respect to transfer time

is indeed zero at this transfer time.

Secondly, it appears that trajectories in this family with transfer
times less than or equal to that of the minimum satisfy all the necessary
conditions and are locally optimal, while trajectories with transfer times
greater than that of the minimum are not. This is true because for two-
impulse solutions, the necessary conditions are also sufficient conditions
as has been shown by Lionzz. These non-optimal trajectories can be
improved by an additional impulse in the direction of the primer vector
at its maximum. However, because the primer vector history for the
transfer time which yields the minimum cost does not rise above unity,
there exists no three-impulse solution which requires less cost in the
neighborhood of this two-impulse solution. The minimum two-impulse

solution is locally optimal. From Chapter 2 it is true that for primer
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vector histories of the type which occurred for the 100 hour transfer, the
cost can be improved by an initial coast, If a third impulse were added
for the 100 hour transfer at the maximum of the primer magnitude and an
iteration started to converge to an optimal three-impulse solution, what
would occur is that the interior impulse would grow in magnitude and the
initial impulse would decrease and evantually disappear. The optimal
solution for 100 hours is to coast for 23 hours (remain at L2) and then
apply an impulse to transfer to the Moon in 77 hours. For any time of
flight greater than that of the minimum two-impulse solution, it appears
that the optimal trajectory consists of an initial coast until the time
remaining is equal to the transfer time of the minimum two-impulse

trajectory and then a minimum two-impulse transfer,

Thus for this fast family of trajectories between the Moon and Lo,
a minimum two-impulse trajectory with a total cost of 762.6m/sec is
locally optimal. There exists no neighboring three-impulse solution
which requires less cost than the minimum two-impulse solution since the
primer vector magnitude remains below unity over the entire transfer

time.

A family of slower two-impulse trajectories between the Moon and
L2 which };3ve smaller AV requirements will be investigated next. There
does exist ~ a third family of trajectories which arrive at the trailing side
of the Moon (negative ¢), but these trajectories have even higher AV
requirements than the fast trajectories already dicscussed and for that

reason they were not investigated.

Trajectories from the slower family of two-impulse transfers
between the Moon and L, were generated for transfer times ranging
between 209 and 254. 4 hours. These transfers are quite slow compared
to the family discussed above. Three of the trajectories are plotted on
Figure 8: one for a transfer time below the minimum, one for the transfer
which yields the minimum cost, and one for a transfer time greater than
the minimum. The AV requirement at L2 as a function of transfer time

and the departure and arrival angles are given on Figure 9. The minimum
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FIG. 8
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FIG. 9
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two-impulse trajectory for this family has a transfer time of about 230.8
hours. The required impulse at L2 is 105, 3m/sec; the impuise at the

Moon is 616. 2m/sec: the total cost is thus 721. 5m/sec. These values
compare to 144.1m/sec, 618.5m/sec, and 762.6m/sec for the minimum
two-impulse solution for the fast family discussed previously. The
minimum two-impulse solution for the slow family is 5. 4% cheaper in

total cost than that for the fast family. The impulse at L2 is 26. 9%

smaller. It appears that all the trajectories in this family have a distinctive

cusp or loop when plotted in the rotating barycentric coordinate system.

The primer vector histories for the three trajectories shown in
Figure 8 are given in Figure 10. When compared to the primer vector
histories of the fast family (Figure 7), certain similarities appear. Note
once again that the primer history for the minimum two-impulse transfer
necessarily has a zero derivative at the initial time (and also, although
unapparent, at the final time) since it is a minimum with respect to time
of flight. All trajectories with times of flight greater than that of the
minimum can be improved by an initial coast since the primer magnitude

rises above unity immediately after the initial impulse.

However it can clearly be seen that none of the primer vector
histories satisfy the necessary conditions for a local optimum. From the
behavior of the three primer histories on Figure 10, it appears that primer
histories for trajectories with transfer times less than that of the minimum
have one maximum above unity. Also trajectories with transfer times
greater than that of the minimum will have two maximums. The first is
always above unity and the second will be above unity up to some transfer
time, as yet undetermined, but greater than 254. 4 hours, at which the
second maximum will be exactly equal ato 1. Beyond this undetermined
transfer time, the second maximum will be below unity. The arrows on
Figure 8 show the location, direction, and magnitude of the primer vector

at the second maximum. The third impulse would be added in this direction.

Most importantly, it should be noted that the primer history for the

minimum two-impulse solution does not satisfy the necessary conditions
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for a local optimum because the second maximum is still above unity.
Thus there does exist a neighboring three-impulse solution which requires
less cost than the minimum two-impulse solution for this slow family.
Recall that the minimum two-impulse solution for the fast family was
locally optimal. It is believed that the three-impulse solutions which can
be derived from the non-optimal minimum two-impulse solutions at 230. 8
hours have never before been investigated. Some of these trajectories

are discussed in the following Section.

5.3 Three-Impulse Trajectories Between the Moon and L,

The minimum impulse program was used to add a third impulse to
the non-optimal minimum two-impulse solution of the previous Section and
converge to a minii..um three-impulse solution. Pictured in Figure 1l are
three trajectories., The top one is the non-optimal minimum two-impulse
solution. The middle trajectory is the starting three-impulse solution
which results from adding a small impulse of chosen magnitude in the
direction of the primer vector at its maximum on the non-optimal minimum
two-impulse solution. The bottom trajectory is the solution to which the
minimum impulse program converged. Note that the loop has disappeared

in the converged three-impulse trajectory.

The arrows in the figure give the location, direction, and magnitude
of the primer vector at the interior impulse. For the non-optimal minimum
two-impulse trajectory the arrcw points in the direction that an impulse
would be added. Hence the direction and location are the same for the
upper two trajectories. The magnitude of the primer vector at the interior
impulse is necessarily equal to 1 for the lower two trajec.;tories. The
minimum two impulse trajectory differs very little from the starting three-

impulse trajectory since the magnitude of the interior impulse is small.

The minimum two-impulse trajectory had a 105. 3m/sec impulse at L2
and a 616.2m/sec impulse at the Moon for a total cost of 721. 5m/sec (see
Figure 9). The converged three-impulse trajectory has a 6. 7 m/sec

impulse at L2, a 94,1m/sec impulse 185. 8 hours after leaving L2' and a
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FIG.
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612. 9m/sec impulse at the Moon, for a total cost of 713. Tm/sec. The
total cost is 1.1% cheaper whereas, excluding the impulse at the Moon, the
improvement is 4.3%. Comparing the starting three-impulse trajectory
to the converged three-impulse trajectory, one can See€ that the interior
impulse has grown to almost the magnitude of the original impulse at L2'

Consequently the impulse at L2 has become quite small.

The primer histories associated with the three trajectories in
Figure 11 are given in Figure 12. Note that the primer histories for the
minimum two-impulse solution and the starting three-impulse solution
do not satisfy the necessary conditions. However, the primer history
for the converged three-impulse solution does. For two-impulse solutions
the necessary conditions are also sufficient for a local two-impulse optimum
as was noted in the previous Section. For three-impulse solutions the
necessary conditions are not sufficient for a local three-impulse optimum2
However, satisfaction of these necessary conditions in conjunction with an
accelerated gradient search procedure does yield a sufficiency condition for
for three impulses except under unusual circumstances. The Jacobson-
Oksman algorithm iterates to reduce the cost function at each step such that
a minimum is eventually found. If a neighboring three-impulse solution
existed which also satisfied the primer necessary conditions but was not a
local minimum (such as a saddle-point), the algorithm would almost
certainly not converge to it, because an accelerated gradient search
procedure reduces the cost at each step and cannot normally converge to
anything but a local minimum. It can also be stated that since the primer
magnitude for the converged three-impulse solution does not exceed unity,

there exists no neighboring four-impulse soluticn with less cost.

Recall that the minimum impulse program finds the trajectory with
minimum total cost with respect to the time and position of the interior
impulse by iterating to force the primer derivative to be continuous and
to force the derivative of the primer magnitude to be equal to zero at the
interior impulse. The theory requires that the initial and final states
and the transfer time be fixed during the iteration. Actually, if one

desires that at the final time (immediately after the final impulse) the
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FIG. 12

PRIMER HISTORIES FOR TWO AND THREE-IMPULSE TRAJECTORIES
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spacecraft be in a circular orbit of desired altitude, then the position
vector at the final time may have any arrival angle as long as the circular
orbi! is attained. In other words, the point on a circle of specified
distance from the body at which the circular orbit is entered is not [ixed.
The problem may be re-solved with different fixed [inal states determined
by varying the arrival angle ¢ while keeping the altitude fixed at 185, 2 km,
and a minimum may be found over a set of converged three-impulse
solutions. This was done and it was found that the original converged
three-impulse solution (p = 14, 3°) was the minimum of total cost with
respect to arrival angle. The derivative of the primer magnitude at the
initial time for this converged three-impulse trajectory is negative as can
be seen in Figure 12, For a minimum with respect to transfer time, it

is zero (see Figures 7 and 10). This indicates that lengthening the transfer
time will impro»;e the total cost. Ideally for various transfer times the
minimum with respect to arrival angle should be found and then the minimum
of this set of solutions would give the minimum three~impulse tranrfer
between L, and a 185.2 Kkm circular orbit about the Moon. Another method
would be to reformulate the iteration to include variable end conditions, as

is done in Chapter 7,

Since the [inal position is fixed during the iteration, the final impulse
is not necessarily tangential as it was for the minimum two-impulse solution.
The final state may be pre-periseleneum or post-periseleneum. The
converged three-impulse trajectory for an arrival angle of 14. 3° neverthe-

less arrives almost exactly at periseleneum.

A short list of several L2 to Moon trajectories and their costs is given

below:
Trajectory Total Cost (m/sec)
1. Minimum Two-Impulse
Solution: Fast Family 762.6
2. Minimum Two-Impulse
Solution: Slow Family 721.5

3. Converged Three-Imnpulse
Solution 3.7
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9.4 Two-Impulse Trajectories Between the Earth and L2

A family of two-impulse trajectories between L2 and a 185, 2 km
altitude circular orbit about the Earth was generated, These trajectories
have transfer times ranging from 100 to 200 hours. Three trajectories,
for transfer times below, at, and above the minimum, are given in Figure
13. Also indicated on the figure are the transfer times, the magnitudes of
the impulses at L, and the departure and arrival angles. The AV require-
ment at L, and the departure and arrival angles as a function of transfer
time are given on Figure 14. The minimum two-impulse transfer for this
family occurs at about 150 hours. The required impulse at L2 is 1098. 4
m/sec, the impulse at the Earth is 3145, 9m/sec, and the total cost is
4244, 3m/sec,

The primer vector histories for the three trajectories of Figure 13
are given on Figure 15. The same situation exists for this family of
trajectories as existed for the fast family of two-impulse transfers to the
Moon. Trajectories with times of flight less than that of the minimum
two-impulse solution are locally optimal since the necessc ry conditions
for the primer history are satisfied. Trajectories with times of flight
greater than that of the minimum are not locally optimal and their cost
can be reduced to that of the minimum by an initial coast. Most importantly,
the primer history for the minimum two-impulse solution does satisfy
the necessary conditions for a local optimum. Recall that for the two-
impulse case, the necessary conditions are also sufficient. Therefore
there exists no neighboring three-impulse solution which requires less
cost than the minimum two-impulse solution. For this family of
trajectories, a two-impulse solution with a transfer time of 150 hours and
a total cost of 4244, 3m/sec is locally optimal.

No other families of two~impulse transfers between the Earth and L2
were investigated but a family of three-impulse trajectories is studied

in the next Section.
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FIG. 13 TWO-IMPULSE TRAJECTORIES BETWEEN THE EARTH AND Ly
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FIG. 14

AV'S AND DEPARTURE AND ARRIVAL ANGLES FOR TWO-IMPULSE TRAIECTORIES

BETWEEN THE EARTH AND Ly
1

| T T |
A
Vi,
1200 T 2
2
w
%
& 800 [ |
L MINIMUM AT 150 HRS
~ AV, = 1098.4 M/SEC
>
< a0 F AVEARTH = 3145.9 MISEC |
TOTAL AV = 4244.3 MISEC
0 L l | 1 |
0 40 & 120 160 20

TRANSFER TIME (HOURS)

| | 1 I {
120 [ $ -]
_ EARTH
b Y
ad
£ Wl :
2
> ¢
S 40 [ o
ry'|Le
AVLZ
0 | 1 1 1 1
0 40 80 120 160 200

TRANSFER TIME (HOURS)

63



FIG, 15
PRIMER HISTOR
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5.5 Three-Impulse Trajectories Between the Earth and L2

Three-impulse trajectories between the Earth and I_.2 which employ
a powered lunar swingby are known to existg. Thus the minimum impulse
program can be used to converge to a minimum three-impulse solution
using any known three-~impulse solution as a starting point. The starting
three-impulse solution is a 206, 2 hour transfer from L2 to a 185.2 km
circular orbit about the Earth. The L2~Moon leg takes 77.5 hours with a
required AV at L2

essentially the minimum two-impulse solution of the fast family of transfers

of 144, 1m/sec (this portion of the trajectory is

between the Moon and Lz), At the point of closest approach to the Moon
a tangential impulse of 192, 4m/sec is applied to put the spacecraft on a
128. 7 hour transfer to the Earth where a tangential 3131.1m/sec impulse
establishes the 185. 2 km circular orbit, The total cost of this starting
three-impulse trajectory is 3467.6m/sec. The minimum two-impulse
transfer of the previous section had a total cost of 4244.3m/sec. The

close lunar swingby produces an 18. 3% saving in total cost.

The minimum impulse program was run using this three-impulse
solution as a starting point. The original and converged trajectories
are given in Figure 16; the lunar swingby is expanded in Figure 17; and
the primer histories of the two trajectories are given in Figure 18, Note
from the primer histories that although the primer history for the starting
three-impulse solution is non-optimal since the primer magnitude rises
above unity just before the interior impulse, it is already quite close to
satisfying the necessary conditions so that it would not be expected that
the improvement of the converged trajectory would be very significant.
The converged trajectory requires a 154. 9m/sec impulse at L2, al72.1
m/sec impulse at the Moon, and a 3131. 2m/sec impulse at the Earth, for
a total of 3458, 2m/sec. The improvement over the starting three-impulse
solution is only a fraction of a percent, The starting solution is indeed
quite close to the optimum. The similarity of the trajectories is obvious

from Figure 16,

The converged three-impulse trajectory has one serious problem
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Fig. I8
PRIMER HISTORIES FOR THREE-IMPULSE TRAJECTORIES
BETWEEN THE EARTH AND Lp
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however: it passes below the surface of the Moon. At its point of closest
approach it is 239 km belew the surface. The impulse at the Moon for

the starting three-impulse solution occurred 185. 2 km above the surface

and at periseleneum. The impulse at the Moon for the converged trajectory
has been forced by the iterative procedure of the minimum impulse program
to a point below the surface and prior to periseleneum. The position and
time of the interior impulse are the iterative variables, and they are
unconstrained as the program is presently set up; the theory does not take
into account surfaces since it assumes point masses for the Earth and Moon,
The fact that the position of the interior impulse moved to a point below

the surface was not unexpected. This problem can be eliminated either

by adding to the cost a penalty function which adds a large component of
cost if the interior impulse descends below a prescribed altitude or by
changing the theory to allow for interior point constraints. Thus the
altitude at periseleneum could be fixed and only the angle of the position
vector allowed to vary. In either case, most of the small saving which

the converged trajectory obtained would be lost in bringing the interior

impulse out from under the surface of the Moon.

The first converged three-impulse trajectory has an arrival angle
at the Earth of 72. 4° (see Figure 16). Varying the arrival angle indicated
that the minimum total cost occurred at 70, 4°. For that transfer, the
required impulse at Ly is 158.1m/sec, the impulse at the Moon is 168, 9
m/sec, the impulse at the Earth is 3130. Tm/sec, for a total cost of
3457. Tm/sec. The primer history of this minimum with respect to arrival
angle looks essentially like the ones on Figure 18. What is important is
that the derivative of the primer magnitude as the initial time (and also
the final time) is not zero. Hence a longer time of flight should reduce
the cost. To get the true minimum three-impulse trajectory, the transfer
time should be varied and the minimum over arrival angle for each time
of flight found. There will be some time of flight for which the total cost

will be a minimum.

The impulse at the Earth for the starting three-impulse solution is

a tangential impulse at perigee, but for the first converged three-impulse
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trajectory (o = 72, 40), it occurs before perigee, For the three-impulse
trajectory which yielded the minimum cost with respect to arrival angle

(p = 70, 4%), it occurs almost exactly at perigee again,

The primer histories for the converged three-impulse trajectories
satisfy the necessary conditions. Therefore, these three-impulse
trajectories are locally optimal and there exist no neighboring four-

impulse solutions which require less cost.

A short list of several L, to Earth trajectories and their costs is

given below:

Trajectory Total Cost {m/sec)
1. Minimum Two-Impulse
Solution 4244.3
2. Three-Impulse Solution:
Close Lunar Swingby 3467.6
3. Minimum Three-Impulse
Solution 3457, 7

The results presented in this Chapter concerning optimized three-
impulse trajectories represent the first application known to the author of
trajectory optimization for the three-body problem and for trajectories

to and from libration points.
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CHAPTER 6
ERROR ANALYSIS OF THE MULTI-CONIC METHODS

6.1 Preliminary Remarks

It is the purpose of this Chapter to perform a general error analysis
of the three different multi-conic methods of trajectory integration
derived in Chapter 3 in order to determine the deviations of the analytic
approximations from the actual three-body trajectcry for a single time
step. These deviations are the errors in position and velocity at the end
of a step due only to that step. Two forms of the errors will be developed:
a Taylor series repr2sentation and an integral representation. The
Taylor series are used to find contours of constant error in the Earth-
Moon space, to find boundaries on which the errors of any two methods
are equal, and to provide a method of internal step-size control for the

multi-step integration procedure,

In the process of converging to any of the minimum impulse solutions
presented in Chapter 5, many trajectories were propagated with a
combination of the Earth-Moon and Moon-Earth multi-conic methods as
described at the end of Section 4.4. As ncted there, the trajectory
propagation scheme utilized a simple constant step-size procedure, Let
us consider a trajectory propagated with n steps. The error in position
or velocity at the end of the nth step consists of two parts. The first part
is the error due to the analytic approximation to the true trajectory used
to update the position and velocity from tn-l to tn’ i, e., the single-step
error for the last step. The second part of the error is the contribution
at tn from the error which existed at tn-l' This error propagates from

t
n-1
concerned with the single-step error of the multi-conic approximation to

to tn according to the state transition matrix. This Chapter is
the true three-body trajectory.

6.2 Comparison of the Error Functions for the Multi-Conic Methods

Because the derivations of the single-step position and velocity

error functions for the three multi-conic methods are quite lengthy and

(8!



tedious, they are given in Appendices C and D, We proceed in this

Section directly to an analytic comparison of the error functions.

The single-step position and velocity error functiuns are found in
Appendices C and D by 'ﬁexpanding the errors as Taylor series in powers
of the time step. The coefficients of the series are functions of the state
at the beginning of the step. The derivations in Appendices C and D were
carried out until the first non-zero term in the series for each error was
found. For the position errors this term was the fourth-order term,

and for the velocity errors it was the third order term.

The single-step position error functions for the three multi-conic
methods, given by Equations (C. 44), (D.55), and (D.58), are

- Aa ", . _ T, 3. . 3_
6R _(h) = —= t(I-3tgxuy, ) (p°F +rop)
s 24 (Rrp)BI L" R'R
+(1-32,7,.7) (0°F - B9 | n* + o) (6.1)
I
= Aa T, . _ T., 3.3
6R__(h) = i (I-3uu, ") (p°F +rp)
em 94 (Rrp)13 L R"R
+3 (1-35,8, ") ('R - B°p| h* + om®) (6. 2)
I
= Aa v - - T 3— 3-
oR (h)=———3-3(1-3uu ) (p°F + rp)
me 24 (Rrp)| L R°R
+(1-35,3,7) (o°F - B%p)| n* + o) (6. 3)
I

The single step velocity error functions for the three multi-conic
methods are identical to third order and are given by Equation (C. 46):

72



6R(h) = 6_(%;‘3;3; [ (1-3ugu, ") (p°F + r°p)
+(-38.5. ") (°R - R%)]I h® +0 (n%) (6. 4)

To fourth order the position or velocity error for a single step is
a function only of the position at the beginning of the step and the step
size. Note also that the errors are infinite at the center of either body.
No assumptions other than that the mass of the spacecraft is negligible
were made in order to derive the above equations. These error express-
ions are equally valid everywhere in the Earth-Moon space, and the Moon's
orbit about the Earth is not required to be circular. In order to neglect the
higher order terms of the Taylor series expansions so that the fourth-
order truncation can be used as an estimate of the single-step position
error, one would have to assume that the step size is small enough to
make the Taylor series convergent. That is, the magnitude of the step
size must be smaller than or equal to the radius of convergence for the
series, The radius of convergence depends on the coefficients of the

series, and the coefficicats become infinite at the center of either body.

Note that the position error of any multi-conic approximation behaves
as a fourth-order function of the time step for sufficiently small step sizes,
and the coefficients of this fourth-order term becomes aflinite at the center
of either body. It can be shown that the position error of a two-body
approximation behaves as a second-order function of the time-step, but
the coefficient of the second order term becomes zero at the center of one
of the bodies. Therefore, as the initial state from which a step is
propagated is moved closer to either the Earth or the Moon, a point is
reached at which a two-body approximation has a smaller position error

than a multi-conic approximation for the same step size.

In the limit as the step size approaches zero, the position error for
any method behaves as a fourth-order function of the time step and the
velocity error as a third order function. In the limit the single-step

position and velocity errors are functions only of the position relative to
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the Earth and the Moon at the beginning of the step and the step size,

The
errors are not functions of the velocity at the beginning of the step.

The quantities in the above expressions for the error functions
may be written in a more convenient form, First, the geocentric and

selenocentric two-body accelerations at any time tJ are defined as

FJ
g = - A (6.5)
AJ R- 3
J
Ty
Ea = =-a ‘3— (6. 6)
J r
J
The corresponding gravity gradient matrices are
og
A
_ J___A o . T
J 3R R
J J
BE‘AJ T
N - _ a e
GaJ = - = :*—3-(1 B_rUr )J (6. 8)
J J
Finally, the geocentric and selenocentric disturbing accelerations are
defined as
b . E SN
Ea —RJ—gA T TA—g-a 3 (6.9)
J J r P
J J
e - FJ EJ
OEa = ry-g, —-A—-3-+A—3- (6.10)
J J RJ P

Combining Equations (6, 7) te (6.10) with Equations (8.1) to (6. 3) allows
one to write the fourth-order position errors ag

———

' 4
. _ _ . h
GRS(h) = (GA 5gA +G, 6ga)1 37 (6.11)
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h4

8R, (h) = (G, 68, +3G, 6F,) 57 (6.12)
_ _ P
6R__(h) = (3G, 6, +G,_ 6F )IT (6,13)

The third-order velocity error (Equation (6. 4)), which is the same for
all the methods becomes

= h3

6R(h) = (GA 6gA + Ga 5ga) 5 (6.14)

The new expressions for the error functions are weighted sums of
the same two terms. The three-body geocentric acceleration is the sum

of a two-body acceleration and a disturbing acceleration:

R, = g, +0F (6.15)
J AJ AJ
where
ﬁJ
EA = - A '——3' (6.16)
J RJ
7 _
— _ J J
égA = - a _3' ——'3' (6.17)
J ry P

The first term in any of the errors (GA GEA) is the produce of the
geocentric two-body gravity gradient matrix, Equation (6. 7), and the
geocentric disturbing acceleration, Equation (6.17). At the Earth the
disturbing acceleration, 6'g'A, is zero, but the gravity gradient matrix,
GA, has a third order singularity. The net effect of the product is still
that of a singularity. At the Moon, the disturbing acceleration is infinite
and the product has another singularity, The same arguments can be
applied to the other term, Ga G'Ea, so that both terms have singularities
at both the Earth and the Moon.

That the first non-zero terms in the Taylor series expansions of the
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errors can be expressed by means of gravity gradient matrices and
disturbing accelerations, leads to a new integral formulations of the

error functions in Section 6. 4.

Because the fourth-order position error expressions are functions
only of position relative to the Earth and Moon, these expressions can
be evaluated at various points in the Earth-Moon space to determine what
the magnitude of the position would be for a given step size starting at
that point. All the results which will be discussed in the remaining part
of this Section are valid only in the limit as the step size approaches
zero. Otherwise, we could not truncate the Taylor series for the error
function and use the fourth order term as a valid representation of the
error function. The coordinate system in which the results will be
displayed is illustrated in Figure 19. Its origin is at the point on the
Earth-Moon line midway between the two bodies, The xy plane is the
plane of the Moon's orbit about the Earth and the z~axis points in the
direction of the Moon's angular momentum vector. The same dimension-
less units are used here as were described in Section 5.1, so that the
Earth and Moon, which are both on the x-axis, are at the points (-.5, 0, 0)
and (.5, 0, 0) respectively. Also included on Figure 19 are examples of

the position vectors R, ¥, and P.

The fourth-order position error for the Stumpff-Weiss method

from Equation (6.1) is

6R = ____‘A:E_g |:(1 - 3GRERT) (p3F + rsﬁ)
24 (Rrp)
o 3% o3 .4 .
+ (I - 3ururT) (0°R - R p)] h (6.18)

where for convenience all subscript notation has been dropped. In the
dimensionless units noted above, A =1-u, a = y and p =1, so that the

error may be written as
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Fig. 19 COORDINATE SYSTEM FOR THE ERROR CURVES
Y
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o0R = J"—(—ly‘—% [(I-sﬁRﬁRT) (F + r°p)

24 Rr
+(1-3u, 3, T) (R - rp) | n* (6.19)

Furthermore, p = R - T, so that the above expression further simplifies

to

5R = _P_(l‘aﬂ_)g L(I-BﬁRﬁRT) (F+r°R - r°F)

24 Rr
— 3_ _
+ (I-BErﬁrT) (R+Rr - RSR)] h4 (6. 20)

From the definition of the coordinate system of Figure 19, R and T are

given by
x +.5
R =| vy (6. 21)
.z
% - .5 ]
F = y (6.22)
L 2z -

In order to calculate the position error for the Stumpff-Weiss method at
any point in the Earth-Moon space, one chooses x, y, and z, thus
specifying R and ¥, and then Equation (6. 20) yields the error for a given
step size or the error per unit of step if the step size is unspecified.
Expressions similar to Equation (6.20) may be written for the Earth-
Moon and Moon-Earth methods. The only difference would be the
weights of the two quantities within the brackets, which would not be

unity as for the Stumpff-Weiss method.
First the magnitudes of the position errors along the x and y axes

are investigated. Along the x-axis, y=z=0, and only x need be chosen

to specify R and r. Along the y-axis, x=z=0, and only y need be chosen
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to specify R and T,

On Figure 20, the logarithm (base 10) of the magnitude of the
position error (for a one hour time step) divided by a reference error
(taken to be one kilometer) is plotted versus position along the x-axis,
which is the Earth-Moon line. The positions of the Earth and Moon on
the x-axis are denoted by "E' and "M" respectively. Note that between
the Earth and the Moon, the Stumpff-Weiss method has the smallest
error; on the far side of the Moon, the Moon-Earth method has the
smallest error; and on the far side of the Earth, the Earth-Moon method
has the smallest error. For the Stumpff-Weiss method there is one
point (x=0) on the Earth-Moon line where the magnitude of the Stumpff-
Weiss error is zero. The magnitude of the error for the Earth-Moon
method is zero at the points x = -1.0 and x = -1.5, and the magnitude of
the error for the Moon-Earth method is zero at the points x =1, 0 and
x =1.5. Also the magnitude of the error for all three methods is infinite
at the center of either body. Finally, note that the curve for the Earth-
Moon method is a reflection of the curve for the Moon-Earth method about

the point x=0.

On Figure 21, the logarithm (base 10) of the magnitude of the
position error (for a one hour time step) divided by a one kilometer
reference error is plotted versus position along the y-axis. Everywhere
along the y-axis, the Stumpff-Weiss method has the smallest error, and
the errors of the other two methods are equal. There are three points
at which the Stumpff-Weiss method has zero error. They are at 0 and

+ , 492, approximately.

The velocity error divided by the cube of the step size is almost
exactly the same function as the Stumpff-Weiss position error divided by
the fourth power of the step size. This can be seen by comparing
Equations (6.1) and (6. 4). The only difference is that the velocity error
has a factor of 6 in the denominator and the position error has a factor of
24 in its denominator. Thus, it may be concluded that the plot of the
magnitude of the velocity error divided by the cube of the step size along
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the x or y axis has the same shape as plots of the Stumpff-Weiss position
error on Figures 20 and 21, The actual values of the velocity error
would be measured in km. /sec. for a one hour time step, and the
reference velocity error would be one kilometer per second. The level

of the curve would be displaced upward by an amount equal to log10(4).

Next, contours of constant error magnitude for each method are
found in the xy plane., All the points on any one such curve, if used as
the initial point for a step, have the same position error associated with
them for a given step size. Equation (6.20), which gives the position

error for the Stumpff-Weiss method, may be written as
5 = 1-p) = . & 2
6R = J-‘__stig(a +B) h (6.23)
24 Rr

where p = 1/82.3 and

7. 1) (F + r°R - r°F) (6. 24)

o = (I-3uRuR

B - (-313. ") (R +RF - R°R) (6. 25)

Note that interchanging R and F in the above expression for @ yeidls the
expression for B. If one forms the dot product of Equation (6. 23) with

itself, one obtains

6R[? = E——{—B-z -p)? (o2 4 25TF+ @) nt (6. 26)
576 R r
In order to find contours of constant error magnitude in the xy plane for
the Stumpff-Weiss method, the x and y which satisfy Equation (6. 26),
given |6—§| and h, must be found (z=0 in the xy plane). Let the parameter
k be defined as

576 |68 |°

“2 (1-;.1)2 h°

k = (6.27)

Then Equation (6. 26) may be written as
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1 2 _T 2
EG:(__;‘(Q + 2% E+ﬁ) = k (6.28)

The parameter k is a parabolic function of the magnitude of the
position error, and for a one hour time step a value for k of 1011

corresponds to a position error of about .5 km.

Curves of constant error for the Stumy:-Weiss method were found
as follows: choose a value for k and then, with x specified, iteratively
determine the y which will satisfy Equation (6.28). Expressions similar
to Equation (6.28) for the Earth-Moon and Moon-Earth methods are
found in a similar fashion. The only differences will be the weights of
the three terms within the parentheses. The expression for the Earth-

Moon method is
i (a® + 65 B+ 96) = k (6. 29)
R'r

and the expression for the Moon-Earth method is

1 2 Tz 2 .
W(ga +6m B+ B) = k (6. 30)

It can be shown that if the point (x, y) satisfies Equation (6. 28),
then the points (-x, y), (x, -y), (-x, -y) also satisfy the equation. The
contours of constant error for the Stumpff-Weiss method are therefore
symetric with respect to the x-axis and the y-axis. For Equations (6. 29)
and (6. 30) only symmetry with respect to the x-axis exists. But it is
also true that if (x, y) satisfies Equation (6.29), then (-x, y) satisfies
Equation (6.30). Therefore, the contours of constant error for the Earth-
Moon method may be found by simply reflecting the contours for the Moon-
Earth method about the y-axis. Some of this symmetry may be explained
by the fact that the vectors @ and B are transformed into one another

by interchanging R and T.

The contours of constant error for the Stumpff-Weiss method and

the Moon-Earth method are shown in Figures 22 and 23 respectively.
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Each curve is labeled with its value ¢f k. Increasing values of k for a
constant step size correspond to increasing values of the error magnitude,
The figures take on a three-dimensional appearance if one imagines the
magnitude of the error as the third dimension, increasing in the direction
out of the xy plane toward the observer. Hence, the error contours for
the Stumpff-Weiss method in Figure 22 appear to describe a wide plateau
far from the bodies, three valley-like depressions on the y-axis, and two
infinite mountains centered at the Earth and Moon. The error magnitude
approaches zero at the bottoms of the derpresions and at infinity and

approaches infinity at the centers of the Earth and the Moon.

For the contours of the Moon-Earth method on Figure 23, the
plateau far from the bodies is again evident but there is a deep valley on
the x-axis on the far side of the Moon. There are three depressions
close to the y-axis but they are quite shallow. The two mountains centered
at the Earth and the Moon have differently shaped cross-sections. The
contours for the Earth-Moon method are found by reflecting Figure 23
about the y-axis. In the lower right hand portion of Figure 23 is shown an
expanded view of that part of the k=] curve which crosses the x-axis. The
curvature of the contour is continuous at this crossing, a fact which is
not obvious from the other curves, Not appearing in Figure 23 are two

more very slight depressions beyond the Moon on the x-axis.

The shapes of the curves on Figures 22 and 223 and the fact that
there are locations where the error magnitude approaches zero lead to
the conclusion that the errors cf the methods are strongly dependent on
the position relative to the Earth and Moon. An expanded view of the
contours of constant error magnitude very close to the Earth for all
three methods is shown on Figure 24. The strong dependence of the error
on the position relative to the Earth is quite evident. The contours of
constant error are not circular very close to the body as one might

expect.

The shape of the contours of constant velocity error magnitude for
all three methods will be the same and identical to the contours of
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constant position error magnitude for the Stumpff-Weiss method shown
in Figure 22 since the velocity error function, Equation (6. 4), is the
same function of position relative to the Earth and Moon as the Stumpff-
Weiss position error function, Equation (6,1), If one wishes to interpret
the curves on Figure 22 as constant velocity error curves, then the

parameter k must be defined as

36 |6R|2

k
AT

(6.31)

where Iﬁﬁl is a velocity error magnitude.

FFinally, a few comments can be made about the error functions and
their dependence on the relative masses of the Earth and the Moon. It is
obvious from an inspection of the error functions for the three multi-conic
methods, Equations (6.1) to (6. 3), that the masses of the Earth and the
Moon enter into the error functions through the gravitational parameters
A and a which appear in a coefficient. Therefore, the shape of the contours
of constant error is indpendent of the masses of the Earth and the Moon
and these contours are equally valid for all three-body systems in which
the mass of the third body is negligible, Furthermore, if the error
functions are divided by the product of the masses of the two massive
bodies, then the direction and magnitude of the errors are independent of

the masses and the mass ratio of the two massive bodies,

One more geometric application of the error functions is to find
curves in the Earth-Moon space on which the magnitudes of the errors
for any two methods are equal. These curves would divide the Earth-
Moon space into regions in which the error of one method is less than the
error of another. Equating the error magnitudes for the Earth-Moon and
Moon-Earth methods from Equations (6. 2) and (6. 3) and using the
definitions of @ and B8 given in Equations (6.24) and (6. 25) the following

expression is obtained:

l@ + 38| = |3& + 3Bl (6.32)
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which leads to
a -p =0 (6.33)

Restricting the search to the xy plane, in order to find curves on which
the magnitude of the errors of the Earth-Moon and Moon-Earth methods
are equal, one specifies x and then iteratively determines the value of
y which satisfies Equation (6.33). The vectors R and T are given by
Equations (6.21) and (6. 22) with 2=0. Equating the error magnitudes
for the Stumpff-Weiss method and the Earth-Moon method results in the
following expression

22 +5 B = 0 (6. 34)

and equating the error magnitudes for the Stumpff-Weiss method and the
Moon-Earth method yields

2a2

+EIf = 0 . (6. 35)
The curves which satisfy Equations (6.33), (6. 34), and (6.35) are
shown on Figures 25 and 26. Figure 25 shows all the curves on which
the error magnitudes for the Earth-Moon and Moon-Earth me thods are
equal. In the crosshatched area, the Earth-Moon method has a smaller
error magnitude and this fact is denoted by the inequality em < me. This
region includes most of the area on the side of the y-axis toward the Earth
except for two large segments., In the non-crosshatched area, the error
magnitude for the Moon-Earth method is the smaller. These curves

have symmetry with respect to both the x and y axis,

Figure 26 shows the curves on which the error magnitude of the
Stumpff-Weiss method is equal to that of either the Earth-Moon or Moon
Earth method. In the region within the curve to the left of the y-axis the
Earth-Moon method has a smaller error magnitude than the Stumpff-
Weiss method. In that same region, the Earth-Moon method has a smaller

error magnitude than the Moon~Earth method as can be seen from
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Fig. 26 CURVES ON WHICH THE ERRORS FOR THE STUMPFF WEISS METHOD AND EITHER
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Figure 25. Therefore, within that region, the Earth-Moon method has

the smallest error of all three methods. Similarly within the region
enclosed by the curve on the right side of the y-axis in Figure 26, the
Moon-Earth method has the smallest error., Everywhere other than
within those two enclosed regions, the error for the Stumpff-Weiss method
is the smallest. It can be shown that the curves in Figures 25 and 26 have
rotational symmetry with respect to the x-axis so that to generate the three-
dimensional representation of these curves, one need only rotate the
curves in the xy plane about the x-axis, From an inspection of Figure 26
and the above arguments, it may therefore be stated that the Stumpff-
Weiss method has the smallest error everywhere in the Earth-Moon space
except for two teardrop-shaped areas, one on the far side of the Earth

and the other on the far side of the Moon, within which the errors of the

Earth-Moon and Moon-~Earth methods respectively are smallest,

The curves on Figure 26 have a cusp at the Earth and Moon as can

be seen by the enlarged segment of the curve near the Moon on Figure 26,

The above results were derived using fourth-order position errors.
Since the velocity errors are the same for all methods to third order, all
methods are equally good everywhere in the Earth-Moon space in terms

of velocity errors,

In this Section, some geometrical and analytical results have been
found from the single-step position and velocity error functions for the
three multi-conic methods, In the next Section, some multi-step

numerical results for final position and velocity errors are discussed,

6.3 Numerical Results Comparing Constant and Variable Step-Size

Procedures

The results of the previous Section were derived from single-step
position and velocity error functions and were valid in the limit as the
step-size became very small., A trajectory is calculated by dividing

the total time of flight into several smaller steps and applying the multi-
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conic methods as a stepwise numerical integration scheme. The error

in the position or velocity at the final time arises from a multi-step
procedure, As was noted at the end of Chapter 4, all the trajectory
calculations involved in generating the results of Chapter 5 were performed
by a routine which used a constant step size of 6 hours. The choice of

6 hours did not resuit from any analysis but from the experience the

author had in using the multi-conic methods to propagate trajectories.

A constant step-size procedure is simple but a more efficient procedure

might be obtained by varying the step size at each step.

However, the single-step position error functions derived in
Appendices C and D can be used to define a variable step-size procedure.
The error functions yield the position error as a function of the initial
conditions and the step size. If a maximum allowable position error
magnitude per step is specified, one could solve for the step size to
use on each step. In other words, using the error function as a predictor
of the error, we solve for the largest step size possible without exceeding
some specified error bound. For instance, the fourth-order position

error for the Stumpff-Weiss method is given by
I T P
6R = }‘___SEB.(Q + f) h (6.36)
24 Rr

where @ and B are defined by Equations (6. 24) and (6.25). Taking the

absolute value of both sides and solving for the step size yields

1/4

33 =

h = |28 |°_Rq (6.37)
w(-u) ja+|

Equation (6.37), which is valid only in the dimensionless units (Section
5.1), is a formula for the step size in terms of an error bound [6R| and
may be used to define a variable step-size procedure. Formulas for the
step size for the Earth-Moon and Moon-Earth methods are also easily
found,

In addition to defining a variable step-size procedure, these formulas
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for the step size also may be used to determine which of the multi-conic
methods to use at any step. The logic is to use the method which allows
the largest step size to be taken for a given error. The error function
may therefore be used as a switching function. A switch from one method
to another would occur whenever the trajectory crossed one of the curves
on Figures 25 and 26 depending on whether all three oronly a given pair

of the multi-conic methods are available.

It was decided to test the performance of the multi-conic trajectory
propagation methods in order to determine the effects of step size on
the position and velocity errors at the final time and to find out whether
it would be advantageous to use the error functions for determining step
size and switching. The five different methods of propagating trajectories
which were tested, with a symbol in parenthesis for each which will be
used on figures to denote results associated with that method, are listed
below:

1 Stumpff-Weiss method with constant step size (s).

2 Earth-Moon method with constant step size (em).
3. Moon-Earth method with constant step size (me).
4

Stumpff-Weiss method with variable step size determined from
error function (s - variable step).

5. Combination of Earth-Moon and Moon-Earth methods with
variable step size and switching determined from error
function (em + me - variable step).

The above five methods were tested on three different trajectories, all
of which have times of flight equal to 48 hours. The first of these
trajectories is a 48 hour segment of an Earth-to-Moon transfer. This
trajectory is shown on Figure 27. The coordinate system used on
Figure 27 is a rotating geocentric coordinate system. The x-axis is
the Earth-Moon line. This coordinate system is the same as the rotating
barycentric coordinate system of Chapter 5 in all respects except that
the origin is at the Earth and not the barycenter, Also shown on Figure
27 are those equal error curves from Figures 25 and 26 which this
trajectory crosses. A crossing of any of the dotted curves on Figure 27
will cause a switch from one multi-conic mode to another for method (5)

above. The second test trajectory is a 48 hour segment of the Moon-to-
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Ilarth transfer, This trajectory is shown on Figure 28 also in the rotating
geocentric coordinate system. The trajectories on Figures 27 and 28
were chosen as test trajectories hecause they represent motion predom-
inately toward and away from the Moon, respectively. The third test
trajectory is shown in Figure 29 again in the rotating geocentric coordinate
system. This trajectory was chosen because it is typical of the
trajectories investigated in Chapter 5 in tnat it starts at the L2 libration

point and ends at the Moon.

Each of the five methods of propagating a trajectory was applied
to each of the three test trajectories to calculate the final position and
velocity for various numbers of steps. For the first three methods which
are constant-step methods, the number of steps in the propagation can be
specified beforehand, but for the last two methods, which are variable-
step methods, a maximum allowable position error per step is specified
and then the nurmber of steps the method used is noted. The magnitude of
the error in the final position vector is used as a meausre of accuracy,
and the number of steps used in the propagation is taken as a measure of
how much time was spent in propagating the trajectory, because each
step in the integration procedure involves the solution of two Kepler
problems and these Kepler solutions are the most time comsuming
calculations of the multi-conic procedure. As the number of steps gets
very large, the final position vector for any method approaches the exact
final position vector. The exact final position vector was taken to be that
final position vector such that a further increase in the number of steps

would not significantly change the results.

For the 48 hour segment of the Earth-to-Moon transfer, the
logarithm (base 10) of the magnitude of the final position error (divided
by one kilometer) for the three constant-step methods is polotted on
Figure 30 as a function of the iogarithm (base 10) of the number of steps
used in the propagation. It can be seen that for few steps, i.e., large
step sizes, the Earth-Moon method has the smallest error, the Moon-
Earth method has the largest error, and the Stumpff-Weiss method has

an intermediate performance. However, as the step size gets very small,
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method with variable step size, the combination variable-step method
(method 5), and the Earth-Moon constant-step method. The Earth~Moon
constant-step method is included because it was the constant-step method
with the best overal] performance. It can be seen that except for very
large step sizes, the position errors of the two variable step-size methods
are about the same and offer an improvement over the constant-step
method with the smallest errors,

On Figures 32 and 33 the same plots are displayed for the 4§ hour
segment of the Moon-to-Earth transfer. A similar behavior is evident on
these figures, For the constant-step methods, the best performance for
large step sizes is associated with the Moon-Earth method, the worst
performance with the Earth-Moon method, and an intermediate performance
with the Stumpff-Weigg method. The method whose derivation used the

test trajectory has the best performance, The Stumpff-Weigg method

which has no such assumptions about the nature of the trajectory has an
intermediate performance. The method with the wrong assumptions hag

the worst performance, However, for small step sizes, all three constant-
step methods have approximately equal position errors, Again the variable-
step methods show an lmprovement for a large range of step sizesg

(Figure 33),

On Figures 34 and 35 the same results are illustrated for the 43 hour
L2-'i'o-Moon transfer. Here the results are slightly different. This
trajectory is not a trajectory which really satisfies either set of

‘The motion along the trajectory is neither away from the Earth and toward
the Moon nor vice versa. The position errors of all three constant step
methods are essentially the same, Also the variable Step methods offer
no great improvement,
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The results which have been presented in this Section can be
explained with the help of the single-step position and velocity error
functions and by remembering the assumptions used to derive the multi-
conic methods. For large step sizes (few steps), the truncated series
for the error functions do not apply because they are only valid in the limit
as the step size becomes very small. With reference to the constant-step
methods, the results showed that the method whose assumptions concerning
the direction of motion relative to the Earth and Moon were satisfied by the
particular trajectory under investigation, has the smallest position error
for large step sizes. Thus the results are consistent with the theory. For
instance, if a spacecraft is moving along an Earth-to-Moon trajectory
toward the Moon, the multi-conic method which propagates geocentric
conics from the initial state and selenocentric conics from the final state,
i.e., the Earth-Mcon method, will have the smallest error. Furthermore,
the method which makes the wrong assumptions would be expected to have
worse performance than a method which makes no such assumptions, the
Stumpff-Weiss method, which always propagates both conics from the
initial state. Hence, if prior information as to the nature of the trajectory
is available, then, when large steps are used in propagating the trajectory,
the use of either the Earth-Moon or Moon-Earth method yields a definite
improvement over the Stumpff-Weiss method in terms of final position errors,

This results agrees with that of Wilson15. The Lz—to—Moon trajectory is
neither an Earth-to-Moon type nor a Moon-to-Earth type, so that no method

is substantially superior.

The results also snow that for the constant-step methods, all three
methods had essentially the same position error for small step sizes
regardless of the nature of the trajectory. This does not seem to agree
with theory since the single-step position error functions are different
for each of the methods. From Figure 27 one can see that the trajectory
does not remain in an area of space where either the Earth-Moon or
Moon-Earth method has the smaller per-step position errcor relative to
the other but is continually entering and leaving such regions. This
would lead one to believe that the Earth-Moon and Moon-Earth methods

would have about the same performance. But the trajectory of Figure 27
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never leaves that region of space where the Stumpff-Weiss method has

the smallest per step position error of all three methods (see FFigure 26),
yet the final position error for the Stumpff-Weiss method is no better

than that of the other two methods for small step sizes (Figure 30).

Similar arguments can be made about the other two test trajectories. For
instance from Figure 29, it can be seen that the Lz-to-Moon trajectory
spends a good deal of its time in a region of space where the Moon-Earth
method has the smallest per-step position error, yet again all three methods

have about the samre final position error for small step sizes (Figure 34).

The single-step position error functions cannot explain these results,
The reason is that the final position error after many small steps is
caused not only by the per-step position error, but also by the per-step
velocity error. In fact, the major portion of the final position error is
caused by the per-step velocity error. If a trajectory propagation took
n steps, then the final position error at the end of the nth step would
consist of the position error due to the nth step and the contributions
from the position and velocity errors of the previous n-1 steps, errors
which propagate according to the state transition matrix, The velocity
derivatives in the state transition matrix typically are larger in magnitude
than the position derivatives. The orders of magnitude of the elements
in the partitions of the state transition matrix are typically as shown

below:

<1 1

The per-step velocity errors have a greater effect at a later time than do
the per-step position errors and also the per-step position error is a
higher order function of the time step than the per-step velocity error.
Hence, in a multi-step propagation, the final posilion error is caused
mainly by the contributions of the per-step velocity errors. The results
can now be explained, Since the per-step velocity errors are the same

for all three multi-conic methods for small step sizes, then the final
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position (and velocity) errors will be of approximately the same magnitude
for all three methods because the per-step velocity errors tend to
dominate as causes of final position and velocity errors through the state

transition matrix.

It was noted from the results that the variable-step methods showed
an improvement over the constant-step methods for small step sizes.
The reason for this is that although the variable step-size procedure
theoretically should work since it adjusts the size of the step according
to an error prediction, thus dividing the total time of flight into steps
more efficiently, its performance depends on the accuracy of the error
function, and the accuracy of the error function becomes better as more

steps are used, i.e., as smaller steps are taken.

With the results from this and previous Sections, a statement may
be made concerning the relative advantages of the multi-conic methods.
For the calculation of accurate trajectories, it appears that the Stumpff-
Weiss method is the one to use for several reasons. First, the Stumpff-
Weiss method is the simplest to use. The other two methods should
always be used together, thus necessitating switching logic. Secondly,
the velocity errors, which dominate, are the same for all three methods,
so that there would be no advantage tc using one of the other methods.
Finally, the calculation of the state transition matrix for the Stumpff-
Weiss method is an additive process, while for the other two methods
it is a multiplicative process, and hence for computer operations, the

Stumpff-Weiss calculation is less susceptible to truncation errors.

It was concluded above that the final position and velocity errors
after many steps were caused mainly by the per-step velocity error, which
is for small steps a third order function of the time step. The final
position and velocity errors after many small steps would therefore be
expected to be second-order functions of the time step if equal time steps
are used, because for a constant step-size numerical integration procedure,
the error after many small steps is usually a one order lower function of

the step size than the per-step error. The terminal slopes of any of the
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final position error curves for the constant step methods on Figures 30,
32, and 34 confirm this second-order behavior since a one order of

magnitude decrease in the step size produces a two order of magnitude

decrease in the final position er:or.

6.4 Integral Formulation of the Error Functions

The results at the beginning of Section 6.2 motivated a new approach
to the derivation of the error functions. In this new approach, expansions
of the geocentric and selenocentric three-body accelerations about the
corresponding two-body accelerations are introduced into the derivation
of the multi-conic methods in order to develop an integral formulation

of the error functions.

First the integral error functions for the Stumpff-Weiss method
will be derived. We start as before with the first two integrals of

Equation (3.1) which are given by Equations (3.6) and (3. 8):

R.-R =—AS J dt. -a Jdt-a.zy'] dt (6. 38)
F I RB J SF_B' J T T ©t
1 g 177 1 Py
B. -R. =hR -ASFﬁ'hﬁJ dt .dt -aSF KFJ di .dt., - rFfKEJ dt .dt
FopT M 3_3'JK S'-EtJKa\SB"?;JK
1 1By 1157 1 1Pg

(6.39)

The integrals involving 'ﬁJ in the above expressions are known exactly

and are given by Equations (3.16) and (3.17). On the other hand, the

integrals involving R'J and r;are integrals of functions of the three-body
geocentric or selenocentric position and cannot be evaluated exactly.
In Chapter 3, the geocentric and selenocentric position vectors were
approximated by two-body position vectors propagated forward from the

initial time, i.e., FIAJ and FIaJ in order to derive the Stumpff-Weiss

method. Here we go one step further and use as an approximation for

R, and T, an expansion of R, and F

J J J J and T

about the quantities RIAJ aJ’
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The expansions of FJ/RJ3 and FJ/PJ3 may be written as

R R iy

J - _1AJ 3 (J)l (ﬁ—ﬁ >+ (6. 40)
R 3 R3 Sk \m 3/ _ J TIAJ

J 1AJ J 7J  R;=R[p,
T T T

J _TlaJ , J -

g -2+ 2 (L) (F;-Frag) * - (6. 41)
r r ar r - _—

J IaJ J J r.=r

J "Iad

With the definitions of GA and Ga given in Equations (6. 7) and (6. 8)
J J

the above two equations become

R

3 _ T1AJ 1 - =
—3 = =3 KGAIAJ (R, RIAJ>+... (6. 42)
J T1AJ
r. T.
J . Trag 1 ~ =
r3 = r3 EGalaJ (rJ rIaJ)+"' (6.43)
J IaJ

where the notation G, signifies replacing R in GAJ by lﬁIAJ' The

IAJ
quantity G, is defined similarly. If one defines GTT\'—J and GFJ as
IaJ
6R; = Rj- Ripj (6. 44)
GrJ = TJ - Tlag (6. 45)
then
R R
Jo- AT _Llg, &R +... (6. 46)
R 3 RT{ A AIAJ J
J IAJ
T r
J _ 1aJ _1 —
rg r3 aGaIaJ BrJ+... (6.47)
J IaJ
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The integrals involving RJ in Equations (6.38) and (6.39) may be

evaluated with the substitution of Equation (6.46) (neglecting the higher

order terms):

F o= T = F
- Ry ¢ Brag 5
-AS ?dtJ:_AS;?—JrS GIAJ Ry dt;
1 By 1 Biag 1
F
R., .-R, + G 6R . dt (6. 48)
IAF ™ B1 SI Appy 03
FK g
—AS \ —Fdtdt, 3 —AS S Riag dt ;dt & g GRJ dt it
171 By I IAJ
F K
R pp-F-DR +S \ GAIAJ 6R, dtdti o 40

In a similar fashion, the integrals involving FJ in Equations (6. 38) and
(6.39) become, with the substitution of Equation (8. 47):

F

r
J
“ag——-a-dtj.
1 fg

~

F K -

: I'J -
) ag g o3 dtydtye = g
1157

Now substituting Equations (6. 48),

FI-hF'I+§ \ G, OF, dtdt

r +S G, br dt (6. 50
alaJ ! )

K (6.51)

(6.50) and (3.16) into E' uation (6. 38),
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F

Rp ¥ Riap ¥ Trap ~ T1 7 W (PR~ U (GA
I

6RJ+G GFJ)dt

IAJ AraJ J

(6.52)

and substituting Equations (6. 49), (6.51) and (3.17) into Equation (6. 39),

~

Rp = Rjpp *Tap T "B TH (Pp - P -~ hpy)

F K
+ S G 6R. + G 6F. ) dt .dt., (6.53)
SI I ( AIAJ J g J) JTK

Therefore the position and velocity error functions for the Stumpff-Weiss

method may be written as

F K
6R (to) = & G 6R. + G 6F\ dt . dt (6.54)
s''F BI : ( Apag 37 Tapg J) T
F
§R (t.) = \ (G 5R. + G 6F . ) dt (6.55)
sty 31 \ Aag 37 Tapg J> J

For the Moon-Earth method, in order to evaluate the integrals of

T{J and ‘r‘J in Equations (6. 38) and (6. 39), the approximations used were
RJ = RFAJ and Ty =Ty Therefore, in this case, the expansion for
= 3.
RJ/RJ is

—ﬁ TR— E

I - “EAJ . lg, 6R; t... (6.56)

RJ RFAJ FAJ
where

GRJ = RJ'RFAJ (6.57)

and the expansion for 'FJ/ rJ3 is the same as Equation (6.47). The

integrals involving -ﬁJ become

F T F
J ~ = -.__ " —_ N
I °J I
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F K _ _
-AS S —-—,,dl:}\dth ¥ Rp-Rpa " Bpar ) S GAFAJGRJ dt dt, (6.59)
I

and the integrals involving FJ are the same as Equations (6.50) and (6, 51).

Substituting Equations (6.50), (6.58) and (3.16) into Equation (6. 38), one

obtains
F

“Y B tp (P -5)+S G 5R. +G. 6F. )dt, (6.60)
FAI  Tlar T P F~ P I(AFAJ J a, ] J> J

Substituting Equations (6.51), (6.59) and (3.17) into Equation (6. 39), and

R

simplifying with Equation (6. 60),

R =T

FAL = Flap t P - BTpp t 6 (Pp - By - hog)

F K

S \ KGAFAJ 6R, +G, GFJ> dt dt,,
11

+

laJ
- hS (GA 6F “+q, 6T ) dt (6. 61)

The integral expressions in Equations (6.60) and (6. 61) yield the
errors in the estimates of ﬁFAI and ‘ﬁFAI for the Moon-Earth method.
That is, we have found the errors in the position and velocity just prior
to the last geocentric conic of the Moon-Earth method. The position and
velocity after the last geocentric conic are the estimates of the true
three-body position and velocity. The errors in these estirnates are
easily found. First let us write the errors in ﬁFAI and T}—FAI which are
taken from Equations (6.60) and (6. 61),

F

(tg) = S G SR. +G 5F. ) dt (6. 62)
Rpal : ( Apps 3 2, J) J
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F K
SR, .(t.) = S G SR. +G 57 ) dt _dt
FAI''F SI 1( Apas  d Al J) 7%k

F
— hg G SRS +G 6F.)dt (6. 63)
‘I< AFAJ J arag J) J

Then the errors in the final position and velocity are

me'tF! A ORpp(tg)

- @ (to, t) (6. 64)
b ,
2B 6R_ . (t_.)

FAL'E

A . . cps .
where QZB(tF’ tI) is, as in Chapter 3, the state transition matrix
associated with a two-body geocentric conic, which in this case is the

final conic of the Moon-Earth method.

The final position and velocity errors for the Earth-Moon method

may be found in a similar fashion and are given by

GRem(tF) a GFFaI(tF)
. - ¢2B(tF, t) . (6.65)
where
F
6T parte) = (GAIAJ 6R | + GaFaJ 6% | ) dt | (6. 66)

I

F K
6F o) = (64 ORy+G, 67 *Y at dt
Fal''F Y ( AIAJ J apag J /7K

5T ) dt | (6. 67)

114



GrJ = Ty-Thog (6.68)

—

and 6R is defined by Equation (6.44). The matrix & pltps t)) is the
two-body state transition matrix associated with the last selenocentric

conic propagation of the Earth-Moon method.

This new formulation of the error functions yields approximate
analytical expressions for the final position and velocity errors. They
would still be approximate even if the integrals could be evaluated exactly,
because the expansions, which were substituted for the unknown functions
of I_QJ and FJ, were truncated, and only the linear terms were retained.
On the other hand, the Taylor series formulation derived in Appendices
C and D would yield the error functions to any desired accuracy for any
step size if a sufficiently large number of terms for the series were
included. Of course, the effort required is prohibitive. It appears that
the integral expressions for the errors, if easily calculable, yield a
more accurate estimate of the errors than a truncated Taylor series,
because information at both ends of the trajectory segment from tI to tF
is included in the integral expressions, whereas in the Taylor series
formulas for the errors, only information of the initial state (at tI) is

utilized.

By examining the integral formulas for the error functions, it can
once again be shown (as in Appendix C) that the derivative of the position
error is equal to the velocity error for the Stumpff-Weiss method but not
for the Earth-Moon or Moon-Earth methods. The position and velocity
errors for the Stumpff-Weiss method are given by Equations ‘6.54) and
(6.55). Note that combining these two equations allows one to write the
position error as

F [
BRg(tp) = \ () diy (6. 69)
I
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The position error is the first integral of the velocity error, or the

derivative of the position error is equal to the velocity error.

For the Moon-Earth method, if the errors in ﬁFA[ and ﬁFAI
given by Equations (6. 62) and (6. 63) satisfy the test that the derivative
of the position error is equal to the velocity error, then the errors in
the final position and velocity will also satisfy the test, and the converse
is also true, because the final position and velocity are found by
propagating ﬁFAI and ﬁFAI forward on a geocentric conic, and the final
conic propagation will preserve either the satisfaction or non-satisfaction
of the test. The above reasoning is also stated in Apprndix D. The errors
in EFAI and ‘EFAI are given by Equations (6.62) and (6. 63), Combining

these two equations allows one to write the error in ﬁFAI as

F
Rparltp) = | 6, ) dt, - h 6 (tr) (6. 70)
I

Taking the derivative of the above equation yields

d = _ _.d =

Hf? GRFAI(tF) = ha-f-li—‘ GRFAI(tF) (6. 71)
The derivative of the error in RFAI 1s not equal to the error in RFAI
and therefore the derivative of the error in the final position is not equal

to the error in the final velocity,

Due to the integral nature of the error functions derived in this
Section, they cannot be evaluated with knowledge only of the state at tI'
That is, the errors cannot be calculated prior to taking a step. Therefore,
these integral error functions are not useful as predictors of the error,
so that they can not be used for internal step-size control or for switching
from one multi-conic method to another, They can be used, however, to
determine approximately the errors in position and velocity after a step
has been taken, Adding these error estimates to the estimates of the
three-body position and velocity would yield more accurate final position

and velocity results. For instance, Equations (6.52) and (6. 33) could be
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used to define more accurate estimates of the three-body final position
and velocity for the Stumpff-Weiss method, and any quadrature formulas

can be used to evaluate the integrals.

For the Earth-Moon or Moon-Earth method, we may eliminate the
calculation of the final position and velocity errors according to Equation
(6.64) or (6.65) and simply use the integrals of Equations (6.62) and (6.63)
or (6.66) and (6. 67) to calculate additive corrections for the state prior
to the last conic. No numerical results utilizing the integral formulations

of the error functions have been generated.

117



CHAPTER 7
THE VARIABLE END-POINT TRAJECTORY
OPTIMIZATICN PROBLEM

7.1 Preliminary Remarks

The trajectory optimization problem, which was introduced in
Chapter 2 and whose solution was outlined in Chapter 4, may be called
the fixed end-point trajectory optimization problem. Whenever a three-
impulse trajectory is optimized by iterating on the position and time of
the interior impulse, the position and velocity at the final time are fixed
throughout the iteration. However, a fixed final state is not consistent
with certain problem statements. For instance, the criterion for all the
trajectories investigated in Chapter 5 was that the final position and
velocity should establish the spacecraft in a circular orbit of given
altitude. Since all the trajectories of Chapter 5 lay in the plane of the
Moon's orbit about the Earth, a specified inclination of zero degrees was
also _aplied. The problem statement really was concerned with a circular
orbit of desired altitude and inclination at the final time rather than with

a specific position and velocity at the final time.

To fully solve the optimization problem to a circular orbit of zero
inclination, a time consuming procedure was used in Chapter 5. Once a
converged three-impulse trajectory was found, a new problem was
defined by respecifying the final position vector while mairtaining its
magnitude. That is, the final position vector was varied around a circle,
and the optimization problem was resolved many times to find the minimum
of the converged three-impulse solutions with respect to the point of
insertion into the circular orbit. Specifying the arrival angle, ¢, which
was arbitrarily defined as in Figure 6, fully determined the insertion
point for a position vector lying in the Earth-Moon plane. Each new
problem had a new fixed final position vector, and for each new final
position vector the final velocity vector was chosen such that a circular
orbit was established. The magnitude of the final velocity vector is of

course deterrnined from the magnitude of the pusition vector, and it must
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also lie in the Earth-Moon plane; otherwise, the inclination of the circular

orbit would not be zero.

The cumbersome procedure described above enabled the solution

of the trajectory optimization problem to a circular orbit of desired
altitude and zero inclination to be found with a fixed end-point trajectory
optimization method. Notice that if a non-zero inclination were desired,
then this procedure would become quite unwieldy since the specification
of the insertion point would then require two angles, such as the longitude
of the ascending node, {}, and the argument of latitude, 8 (see Figure 36).
A variable end-point optimization technique is introduced in the next

Section,

7.2 Variable End-Point Constraints and the Transversality Conditions

For the fixed end-point trajectory optimization problem, the
position and velocity at the final time, Ff and Vf, are fully specified,
For the variable end-point problem, no components of the final position
or velocity are specified, but they must satisfy a set of constraints, At
this point the analysis will be specialized to the case for which the
constraints are those which will insure a circular orbit of desired

altitude and inclination at the final time.

A set of constraints satisfying the above requirements are

IFfI = r (7.1)
AR (7.2)
T, v, = 0 (7. 3)
676, = cosi (7. 4)

where ﬁz is a unit vector normal to the Earth~-Moon plane, and Eh is a

unit vecior normal to the orbit plane. The quantity ﬁh is defined as
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Fig. 36 DEFINITION OF THE LONGITUDE OF THE ASCENDING NODE AND THE ARGUMENT
OF LATITUDE FOR A LUNAR ORBIT

Orbit Plane
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1. =

h (7.5)

=71
- |

where Hf = Ff X Vf. The above equations refer to the case of a final lunar
orbit. The altitude of the desired circular orbit determines r, the
magnitude of the final position vector, and also the magnitude of the
final velocity vector. The radial velocity at the final time must of
course be zero for a circular orbit, and the dot product between a unit
vector normal to the Earth-Moon plane and a unit vector normal to the
orbit plane must be equal to the cosine of the desired inclination.
Satisfying the above four constraints will insure that at the final time

the spacecraft will be in a circular orbit of desired altitude and inclination.

For the fixed end-point nroblem, each of the six components of the
final state (position and velocity) is specified. For the variable end-point
problem, the final position and velocity must satisfy four scalar
constraints given by Equations (7.1) to (7.4). Since there are only four
scalar constraints for the variable end-point problem, two additional
boundary conditions are needed to fully specify the problem. These are
provided by two transversality conditions involving the adjoint variables,
i.e., the primer vector and its derivative. Before deriving these
transversality conditions, a few statements about the necessary conditions

can be made.

Because there are only four constraints involving the state at the
final time, the set of allowable end points is a manifold of dimension two.
Let us assume that a variable end-point optimization problem has been
solved and that the final position and velocity on the manifold which
satisfied the solution are Ff and Vf. Now this solution is of course also
the solution to the fixed end-point optimization problem for which the
specified final position and velocity are Ff and ?f. Because the solution is
valid for that particular fixed end point, the four necessary conditions on
the primer vector (listed in Section 4.1) will be satisfied. If, in addition,
a gradient search procedure was used to find the solution, then the solution

is a local minimum. In order to find a solution to the fixed end-point
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trajectory optimization problem, we must find th2 trajectory which
arrives at the specified final state and which satisfies the necessary
conditions on the primer vector. In order to find a solution to the
variable end-point trajectory optimization problem, we must find the
trajectory which satisfies the four scalar constraints on the final state,
Equations (7.1) to (7. 4), i.e., which arrives at the allowable end-point
manifold, which satisfies the necessary conditions on the primer vector,
and which also satisfies two transversality conditions. If the above
trajectory is found with a gradient search procedure, the solution is a

local minimum.

From optimal control theory, the two transversality conditions
needed to complete the specification of the boundary conditions are given
by the condition that the adjoint vector be perpendicular to the constant

manifold at the final time. Let the four scalar constraints be written as

b, = If‘fl'f‘=0 (7.6)
o = Il o o
Yy = Ty vy =0 (7.8)

¢p4 = ﬁzTﬁh—cosi=0 (7.9)

From Chapter 2, the adjoint vector for position was defined as g, and
the adjoint vector for velocity was defined as ), the primer vector. But

Z= -\, so that the full adjoint vector is

the transversality conditions are therefore given by



) .
-— _ 1
X - z b (7.10)
i=1 Te
4
A = z -aﬂ (7.11)
f “ig '
i=1 f

where the u; are arbitrary constants.

A more useful form of the transversality conditions may be obtained
if an orbital element formulation for the final state is employed. If the
final position and velocity satisfy the four scalar constraints, Equations
(7.1) to (7. 4), then this is equivalent to specifying the following quantities:
a, the semi-major axis of the orbit, e, the eccentricity, and i, the
inclination. The time of insertion into the orbit is also known and is
equal to tf. The constraints specify a circular orbit, so that a = r and
e = 0. The orbital elements left unspecified are  and §, the longitude
of the ascending ncde and the argument of latitude. We use the argument
of latitude rather than the argument of the periapse point because for a
circular orbit a periapse point is undefined. In an orbital element
formulation of the boundary conditions, four components of the state at

the final time are specified, and two, Q and 8, are iree,

From optimal control theory, if any of the components of the final
state are free, the adjoint variables associated with those components
must be zero at the final time, Thus the two transversality conditions
necessary to complete the specifications of the boundary conditions at the

final time are
Aty = 0 (7.12)
ke(tf) = 0 (7.13)

where AQ and )\, are the adjoint variables for the longitude of the

8

123



ascending node and the argument of latitude respectively. Equations (7.12)
and (7.13) together with Equations (7.1) to (7. 4), provide six boundary
conditions at the final time, A trajectory which is the solution to the
variable end-point optimization problem must satisfy the necessary
conditions on the primer vector, the four constraints on the final state
given by Equations (7.1) to (7.4), and the two transversality conditions

given by Equations (7,12) and (7.13).

Since the state variables which we have been using are the components
of position and velocity vectors and not the orbital elements, we have
available to us the adjoint vectors associated with position and velocity,
i.e., the primer vector X, and its derivative, Therefore, the adjoint

variables associated with Q and § must be expressed in terms of the

primer vector and its derivative. This has been done and the result524' 25
are
Ay = (TXxX+AAxT)L W (7.14)
Q z ’
A, = TxA+AxT) T (7.15)
8 h )

The vector quantity within the parentheses is a constant of the motion

for optimal impulsive trajectories in an inverse square force field.
Notice that on an optimal trajectory this vector is constant across an
impulse, because ), ;)\, and T are everywhere continuous, and the change
in ¥ at each impulse is in the direction If X. Notice also that the adjoint
variable for each angle is simply the dot product of this particular vector
and a unit vector normal to the plane in which the angle is measured

(see Figure 36). The transversality conditions, Equations (7.12) and
(7.13), may now be written in terms of the familiar primer vector and

and the final position and velocity vectors:

T, x g +Xfxff)Tﬁz =0 (7.16)
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respect to arrival angle. The method which will be developed in the
remaining part of thig section will concern itself with two-impuilse traject-
ories from the L2 libration point to a circular orbit about the Moon for
non-zero inclination, All of the trajectories Studied in Chapter 5 were in

the Earth-Moon plane. Many two-impulse trajectories were investigated

given initial position and a given final position magnitude with no radija]
velocity and any desired inclination. The initial position was always
that of L2. The initial impulse was then defined as the difference between

which were investigated in Chapter 5 were planar and utilized a tangential
impulse to establish the circular orbit at the destination body,
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such as those of Chapter 5, a tangential injection does satisfy the

transversality conditions. Iet us define the vector quantity C;as
C, = vfx)\f+)\f+rf (7.18)

The transversality conditions are then

_T_ _
Ce U, = 0 (7.19)

=T _

¢y T 0 (7.20)
Since the final impulse is a tangential one which serves only to slow the
spacecraft to circular orbit velocity, then Xf, which is aligned with the
impulse, points in the direction opposite to that of the final velocity

vector Vf (see Figure 37) and therefore

Ve X lf = 0 (7.21)
Therefore, we have that
_T- _ = . T_
c; U, = (Xfx rf) o, (7.22)
But
~ =\ _ =T —
( fXTp) T, = )tf (T'fxuz) (7.?3)

by a vector identity for scalar triple products, Noting from Figure 37 that
Xf is a unit vector which points in the direction of the product Ff x ﬁz, we
can write

-~ T -  — _ =T
>‘f (rfxuz) = re )gf xf (7.24)

But X, & = Agk; and X = 1by definition, so that
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cgu, = rfxf (7. 25)

Also since for a zero inclination orbit ﬁh ='1TZ, we have

g, 4, = T, E, (7. 26)

Unless )‘-f = 0, the two transversality conditions (which reduce to
one condition for a planar trajectory) will not be satisfied, and a tangential
injection is not optimal for planar transfers. As noted in Chapter 5, for
time -optimal transfers, that is, for transfers which can not be improved
by a coasting segment, )\f = 0. For the special case of time-open
transfers a tangential injection will be optimal for planar trajectories.
But in general tangential injection for two~-impulse transfers to a zero
inclination circular orbit is not optimal, The same statement can be
made for non-zero inclination circular orbits. It would be interesting
to apply a variable end-point trajectory optimization method to two-
impulse trajectories to a circular orbit of desired altitude and various
inclinations to determine what improvement the optimal injection makes

over a tangential injection.

The variable end-point method may be developed as follows. From
optimal control theory, it is true that if a solution satisfies the necessary
conditions, the adjoint variables are influence functions for small
variations in the corresponding state variables, Let us consider  and 6

as the two variables which are being varied. Then
&6J = AQ(tf) 6.Qf + xe(tf) Gef (7.27)

The adjoint variables )\Q(tf) and xe(tf) give estimates of the gradient of

the cost with respect to small changes in Qf and Bf:

~ od
lQ(tf) = m—f (7.28)
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Mgty = g—“;f (7. 29)
Therefore, we can iterate on Qf and Aps the two variables which represent
the two degrees of freedom of the point of insertion into the circular
orbit, in order to minimize the total cost of the two-impulse trajectory.
As the optimal solution is approached in the convergence procedure,
Aﬂ(tf) and )\G(tf) become more accurate approximations to the true

gradients, and at the solution the gradients must of course be zero:

(7.30)

|
(o]

Aty

(7.3D)

1
o

A (tp)

But these are exactly the transversality conditions which must be
satisfied at the final time. Combining Equations (7.14) and (7.15) with
Equations (7.28) ard (7.29), the estimates of the gradients are

3J - T ,
3, (Ve x Ap + hp x Fph U, (7.32)
3 — ot T

_3_9; = (fo).f*‘)\fxrf) uy (7.33)

The variable end-point trajectory optimization method which minimizes -
the cost with respect to the longitude of the node and the argument of
latitude for a two-impulse trajectory to a circular orbit of desired

altitude and inclination is summarized in the next Section.

7.3 Summary of the Variable End-Point Trajectory Optimization Method

The overall step-by-step procedure for finding fuel-optimal two-
impulse trajectories to a circular orbit of desired altitude and inclination
is summarized below with pertinent formulas included (this outline also

gives the structure of the Fortran program used to obtain the results of

the next Section):
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Given the initial state vector, the position magnitude and
inclination of the desired circular orbit, and the transfer
time, solve the modified Lambert problem to find a two-
impulse reference solution with a tangential injection.

Compute )—\0, —Xf, and _.Xo from

_ AVO _ AVf
A, = — X = (7.24a,b)
a7 | ||
iy _ -1 T —

and generate a primer history according to
Alt) = oy (t, to) A, Ty (t, to) Ao (7.36)
Evaluate the transversality conditions

= T 2
(vfxxf+xfxrf) u, = 0 (7.37)

11
o

(@, x g +Xfxif)T T, (7.38)

If either of the transversality conditions is violated, use the
Jacobson-Oksman algorithm to iterate on Q.f and ef and

minimize the cost of the two-impulse trajectory. The cost
and cost gradient are found at each iteration by first solving
the Lambert problem from Fo to the Ff which is calculated

from the desired position magnitude, Q. and 8, and then

using the following relations:

J = |AV0l + |Avf| (7.39)
aJ _ = X - S
Bn—t: = (vf X >‘f + xf X rf) u, (7. 40)
o . - 2 \T=

where —Xo’ T\f and -)CO are calculated as in Equations (7.34)
and (7.35) and
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Ap = @gp (b T Ry T 0gy (b E) A, (7. 42)

4(b). If both transversality conditions are satisfied and |x(t)| does
not exceed unity anywhere between the initial and final times,
the two-impulse solution is locally optimal.

4(c). If both transversality conditions are satisfied but |Xt)| does
exceed unity then the insertion point is optimal for two-
impulses but a third impulse will reduce the cost and the
fixed end-point optimization procedure must be used to find
a converged three-impulse trajectory.

9. Examine the primer history of the converged two-impulse
trajectory by computing Xt) as in Equations (7. 34) to (7. 36)
in order to determine if [X(t)| exceeds unity so that a third
impulse should be added and a converged three-impulse
trajectory found.

It should be noted that during the two-impulse optimization procedure
outlined above (see 4(a)), the final position vector is not fixed. At each

iteration, the new O and 9f and the desired final position magnitude serve

to fully define the new Then a Lambert problem is solved from Fo

f.
to Ff with transfer time tf-'to. The initial impulse is the difference

between the velocity vector which is a solution to the Lambert problem

and the given initial velocity vector of the problem statement. The final
impulse is the difference between the velocity required to establish a

circular orbit at Ff of desired altitude and inclination (this velocity must
be recomputed at each iteration from Ff) and the velocity of arrival at Ff.
The final impulse is not in general tangential. Of course for the starting

two-impulse solution, it is tangential by definition.

7.4 Numerical Resulis

The trajectories to which the variable end-point trajectory
optimization method was applied were two-impulse transfers from the L2
libration point to a 185.2 km (100 nautical mile) circular orbit about the
Moon for a transfer time of 72 hours. A transfer time of 72 hours was
chosen because that time was mentioned to the author as a time of flight
which might be used in a real-life mission. Various inclinations between

0° and 1800 were investigated. In order to obtain the corresponding
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trajectories from the Moon to L2, one should use either the image with
respect to the xz plane or the image with respect to the x-axis, These
images are explained in Section 5.1. Trajectories are displayed in the

rotating barycentric coordinate system defined in Section 5.1.

As stated in the previous Section, the starting trajectory for the
variable end-point optimization procedure is the two-impulse trajectory
which uses a tangential impulse to establish the desired circular orbit.
The 72 hour transfer from L2 to the Moon whiclk ~mploy a tangential
impulse at the Moon and which result in circular orbits of 0° and 180°
inclination are shown on Figure 38. The 0° inclination solution
establishes a circular orbit whose sense of ratation is the same as that
of the Earth-Moon line. The 180° inclination solution results in a
circular orbit with a sense of rotation opposite to that of the Earth-Moon
line. The angular momentum vector of the circular orbit points directly
out of the Earth-Moon plane toward the observer ofor the 0° inclination

orbit and away from the observer for the 180° inclination orbit,

The 0° inclination solution is a member of the fast family of two-
impulse planar transfers between the Moon and L2 investigated in Section
5.2. The 180° solution is a member of the family of two-impulse planar
transfers between the Moon and L2 whose existence was noted in Section
5.2. This family was not investigated in Section 5.2 because the AV's
were higher than those of the fast family for the same time of flight, In
this Section we are not comparing trajectories of different inclinations.
For any trajectory which results in an orbit with an inclination between
0° and 1800, the two angles Q and g are required to specify the final
position vector, i.e., the injection point. For an orbit in the Earth-Moon
plane, such as a 0° or 180° inclination orbit, only one angle is needed.

In Chapter 5, the arrival angle was used. The arrival angle was
arbitrarily defined as the angle between the direction of the final position
vector and the direction of the negative x-axis in rotating barycentric
coordinates, The complement of the arrival angle is equal to Q + 6 for

an orbit of 0° inclination and Q - g for an orbit of 180° inclination, When
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Fig. 33 TWO - IMPULSE TRAJECTORIES BETWEEN THE MOON AND L
FOR INCLINATIONS OF 0° AND 180°
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the variable end=point optimization method was applied to the 0° and 180°
solutions, only one angle was iterated upon and that angle was  + 6 for
0° and Q - @ for 180°.

A family of trajectories may be defined as the two-impulse
trajectories from L, to the Moon which (1) have the same transfer time,
(2) establish circular orbits of the same altitude by means of a tangential
injection, and (3) have inclinations between 0° and 360°. Such a family of
trajectories will form a three-dimensional envelope in space. The
intersection with the Earth-Moon plane of the envelope corresponding to
a transfer time of 72 hours and an altitude of 185. 2 km, yields the two

trajectories on Figure 38. All the trajectories for orbits between 0° and

180% lie predominately below-the-Earth-Moon-pl ane,—All-the trajectories_ .

for orbits between 180° and 360° lie predominately above the Earth-Moon
plane. The projections on the xy and xz planes of the trajectory for the
90° inclination orbit are shown in Figure 39. That portion of the trajectory
which passes behind the Moon from the point of view of the observer is
denoted by a dotted line. The longitude of the ascending node for the

resulting circular orbit can be shown directly on the xy plane projection.

Trajectories in the above mentioned family having various inclinations
between and including 0° and 180° were used as inputs for the variable end-
point trajectory optimization program. All these trajectories utilize a
tangential impulse to establish the circular orbit. None of them satisfied
the transversality conditions. For inclination between 0° and 180 the
independent variables of the iteration were Q and Of For 0° the indepen-
dent variable was Of + Gf, or the angle between the position vector and
the position direction of the x-axis. For 180° the independent variable
was Qf ~ B¢ and has the same definition as the independent variable for 0°
Recall that the two transversality conditions are identical for planar

trajectories.
The results showed that a tangential injection was very close to

optimal for inclinations between 0° and 180° and almost exactly optimal

for the two planar trajectories having 0° and 180° inclinations. For
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inclinations between 0° and 1800, the dilference in the values of the
longitude of the ascending node and the argument of latitude at the beginning
and end of the iteration was always less than one tenth of a degree. The
corresponding improvement of the optimal injection over the tangential
injection was always less than one meter per second. For the two planar
trajectories, the differences were several orders ol magnitude less. A
tangential injection is essentially optimal for planar trajectories between

L2 and the Moon for a 72 hour transfer time.

A comparison of the primer histories for the starting solutions,
which used a tangential injection, and the converged solutions, for which
the injection has been optimized, is given for various inclinations on
Figure 40. Notice that the two planar trajectories satisfy (with a tangential
impulse) the necessary condition that the primer magnitude not exceed
unity. The primer histories for 45°, 90°, and 135° violate this condition.
The uppermost portion of the primer history for 90° has been truncated
due to space limitations. The maximum of the primer magnitude for 90°
is about 2. 6. The surprising result is that with the very small change in
the trajectory brought about by the iteration to optimize the injection, all
the primer histories have become very similar and they each satisfy all
the necessary conditions. An important result is that 72 hours two-impulse
trajectories to circular orbits of non-zero inclination about the Moon,
which have been optimized for the injection point, cannot be improved by
additional impulses. They represent local minima for the variable end-
point trajectory optimization problem since they satisfy both the primer
necessary conditions and the transversality conditions. The violation of
the primer necessary conditions evidenced by some trajectories using
tangential injection for non-zero inclination seems to be caused solely

by the non-optimal injection.

The total AVand the AV required at L2 for the locally optimal con-
verged trajectories is plotted versus inclination on Figure 41. The total
cost and the AV at L, are monotonically increasing functions of the

inclination for inclinations from 0° to 180°. The cost must be monotonically
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decreasing functions for inclinations between 180° and 360° because an

inclination of 360° is identical to an inclination of 0°.

No other families of two-impulse trajectories wer : investigated

with the variable end-point trajectory optimization method.
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CHAPTER 8
CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

8.1 Conclusions

This thesis is the first attempt known to the author to apply the
multi-conic methods of trajectory propagation to the solution of the three-
body trajectory optimization problem. The method used combines a
multi-conic method of trajectory integ:ation with primer vector theory
and an accelerated gradient method of functional minimization and results
in a rapid and efficient method of calculating optimal three-impulse,
three-body trajectories. The method also readily extends to any number

of impulses or bodies.

This method has been applied to the determination of optimal two-
and three-impulse planar transfers between the L2 libration point and
circular orbits about both the Earth and the Moon. The resulis have
demonstrated that a multi-conic approach can be used for rapid and
efficient calculations of optimal multiple-impulse trajectories in the

three-body problem.

It has been found that there exist locally optimal families of two-
impulse transfers between the L, libration point and both the Earth and
the Moon. These families generally involve the shortest times of flight.
A "slow' family of two-impulse transfers between L, and the Moon is not
locally optimal. However, three-impulse transfers generated from this
family are locally optimal. These transfers require more time but less

fuel than the fast transfers.

Locally optimal three-impulse transfers between L, and the Earth
involve close lunar swingbys which often pass below the surface °f the
Moon. Raising these trajectories above the surface generally causes
only a small increase in fuel consumption. These locally optimal three-

impulse transfers between the Lo libration point and the Earth offer
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substantial fuel savings over the corresponding locally optimal two-

impulse transfers,

For the first time a general error analysis of the three basic
multi-conic methods has been carried out and analytic expressions for
the deviations in position and velocity of these multi-conic methods from
the actual three-body trajectory for a single time step have been developed

as Taylor series in powers of the time step and also in integral form.

When considering position and velocity errors at the end of a
trajectory which has been propagated in a multi-step integration procedure
using any of these multi-conic methods, it may be concluded that, if
small step sizes arc used (i.e., if accurate trajectories are being
calculated), the final position and velocity errors will be of approximately
the same magnitude for all three methods, because all three methods
have the same per-step velocity errors, and the per-step velocity errors
tend to dominate as causes of final position and velocity errors through

the state transition matrix,

For the calculation of accurate trajectories, the Stumpff-Weiss
method appears to be the best to use for several reasons. First, the
per-step velocity errors which deminate are the same for all three
methods for small steps. Secondly, the Stumpff-Weiss method is the
simpliest to use. Finally, the calculations of the state transition matrix
for the Stumpff-Weiss method is an additive process, while for the other
two methods it is a multiplicative process, and hence the Stumpff-Weiss

calculation is less susceptable to truncation errors.
When large steps are used in propagating a trajectory, the use of
either the Farth-Moon or Moon-Earth method yields a definite improve-

ment over the Stumpff-Weiss method in terms of final position errors.

It may be concluded from the shape of the constant error contours

that the errors of the methods are strongly dependent on the position
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relative to the Earth and Moon. The form of the terms in the error
function lead to the conclusion that the shape of the contours of constant
error is independent of the mass ratio of the Earth and Moon and these
contours are equally valid for all three-body systems in which the mass
of the third body is negligible, Furthermore, if the error functions are
divided by the product of the masses of the two massive bodies, then
both the direction and magnitude of the errors is independent of the

masses and the mass ratio of the two massive bodies,

Using the series representation of the error for internal step-size
conirol of the multi-conic integration procedure seems to improve the
accuracy of the procedure as compared to a constant step-size rule.

For increasing the accuracy of the methods by explicitly calculating a
part of the error, either the series or integral representation of the error
could be used although the integral representation would be more useful
because it gives a better estimate of the error than a truncated Taylor

series, especially for larger steps.

A variable end-point trajectory optimization method has been
developed by including transversality conditions on the primer vector and
its derivative. This method has been applied to the determination of
locally optimal two-impulse transfers between the L2 libration point and
circular orbits of non-zero inclination about the Moon for a transfer time
of 72 hours. It has been found that a simple tangential injection is very
close to optimal for any inclination and essentially optimal for planar
trajectories. For a transfer time of 72 hours, two-impulse trajectories
satisfying the transversality conditions are locally optimal for non-zero

inclinations.

In addition, some specific analytic contributions have been made in
this thesis. The demonstration in Section 3.1 that the two options of
Wilson's method (the Earth-Moon method and the Moon-Earth method)
and the Stumpff-Weiss method may all be obtained from one derivation

is original. The analytic expressions for the calculation of the state
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transition matrix for the Earth-Moon and Moon-Earth methods which
were derived in Section 3.2 are new results. To the author's knowledge,
the formulation and method of solution of the modified LLambert problem
developed in Section 3.3 has never been reported. All the analytic
results for error expressions in Chapter 6 are new., Finally, the
numerical solution to the variable end-point two-impulse trajectory
optimization problem by the introduction of transversality conditions

has never been performed before.

8.2 Suggestions for Future Research

The methods of trajectory optimization developed in this thesis are
capable of determining locally optimal multiple-impulse trajectories to a
fixed final state and locally optimal two-impulse trajectories which
satisfy a particular set of constraints at the final time expressed in
terms of orbitz! elements. It wonld be useful to extend the variable
end-point solution to three or more impulses. For a three-impulse
transfer to a circular orbit, the cost would be a function of the position
and time of the interior impulse and also the longitude of the ascending
node and argument of latitude at the final time. The solution to this
preoblem would be in effect a combination of the methods of trajectory

optimization outlined in Chapter 4 and 7.

Locally optimal three-impulse transfers between L2 and the Earth
employing a lunar swingby may pass below the surface of the Moon, A
reformulatiion of the trajectory optimization method to allow for interior-

point constraints would be one way of eliminating the problem.

It is known from the shape of the primer histories for the converged
three-impulse trajectories of Chapter 5 that increasing the time of flight
will result in a certain further reduction in the total cost. It would be
useful to find the minimum with respect to time of flight of the converged
three-impulse solutions to determine what the magnitude of the reduction

is.
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Also it would be desirable to investigate other possible multiple-
impulse solutions with the minimum impulse program to gain experience
in three-body trajectory optimization. For instance, it is believed that
there exist trajectories between the Moon and L1 and possibly L2 which
involve two intermediate approaches to the Moon before insertion into
orbit and their primer histories are non-optimal, indicating multiple-
impulse solutions with less cost. Also, lunar abort trajectories for
which three-body efferts are significant would offer cases for application,

Finally, an investigation into the possible guidance applications

of large step multi-conic approximations would be useful.
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APPENDIX A
DERIVATION OF EQUATION (3. 69)

The three equations which must be satisfied are:

F. | = r (A1)
fn+1 £
T, va =0 (A.2)
n+l n-+l
h
— T n+l _ .
u, pg— = cosi (A.3)
n+l

and the final positions and velocities on successive iterations are related
by

T = Tp t@py AV, (A. 4)
n+l n n

Ve =V t gy AV, (A.5)
n-+l n n

Taking the absolute value of both sides of Equation (A. 4), one
nbtains

| T _ A2
Tt T L(an * P12 AVoﬂ) (an t g AY on)]

1/2
2 . T _ 2
[rp 2427, T, AV, +0(av, )] (A.6)
n n n

where O(Avoz) denotes terms of greater than first order in ATO

n
Simplifying Equation (A. 6) further yields
— 1 - T = 2
IF. | = r. += T, = @,Av_ +0(Av ") (A, T)
fn+1 fn re fn 12 °n o

Neglecting the higher order terms and substituting Equation (A. 7) into

Equation (A.1), one obtains the first scalar equation for AVO :
n
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-~ T o = -
Py " @Qpplvy, = rp-rg (A.8)
fn n n n

S —

Substituting Equations (A.4) and (A, 5) into Equation (A. 2) yields

— T —_
(an T av on) (vrn t g ""‘Von> =0 (A.9)

Simplifying Equation (A, 9) results in

T_ T — ~ T _ )
Ve Ty Qo9 AVt AV T @y Ve +0(L..vO ) =0
n n n n n n

and

— T __ _ T 7T _ 9 _
I‘f Vf + (rf (,022 + Vf (p12> AVO + O(Avo ) = 0 (A.10)
n n n n n

Neglecting higher order terms and rearranging Equation (A, 10), one

obtains the second scalar equation for [.wo

n
- T - T — - _= T _
(Fp * 092 * 7 Pp) &Y, = Ty ¥ (A.11)
n n n n n
The quantity hn+1 is defined as
h = r XV (A.12)
n+l fn+1 fn+1

Substituting Equations (A. 4) and (A.5) into the above expression yields

the following series of simplifications:

ntl " (?fn T P9 AVoﬂ) x (an T @99 “Von)

2

= Ff fo +Ff X ((p22 av ) + ((,012 t.'wo ) x ve t O(Lw0 )
n n n n n n
= — LT - - 2
= h +(r, x)@Q,, &V _=(v, x)¢,, &v_  +0(Av )
n fn 22 °n fn 12 °n o
I (= = A 1 AT 2
= h, L("fn ") Pag - (an x) ‘P12J A"on +0(av %) (A.13)
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where (Ff x) and (V_f x) denote the particular skew symmetric matrices
n
whose non-zero elements contain the components of Ff and \_/'f ;
n n
respectively, such that if the matrix is multiplied times a vector the

resulting vector is the cross product of Ff or Vf with the original vector.

Defining n n
H = krf x) Pog - (vf x) ?15 (A.14)
n n
Equation (A.13) may be written as
e — 2
nil - hn+HAVon+O(AV0 ) (A.15)

Taking the absolute value of both sides of Equation (A.15) one obtains

T 1/2
= _ 2 - — 2
s = 15y #1587, e 0ias ) 5 05, 2 otav, ]
1/2
2 T - 2
= [ +2n T Avon+0(Avo )]
) 1 —T. — 2
= h_ 5 T H Avon+0(uvo ) (A.16)

Forming the quotient En 4/h, 4 from Equations (A.15) and (A.16),
one obtains

- — ) 2
= hn + H Avo +0(Avo )

h
n+l _ n _ (A.17)
n+l 1 -+ T — 2
hn g hn H Avo + 0(4’.\\/0 )
n n
and simplifying results in
h
nt = = 2 1 1 =T — L2
—— = (h_+HAv_  +0(Av 7)) (+— - h " HAv,_ +0Av_ ")
hn + ( n °, o ) (hn hn3 n on o )
h .
= il pgav -1 % 5 Tuav 2
hn hn H Avon F;hn hn H Avon + 0(4\.\/0 ) (A.18)

n
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and finally

h h

n+l n, 1 2, _+ 1 T - 2

L h—+—-—3(hn -5 B )HAVO +0(Av, ") (A.19)
n+1 n hn n

Substituting Fquation (A, 19) into Equation (A.3), replacing H from Equation

(A.14), and neglecting higher order terms, one obtains the final equation

for AVO :

n
1 _ Ty 2_——T>I'_ (= JT _ . .
F u, Khn I hnhn L(rfn x)cpzz (vfn x) ®19 A\On cosi-cosiy
n (A.20)

Equations (A, 8), (A.11), and (A.20) may be combined into Equation (3. 69),
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APPENDIX B
DERIVATIVES OF THE f AND g FUNCTIONS

The f and g functions are given by

[ = anh (B.1)
n=0
c on

g = ), b h (B. 2)
n=0

where h =t -‘cI and the coefficients a and bn are functions of the position

F
and velocity used as the initial state for the last conic, i.e., FFaI and

for the Farth-Moon method. The first few coefficients are

TFal
ay =1 (B. 3)
al = 0 (B. 4)
- _1 a
a, = .Zr_s_ (B.5)
Fal
-1 a
a3 T v Ygai1 (B.6)
r'FaI
1 a 2 . 2
a, = ﬂPB (-2a + 3r |F|® - 15rF Yral (B.7)
Fal
1 a - +2 .2
85 = g—w— p,q (22 - 3r |F|* + 7er )Fal (B. 8)
r
Fal
b0 =0 (B.9)
- b'l = 1 (B.IO)
b2 = 0 (B.11)
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b, = - L_2 (B.12)

1 a .
by T 777 FFa (B.13)
r
FFal
1 a - 2
= -8a +
by = g —g— (-8a+or|r
r
Fal

|2 - 45y (B. 14)

)FaI

Taking the first four derivatives of Equations (B. 1) and (B. 2) with
respect to te and evaluating them at tp = tI’ one obtains the following

set of equations:

f = a (B.15)
t.=t 0, _
F et
ftF___tI = (yy +ao)t L (B.186)
F I
ftF=tI = (2a2 + 2a1 + ao)t L (B.17)
F 1
ftF=tI = (6:9.3 + 6::12 + 3al + ao)t L (B. 18)
Pl

ftF:tI = (24a4 t24a, + 123, + 4a) + aO) ) (B.19)
t.=t
F I

gtF=t1 = by . o (B. 20)

F I
gtF:tI = (b1 + bO) i (B. 21)
F
gtF:tI = (2b2 + 2b1 i'bo)t . (B. 22)
F I
gtF=tI = (6b3 +8b, + 6b1 +b0)t " (B. 23
F I

tp=t; = (24b4 + 24b3 + 12b2 + 4b1 + bo)t . (B. 24)

F I
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Since a

0’ &1 °o0 Pr 2

b., b,, and b, are constants, all of their derivatives are

zero, Therefore, we may rewrite Equations (B, 15) through (B. 24) as

ftF=tI = ag tF:tI (B. 25)
ftF=t1 = tF=1I (B. 26)
ft =t 2a2 _ (B.27)
F 1 tF—tI
ft -t (6.2\.3 + 6a2) _ (B. 28)
I tF—tI
ft _— (24a4 +24a3 + 12a (B. 29)
F 1
g, . = Db (B. 31)
t..=t 1, _
F I tF-tI
8 _
Stpty 2 to=t (8. 32)
F 1
gtF:t[ = 6bg . ot (B. 33)
F I
B =t = (24b4 +24b3), (B. 34)
F 1 tF

In order to evaluate the right hand side of Equations (B. 25) through

(B.34), the necessary derivatives of a,, a5, and bg with respect to tp

must be found and evaluated at tF=tI.

For a,, we have from Equation (B.5)

. _1 _a
a9 7.3
Fal
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A derivative of the above equation with respect to tF yields

But

and therefore

or

Substituting Equation (B. 39) into Equation (B. 36) yields

Cral

d

2r —-—r
Fal th Fal

d 1
r = —
atF Fal rral

v 3 a -

8 T 375 Fpal

ral

3 a
S I S

d

T r

F

I‘FaI

which, when evaluated at tF=tI, becomes

But from Equation (D, 22) with n=l,

i Fral
F a

and therefore, from Equation (B. 41)

T d
dt Fal

Fal

r.
F

(B.

(B.

(B.

Another derivative of Equation (B. 40) with respect to te yields

152

36)

.37

. 38)

. 39)

40)

. 41)

. 42)

43)



2

woo= 3 a (F T d = + d — |2>
2 ) Fal 2 " Fal dt Fal
re. . dt F
Fai F
15 a - T d 2
T T (rFaI dt rFaI) (B.44)
r F
Ial
Evaluating the above equation at t=t, and noting Equation (B. 42), one
finds
2
. 3 a T d -
0. 35T —3fral _ (B. 45)
tF—tI ry d‘r.F tF—tI
Equation (D. 22) with n=2 yields
2
d” — . d =
P I‘Fall _, adt I‘Fall _ (B. 46)
th tF—tI F tF_tI

and substituting from Equation (D. 34) into the above expression we obtain

9

@ _ A= A _
RN . - (—-B-R ——3-p> (B. 47)
th tF=tI R P [

Finally, substituting Equation (B. 47) into Equation (B, 44) results in

5 - 342 =T (o’R - »°p), (B. 48)

to=t. 2 (c° R® p |

For a;, we have from Equation (B. 6)

_ 1 a -
%3 T 27T "Far (B. 49)
Fal
A derivative of the above equation with respect to t yields
. _ 1 a d 2a d
%3 T 24 @ "Fal =75 "Fal & “Fal (B.50)
Fal Ipal

and substituting Equation (B. 39) into the above expression, we obtain

4. = 1l a _d ;¢ . _2a ¢ 7 T d % (B. 51)
3 2 4 dit Fal 6 Fal Fal dt Fal ’

r F r F

Fal Fal
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I'valuating the above equation at tF:t[ and noting Equation (B. 42), one

finds
. _ la d - N
%3, _, C TG, rFaIIt i, (B.52)
F "1 1 F I
Now
_ 1 . T L
"ral T Foo TFal Tral (B.53)
Fal
and therefore
4 ; = —l—<? T d g + 45 ¥ >
th Fal L Eat Fal th Fal th Fal Fal
1 T L d
" Tral Tral &t ‘Fal (B.54)
r F
Fal
Substituting Fquation (B, 39) into the above expression yields
g oL (p TAE L4 Tio)
th Fal rFaI Fal tF Fal th Fal Fal
_ 1 (_ T = — T d — )
+— (Frar TFal) (rFaI F= FFal (B. 55)
rFaI F

Evaluating Equation (B. 55) at tF=1:I and noting Equation (B. 42) results in

d - 1 -T d =
T “Fatl I 'dT;“rFaII, _ (B.56)
F tp=t; I F tpt,

Finally, substituting Equation (D. 34) into Equation (B. 56) and substituting
that result into Equation (B. 52), one finds

2, - - 2% rT’R-Rp), (B.57)
t.=t 2(r” R” p"}y

Comparing Equations (B.5) and (B.12) one obtains
b, = da (B.58)
3 372 °
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H{ence

b - %é =0 (B.59)

bei ause of Equation (B. 43).

With the results in Equations (B. 43), (B.48), (B.57), and (B, 59),
and with the definition of Equations (B. 3) through (B.14), the right hand
sides of Equations (B. 25) through (B. 34) may now be evaluated to obtain

the final desired expressions:

ftF:tI .. (B. 60)
%thtI - (B. 61)
'f.thtI _ _rj}s- (B.62)
'ft'F=tI - :3?{“"1 =
o ptem el - e
I g
, _ 6Aa FIT (0°F - RBE)I (B. 64)
(r" R™ p);

gtF:tI - o (B. 65)
étF:tI N (B. 66)
étF:tI o (B.67)
.ftF:tI - _;5;3_ (B. 68)
__g.;thI ] f?}[ (B. 69)
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APPENDIX C
DERIVATION OF THIE SINGL.E-STEP POSITION AND
VELOCITY ERRORS '"OR THE STUMPFIF-WEISS METHOD

The estimates of the final position and velocity for the Stumpff-Weiss

method are given by IEquations (3. 34) and (3. 35) and repeated here:

Rp" = Riap *Tlgp - Ty - by T4 (P - Py - hpy) (C.1)
= ro_ - - _; 2 _ = P
RF RIAF + Frlap = 0 U (pF pl) (C. 2

In order to maintain a distinction between the true final position
and velocity and a multi-conic estimate of the true final position and
velocity, estimates will be written as primed quantities as in the above
equations. If one considers the position error first, the deviation of the
Stumpff-Weiss approximation from the true position at tp is a function

of t. and t

I P and may be defined as

t) = R -R.' (C.3)

OR (tp, t F-op

FJ
Of course, since the true final position is unknown analytically, the above

expression does not provide an analytic formula for the position error at

t
P
position error by expanding the right hand side of Equation (C. 3) as a

However, it is possible to obtain an approximate relation for the

Taylor series in powers of the time step (henceforth, the functional

dependence of the error on the initial conditions at t; will be suppressed):

2
- = d = 1d 2
6R_(tp) = SR _(t) + 75— 6RS(tF)| ) h+——26R (t )I ) h
I t .=t =t
1 tp=h
3 4
1d = 3. 1d 4
+§dt t‘>RS(tF)It :th +2.4_-76R (t )lt =th +, .,
F F I dty F I (C. 4)

where h = tF—tI as usual. In order to determine the coefficients in the
above power series, we must take successive derivatives of the position
error function defined by Equation (C. 3) and then evaluate them at the

initial time,
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Substituting for RF' in Equation (C. 3) from Equation (C.1) results

in the following expression for the position error:

- R

= R + T +hF| - p (B - By - b)) (C.5)

OR(t IAF ~ TraF T I

F) F

[f one evaluates the above expression at tI' the first term of the Taylor

series expansion is obtained as
GRS(tI) = 0 (C.6)

The first derivative of Equation (C. 5) is

Rp - Rap-Faptf -k Pp-p) (€D

d —
ER; GRS(tF)

and the coefficient of the second term in Equation (C. 4) is found by

evaluating Equation (C. 7) at ty:

d &5 =
G csRS(tFHt L 0 (C. 8)
I
The derivative of Equation (C. 7) yields
d2 _ Le 1e X it
P GRS(tF) = RF - RIAF - I‘IaF - I.LpF (C. 9)
F

The true three-body acceleration, ﬁF’ is given by Equation (3.1)

y R 3 P

= F _'r __PF

RF = —AR T - a T -2 ) (C.10)
F e Pr

and the two-body accelerations are

RIAF = -A—B-— (C.11)

|b
o]}
| ]
)
=

‘ap =~ ~ 273 (C.12)
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P

pp = - a—y (C.13)
Pr:
Iquation (C.9) when evaluated at the initial time becomes
dz — = = v L
Sy oR )| = Rp - Rpap - Fap - whpl (C.14)
dt ), Tt tpot,

The four terms on the right hand side of Equation (C.14) are found

by evaluating Fquations (C.10) to (C,13) at the initial time:
. R,
Rpl = .AR_B“'a_E'a—B' (C.15)

R
= - A (C.16)
B3
FI
= -aly (C.17)
. 2 .
el = - a— (C.18)

Finally, substituting Equations (C.15) to (C.18) into Equation (C, 14) and
noting that pa=a

d2 =

- GRS(tF)lt =0 (C.19)

dtp Fi

As one proceeds with the determination of the coefficients of
Equation (C. 4), one must become more and more careful to maintain the
distinction between swo-body derivatives and three-body derivatives.
Eventually the terms will not exactly cancel and the first non-zero

coefficient will appear. Differentiating Equation (C. 9) now yields

3 .

d — « pLA __'! _';‘ _ e

3 Btp) 7 B m Riar ~ Trar T BPR (C.20)
F |

and differentiating Equations (C.10) to (C.13) results in
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e A 2 [ L .- B
R, = - — (RR-3RR), - —aﬂ{ (PE-3FF) [ - _E‘T (PP-3pP) (C.21)
F 'g PE
R - - —2A (RR-3RR) (C.22)
IAF RZ IAF .
IAF
. _ a oo
T T B (I‘I‘-3I‘I‘)IaF (C. 23)
r
[aF
by = - 2 (PP-3PP) (C.24)
Pr

where ¥ = FLF/r. By evaluating Equations (C, 21) to (C.24) at the initial
time and substituting those results into Equation (C. 20) (also evaluated

at tI), one obtains

S =
aT P
F F I

=0 (C.25)

The next derivative of Equation (C. 20) is

4 '-:' X

d P N _ po ot _ axie
F

Taking derivatives of Equations (C. 21) to (C, 24) yields the following

relations:
"ﬁ"F = - —5-5 (R°R - 6RRR - 3RRR +12fz2§)F
Rp
S (r2F - 6rrT - 3riF + 1252F)F
r
F
a 2'_' o oo ‘2_
-—x(pp-6ppp - 3ppp +12p P (C.27)
Pr
e ) A _2u P e s0— ,
Rap © - —5— (R’R - 6RRR - 3RRR + 12R“R) , (C. 28)

IAF

159



Fap C - ;.gf_ (r2F - 6riF - 3rFF 412070 (C.29)
lal
LU o 24 -2 o—_ 2 — .3
pr = - —=5 (P7P - 6ppp - 3ppp +12p P (C, 30)
PR

The quantities ﬁF’ 'r'F, and pF appear for the first time in Equation
(C'.27). Starting with the identity

2 _ 5 Tx
RF = RF RF (C. 31)
and differentiating twice,
5 1 TH =12 52 .
Rp = ]rFu—‘. R+ [R|® - R (C.32)

Iixactly similar relations exist for FF and Py,

T

Ve — 2 2

R N (C.33)
P

’e ]_ —T:'— L2 ’2

Now if one substitutes Equations (C. 32) to (C. 34) into Equation (C, 27),

e A 2 —T. = . L L, - ‘99—
Rp = -E—s-[(R I-3RR") R - 6RRR - 3|R|°R +15R Rl
F
a 2 ——T, = 3 22 VO
———5-[(1‘ I[-3rr)r - 6rrr+3|r| r +15r r‘)]F
'r
T, 2 s 2 2
- —%-5-[(p21 - 3ppT)p - 6ppp + 3|p| P+ 15p2p]F (C. 35)
Pr

where 1 is the identity matrix. In Equations (C.28) to (C. 30), ﬁIAF’
F[aF’ and pF are needed. Equation (C. 34) provides pF and Equations
(C.32) and (C. 33) with a change of subscript provide the other two
quantities. Therefore Iquations (C.28) to (C. 30) become
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= _ A 2 —=T. = .2 A, -0

Riap = - —5— [(R°1 - 3RR )R - 6RRR - 3|IRI"R + 15R* Rl 4 ¢ ‘
R (C. 36)
IAF

Tap C - ;-g— [(r?1 - 3FFT)F - 6riF - 3|FF +15:°F) (C.37)
IaF

= = o 2 —-T = L 42— -

Pp T ‘p—s“PI-Bpp )p - 6ppp - 3|p|"p +156"Dl (C.38)
F

If we substitute into Equation (C. 35) ﬁF from Equation (C. 10), FF from
Ilquation (3. 2) and BF from Equation (C.13),

= A 2 ==T,, A5 a_ a - =125 2=
Rp = ——R—5-[(R I - 3RR )('EB’R —:31 -;g'm - 6RRR - 3|R|"R + 15R“R]
F

_ ;15 [(r?1 - 3FET)<-:"“3F - f’o'ﬁ +f35) - 6rit - 3[FPF +155°F]

F
9 oxsT _ RN S .
- ;a—g[(P [-3p5 M- fgp) - 6ppP - 3118 + 1507l (C. 39)
F

Similarly, substituting into Equations (C. 36) to (C, 38\ for EIAF‘ 'F'IaF’
and EF from Equations (C.11) to (C.13) respectively, ore obtains

_ A 2 5T A% L= =2= ‘2=
Ripp =~ 75— (R0 - SRR )(-FR)-GRRR-3|R| R +15R"Rl|, o
IAF (C. 40)
g = [(r?1 - 3FF )~ B¢ F) - 6riT - 3|7 +155°F] p  (C.41)
r r
IaF
o T - L i2— L2
b =- 2= [(p"1-3pp )-S5 p) - 6p0p - 3lp["p + 150" Al (C. 42)
P p

Finally if one evaluates Equations (C. 39) to (C. 42) at t;, substitutes the

IJ
results into Equation (C. 26) (also evaluated at tI)’ and rearranges terms,

the following expression is obtained:
4

d = A
. 4 6Rs(tF)I
dt

_ a = = T\, 3= 3_
A = -(—R—-)-—S- [(I - 3uRuR )(p r+r p)
F ' llad

+(I - SErﬁrT) (p3§ - R3,5)]I (C, 43)
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where ﬁl\‘ and Gr are unit vectors in the directions of R and T respectively.

The first non-zero coefficient of the Taylor series expansion of the
position error has been found, and it is the coefficient of the fourth order
term. Noting Equations (C.6), (C.8), (C.19), (C.25), and (C. 43), one
may now write the position error for the Stumpff-Weiss method from

I'quation (C. 4) as

bR () = —22 o ((1 - 30,0, N F + )
24 (Rr‘p)I
+(1- 350 T)p°R - R°p] nt +0 0°) (C. 44)

One could derive the velocity error in exactly the same manner that
the position error was found. However there is a much simpler way to
obtain the velocity error. If one takes the derivative with respect to t.

of the estimate of position given by Equation (C.1), the result is

d — r = L —..'_ = —_' vy
HT;RF = Rap v Tiap - 7 Y H (PR - Bp) (C.15)

and the above expression is identical to the velocity estimate given by
Equation (C.2). The multi-conic method of Stumpff and Weiss provides
rules for numerically integrating the differential equations of motion to
obtain estimates of position and velocity for a given time step. The
derivative of the position update equation is identical to the velocity update
equation. This result may appear trivial, but it is not necessarily true
for every trajectory integration scheme (see Appendix D). In any

case, this result allows one to find the velocity error for the Stumpff-Weiss
method by simply taking a derivative, with respect to the final time, of

the pocition error,  Thus the velocity error for the Stumpff~Weiss method
is obtained from Equation (C. 44):

6R_(h) = —=2 o [(1- B UL )(PF + r0p)
6 (Rrp),

+(1-300 PR - R2PI, h° + o) (C. 46)
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APPENDIX D
DERIVATION OF THE SINGLE-STEP POSITION AND VELOCITY
ERRORS FOR THE EARTH-MOON AND MOON-EARTH METHODS

The estimates of the final position and velocity for the Earth-Moon

method are

o= [P, (D.1)
F Fal aF

= [F._ ] (D. 2)
F Fal aF

where rp. | and Tr, are given by Equations (3.22) and (3, 23):

Fral = Biap - Pp - BMRjpp - Pp) * 4 (Bp - P - hog)  (D.3)

Fal = Riap = Pp T4 (Pp - P (D. 4)

1B

The fact that the final position and velocity estimates are obtained in
selenocentric coordinates instead of geocentric coordinates, as for the
Stumpff-Weiss method, presents no difficulty since the geocentric position

and velocity are immediately obtainable as

P F +_P_F (D.5)

.
1 —

F Ip' *Pp (D. 8)

In addition, since a small variation in R is identically equal to a small
variation in T, the position or velocity errors are equal in either inertial
coordinate system. Thus the position error for the Earth-Moon method

at t., may be written as

F

6R = T - Tpy

o Tp (D. 7)

em(tF)
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The estimates of the final position and velocity are obtained by

propagating FFaI and —;:Fal along a selenocentric conic by an amount

h = tF:tI' This final selenocentric propagation is signified by Equations

(D.1) and (D, 2). Another way of expressing the position and velocity

resulting from a conic propagation is in terms of the familiar f and g

series. 23 That is, FF " and r.'_F' can be expressed as
— 7 _ — s
Pp = TRy T8 Tpg) (D. 8)
.= LT ¥ (
'R ‘t Trar T & Tral (1. 9)
where f, g, ft’ and g, are given by the series
N n
f= ) anh (1).10)
n=0
- n
g = bn h (D.11)
n=0
£ =, na h%l (D.12)
t L " Tn :
n=1
_ n-1
g T . nbn h (. 13)
n=1

where h = tF—tI and the coefficients an and brl are known functions of

the initial state , in this case,

Feal and Loay Equations (D. 8) and

(D. 9) are not used to evaluate FF' and FF ‘. rather, they are used as
analytic substitutes for Equations (D.1) and (D. 2) which will enable
derivatives of Equation (D, 7) evaluated at the initial time to be easily

found.
Once again, as for the Stumpff-Weiss method, the position error

function for the Earth-Moon method, Equation (D. 7), is expanded as a

Taylor series in powers of the time step.
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_ d 1 42 2
6R, (tp) 6R, (tI)+th em(tF)lt :th +___2 mt )| =th
F I dtp bt
18° o= 3 4
+___.3r Rem(tF)|t =th +-2-——-Z-6R (tF)It =th +,
Bl Bl (D. 14)

Substituting Equation (D. 8) into Equation (D. 7) yields for the error

function

(t.) = r-1fT, (D.15)

em ''F F Fal ~ & "Fal
As noted previously, F'Fal and FFaI are given by Equations (D. 3) and
(D.4). Now successive derivatives with respect to tn of Equation (D, 15)
must be taken and the resulting expressions evaluated at tI in order to

determine the coefficients of the powers of h in Equation (D. 14).

In the process of taking derivatives of Equation (D.15), derivatives
of f and g with respect to tp will have to be found. This becomes a very
involved and tedious process because the infinite series for [ and g are
functions of tF in two ways. First the series for f and g are functions
of te 13
a_and b_, because the a_ and b_ depend on r and T which are

n n n n Fal Fal

through h. Secondly, they are functions of te through the coefficients

functions of tp- The results for the first four derivatives of [ and g

evaluated at tI are listed below. For a detailed derivation of these

results, consult Appendix B. The results are:

f, . =1 {D. 16a)
b=ty

}‘t =t. = 0 (D. 16b)
F ' -

.ft =t '—d:{ (D. 16¢)
F 1 rI

-.A' _ a v

oo = 331 (D.16d)
F I r‘I
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_a 2 L2 6Aa — T, 3% 5,3«
ftF=tI = r—g(-2a+3r|r| - 15r17), +m ro (PR - Rp)
I P (1). 16¢€)
g, -4 -0 (1D.17a)
b=ty
g, .4 =1 (1D.17b)
b=t
g ., =0 (D.17¢)
tp=t
= . a
gt =t - (1. 17d)
T r
I
‘8 -t = 6—g (1. 17e)
F 1 r

[
In addition to the above derivatives we will need to know the

. [
quantity FFaI denotes a velocity vector and not the derivative of FFaI

derivatives of rpar and Fral with respect to tF evaluated at t.. The

with respect to tp. Equations (D. 3) and (D. 6) are formulas for the
particular position and velocity which, if propagated forward along a
selenocentric conic to the final time, will provide estimates of the true
three-body position and velocity. It is not necessarily true that the
derivative of the formula for this position vector (Equation (D, 3)) will
yield the formula for the velocity vector {Equation (D, 4)). If it does,
the last selenocentric conic propagation will provide estimates of the
final three-body position and velocity which will be consistent (that is,
the derivative of the position estimate will be equal to the velocity estimate),
and the velocity error for the Earth-Moon method can be found by
differentiating the position error. Otherwise, the velocity error must

be derived separately. Differentiating Equation (D. 3) yields

%’EEFFaI = - h (B p - 0-p) Bl (D.18)

Comparing Equations (D.18) and (D. 4), it is obvious that d FFaI/th

and T are not equal. Therefore, the position and velocity errors for

Fal
the Earth-Moon method must be derived separately, and the derivatives

of FFaI and %Fal’ which will be needed when Equation (D. 15) is differentiated
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to determine the coefficients in Equation (D.14), must be calculated

inde pendently.

IZquation (D.18) gives the first derivative of FFal' The nth
derivative of FFaI is found to be
at _ "=(n+) — (n+1)]
gop Fal T b l_RIAF - (1-p) Py
F
i = (n) — (n)
- (n-1) LRIAF - (1-p) Pp nz21 (D.19)
From Equation (D, 4), the nth derivative of r;FaI is
& Ly, @ g5 @) (D. 20)
. B Fal IAF H) Pp n :
tp

Combining Equation (D.19) and (D. 20) yields the true relationship

between the derivatives of rFaI and rFaI:
i? = -hgn—}‘T - (n-1) i r nz21 (D. 21)
dt n " Fal dt n  Fal dt n-1 " Fal :
F F F
Evaluating Equation (D. 21) at tF=tI,
q° dn-l ,
U s & £ SRR (D. 22)
F F 1 F F 1
Now the results for all the derivatives of rFaI and FFaI evaluated at tI

can be found from Equations (D. 20) and (D. 22), Also note from Equations
(D. 3) and (D. 4) that

(D. 23)

1
]
Bl

n
el

rFallt . = R -p =T (D. 24)
F I
At this point all the information necessary to take successive derivatives

of Equations (D. 15) and evaluate them at the initial time is available.
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I'valuating Equation (1).15) at t; by using Equations (1).16a), (1).17a)
(D, 23), and (D. 24) provides the first coefficient needed for the position

error expansion (Equation (D, 14)):

GRem(tI) =0 (D. 25)

Differentiating Equation (D, 15),

OR__(tp) = T 14 _ ¥ d + 5 F.  (D.26)

th em

For n =1, Equation (D. 22) becomes

d = I
dt Fal _
¥ 1:F—tI

Evaluating Equation (D.26) at t; and using Equation (D, 27) and the

=0 (D.27)

appropriate results from Equations (D.16) and (D.17), we obtain

d <= -
aTEGRem(tF)I =0 (D. 28)
teot;

The derivative of Equation (D. 26) is

= . a2 X :
"—2- GRem(tF) = I‘F - f ——2* I‘FaI - 2f at—- I‘Fal - f I‘Fa[
dt dt F
F F
d2 . d ] .
"8 7 Tpar " 28 = Trar ~ 8 Tral (D.29)
d‘tF F
Equation (D. 22) for n=2 yields
2
d — d =
—5 Tparl . % @ Trall (D. 30)
dtp bR F tp

If one evaluates Equation (D. 29) at tI and substitutes into that expression
Equations (D. 27) and (D. 30)
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d TR .
P em(tF)It I S g A
F Fl F
wda oL vt
+(£-28) F—Tpap = BTyl (D. 31)
F tpet,

Making the appropriate substitution from Equations (D, 16) and (D.17)

results in
d2 = o a d .
;t——z dRem(tF) It » = rF It -t + r—g- I'I - Et;‘- rF‘aIIt -t (D. 32)
F I | F I I F I
From Equation (D, 20) we find that for n=1
d & - R, -(-p)p (D. 33)
dtg  Fal IAF K’ Pp .

Evaluating the above expression at tI and substituting from Equations
(C.16) and (C.18) the following result is obtained:

4+ | . AR.Ag (0. 34
F to=t RS ! L
F 'l I Py

Now substituting Equation (. 34) u:ito Equation (D. 32),
2

d = L a — Aw A
PﬁRem(tF)lt L rFlt ., +:.31~I+R_3,RI —5 P,  (D.35)
F FoI F1 ' I Pr

The quantity FF is found from Equation (3. 2):

I 1H

. _a — A= A
F F P
A final substitution into Equation (D. 35) from Equation (D. 36) yields the

next coefficient

2
d = -
m GRem(tF)It » =0 (D, 37)
F F I
From Equation (D. 29), the third derivative of the error function

is found to be
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) = _owodh o rdt o aed
—g3 OR () = T - Py Ty = 30— T~ 3 g Ty
dt, dty, dty, b
Y T
Pral = 8 =% Tpar ~ "8 7 "yial
dt dt .
e dz : ..
S8 a2 “ral ~ B TFal ‘h. 38)
o
T‘
Ilquation (D). 22) for n=3 becomes
3 2
d —= _ _od - e
mﬁmr't -t 2Prp‘allt . (1. 39)
'l F Fl

Now if one evaluates Equation (1), 38) at t
(D,27), (D.30), and (. 39),

[ and substitutes from IZquations

& a2 - C e d
3 6Rem(tF)|t . = T +(2f - 3g) Tz Fpgp + (3F - 38) G F ol
13 F F
8. .
“frpg -8 3 "Fal = 8 rFa[It - (D. 40)

F
The appropriate substitutions into the above expression from Equations
(D.16) and (DD.17) result in

& = g 3a - a -
—g OR, (R _ = gl L _"QFFaI| w50 Bl
th tF—tI ’tF—tI th tF—t[ ry ry
(D. 41)
From Equation (D. 20), for n=2
a2 o
Sy Tpar = Fpap - (1K) By (D. 42)
dt
F

Evaluating the above expression at tF=t and substituting Equations (C.22)

and (C. 24) yields

I

2

S = - A (RR - 3RR), + -2, (05 - 360, (D.43)
dt t.=t R p '
F F I I [
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A derivative of Equation (D. 36) is

Fp = =2 (o7 - 380, - A0 (RE - 3RR), + L7 (0 - 36), (D 44)
re RF Py

Finally, substituting Equations (D. 43) and (D, 44) into Equation (D, 41),

3

d — i}

FaRem(tF)lt LT 0 (D. 45)
F F 'l

The next derivative of Equation (D. 40) is

4 _ 4 3 w2

d _ a* — edt . edt
V3 GRem(tF) B Ol f 7% "Fal 4f 3 "Fal 6f ——y "Fal
dt dt dt dt
F F F F
L S S o 4g @+
dt ‘Fal Fal ~ 8 7 Ppal 3 "Fal
F dtp dt
F
az Y oret
'ﬁgd_szaI'4gat_rFa1'ngal (D. 46)
to F
Equation (D. 22) for n=4 becomes
d4 - | _q d3 = | (T4
~ 4 Fall. __ "% =3 'Farl _ (D.47)
dtp, tp=t; dtp tp=t

which, when substituted into Equation (D. 46) along with Equations (D, 27),
(D, 30), and (D. 39) yields

4 3 2
d — _ L Al d - '_ .o d =
— 6R__(tg)] =T+ (30-48) — T+ (81-6F) —— T
dt =t dt dt
F F 1 F i F
u e d - e _ d 2 _ant
+ (81-48) Gr—Tpg; = [Tpgr = 8 —7 Tpar ~ EFparl
F dt o=t
F F 'l
(D. 48)

Substituting the appropriate quantities from Equations (D, 16) and (D, 17)

into the above expression,
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(J4 _ I d3 . I 2a d |

ar? Remtll Tl L Tl Il
[ I O I F T 1 F I
a =2 A 6Aa - -T,3%5 ,3=
r (r"R"p )I
ga : ~ !
_?4_ r T (12, 49)
[
Ilquation (D, 20) with n=3 is
d3 , wens
'(?3- FI?aI = ]{IAE‘ - (1_“.) pF (]). 50)
F

lZquation (D.50) evaluated at t; with substitutions made for 'EIAF and ﬁb

from Equations (C. 40) and (C. 42) becomes

3 .. . . . —
CH - - ——égi_(R‘?I-SFﬁT)(——%ﬁ) -6RRR-3[R[°R + 15R°K]
dt,. tpt, R R I

¥ fE L<p21'355T><"-§g 5) -600p - 316I°p + 15162;5]I (12. 51)
I

If one substitutes Equations (D. 34) and (D. 51) into Equations {DD. 49),

a = A T2 —=T\/ A = R
atﬁ‘[fiRem(tF)l o=l +_5|_(R I-3RR )(-—SR)-GRRR—J RI°R
- tpot, tp=t; R R

+155°R ] -;&\5[(92[-355?)(-%9)_6@3|3|25+15;>25]I

2Aa 35 3= a -2 .2,
+(—E;’)—)3—(p R-R p)I—:—g(-2a+3rIr| ~15r%) T
[ I
6Aa - T, 3= . 3_ 6a . =+
-m rif;” (P R-R7p), - r—; Ly (D.52)
I I

Another derivative of Equation (D. 44) yields
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A p)-6rit-3[rPr+15:°F
¥ F

- A [(R*1-3RR ") (- S5 R- 57 -5 p)- 6RRR -3 IR |2ﬁ+151'%2§]F
R r p

Rp
-2 (0"1-3p8") (- % B) - 6065 - 3pl°p + 15p25]F (D, 53)
- P

Finally, substituting Equation (D, 53) into Equation (D. 52) results in the

first non-zero coefficient:

4
d — A — — T, 3- 3—
:1—‘7 GRem(tF)l _ = ———%— [(I-BURUR )(p r+r p)
tF tF_tI (Rrp) I
+ 3 (1-35, 3 DR - R°P), (D.54)

Again, Up and T are unit vectors in the direction of Rand T

respectively.

Noting the results of Equations (D. 25), (D.28), (D.37), (D.45), and
(D.54), the position error for the Earth-Moon method in Equation (D. 14)

may be written as

= Aa - — T,, . 3- 3-
6R_ _(h) = [(I-3u u, Mp'r +r p)
em 24 (Rrp) . R'R
+3(1-35.3 TP R - ROp)] h* + o) (D. 55)

As rioted earlier in this Section, due to the fact that for the Earth-
Moon method the derivative of the position estimate is not the velocity
estimate, the position and velocity errors must be derived separately.

The procedure is the same. First, the velocity error is defined as

- 2
= - r

F F (D. 56)

bRem(tF)

and then r'—-F ’ is substituted from Equation (D, 9) to obtain
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A

em Py = Tp "L Tpar = B Trag (D.57)

=-

6

Equation (D, 57) is expanded as a Taylor series in powers of the time-step
and the coefficients of the series are found by differentiating Equation
(DD.57) the appropriate number of times and evaluating the results at the
initial time. As it turns out, the first non-zero term in the velocity error
for the Earth-Moon method is exactly the same as that for the Stumpff-

Weiss method, Equation (C, 46).

A similar procedure is used to find the position and velocity errors

for the Moon-Earth method, The result for the position error is

- Aa T, 8- . 3_
6R_ _(h) = — [3(I-3U Uy NP F +r7p)
me 24 (Rrp)”, R°R
+(1-30 1 D(p°R - R*p), n* + o®) (D. 58)

If one notes that the assumptions made to derive the Earth-Moon and
Moon-Earth methods have a certain symmetry with respect to the
assumptions used for the Stumpff-Weiss method, the above result could
have been guessed by inspecting the form of Equations (C. 44) and (D. 55).
The velocity error for the Moon-Earth method is also the same as the

velocity error for the Stumpff-Weiss method to third order.
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