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ABSTRACT 

The endogenous two-break unit root test of Lumsdaine and Papell is derived assuming no 

structural breaks under the null. Thus, rejection of the null does not necessarily imply rejection 

of a unit root per se, but may imply rejection of a unit root without break. Similarly, the 

alternative does not necessarily imply trend stationarity with breaks, but may indicate a unit root 

with breaks. In this paper, we propose an endogenous two-break Lagrange multiplier unit root 

test that allows for breaks under both the null and alternative hypotheses. As a result, rejection 

of the null unambiguously implies trend stationarity. 

  



I. INTRODUCTION  

Abstract--The endogenous two-break unit root test of Lumsdaine and Papell is derived 

assuming no structural breaks under the null. Thus, rejection of the null does not necessarily 

imply rejection of a unit root per se, but may imply rejection of a unit root without break. 

Similarly, the alternative does not necessarily imply trend stationarity with breaks, but may 

indicate a unit root with breaks. In this paper, we propose an endogenous two-break Lagrange 

multiplier unit root test that allows for breaks under both the null and alternative hypotheses. As 

a result, rejection of the null unambiguously implies trend stationarity. 

SINCE THE influential paper of Perron (1989), researchers have noted the importance of 

allowing for a structural break in unit root tests. Perron (1989) showed that the ability to reject a 

unit root decreases when the stationary alternative is true and an existing structural break is 

ignored. Perron (1989) used a modified Dickey-Fuller (hereafter DF) unit root test that includes 

dummy variables to allow for one known, or exogenous, structural break. Subsequent papers 

modified the test to allow for one unknown breakpoint that is determined endogenously from the 

data. One widely used endogenous procedure is the minimum test of Zivot and Andrews 

(1992,hereafter ZA), which selects the breakpoint where the t-statistic testing the null of a unit 

root is the most negative. Given a loss of power from ignoring one break, it is logical to expect a 

similar loss of power from ignoring two, or more, breaks in the one-break test. Lumsdaine and 

Papell (1997,hereafter LP) continue in this direction and extend the minimum ZA unit root test to 

include two structural breaks. 

One important issue common to the ZA and LP (and other similar) endogenous break tests is 

that they assume no break(s) under the unit root null and derive their critical values accordingly. 

Thus, the alternative hypothesis would be "structural breaks are present," which includes the 

possibility of a unit root with break(s). Thus, rejection of the null does not necessarily imply 

rejection of a unit root per se, but would imply rejection of a unit root without breaks. This 

outcome calls for a careful interpretation of test results in empirical work. In the presence of a 

break under the null, researchers might incorrectly conclude that rejection of the null indicates 

evidence of a trend-stationary time series with breaks, when in fact the series is difference-

stationary with breaks. Despite this fact, numerous empirical papers that employ these 

endogenous break unit root tests conclude that rejection of the null is evidence of trend 

stationarity.( n1) 

The hypotheses implied in the above endogenous break unit root tests differ from those in 

Perron's (1989) exogenous break unit root test, which allowed for the possibility of a break 

under both the null and alternative hypotheses. Allowing for breaks under the null is important in 

Perron's test; otherwise, the unit root test statistic will diverge as the size of a break under the 

null increases. It is important to note that a similar divergence occurs in the endogenous break 

unit root tests. Nunes, Newbold, and Kuan (1997) and Lee and Strazicich (2001) provide 

evidence that assuming no break under the null in endogenous break tests causes the test 

statistic to diverge and lead to significant rejections of the unit root null when the data-

generating process (DGP) is a unit root with break(s).( n2) 



As a remedy to the limitations noted above, we propose a two-break minimum Lagrange 

multiplier (LM) unit root test in which the alternative hypothesis unambiguously implies trend 

stationarity. Our testing methodology is extended from the LM unit root test that was initially 

suggested in Schmidt and Phillips (1992,hereafter SP). Whereas assuming no break(s) under 

the null might be necessary in the LP test to make the test statistic invariant to breakpoint 

nuisance parameters, this assumption is not required in the LM test, as the distribution is 

invariant to breakpoint nuisance parameters (see Amsler and Lee, 1995).( n3) 

Our paper proceeds as follows. Section II discusses the asymptotic properties of the 

endogenous two-break LM unit root test. Section III examines the test performance in 

simulations. Section IV examines Nelson and Plosser's (1982) data and compares the results 

with those of the LP test. Section V summarizes and concludes. 

Throughout the paper, the symbol "→" denotes weak convergence of the associated probability 

measure. 

 

II. TEST STATISTICS AND STRUCTURAL BREAKS UNDER THE NULL  

Perron (1989) considered three structural break models as follows: the "crash" model A allows 

for a one-time change in level; the "changing growth" model B allows for a change in trend 

slope; and model C allows for a change in both the level and trend. Consider the DGP as 

follows: 

( 1) yt = δ'Zt + et, et = βet-1 + εt, 

where Zt is a vector of exogenous variables and εt ∼ iid N(0, σ²).( n4) Two structural breaks can 

be considered as follows.( n5) Model A allows for two shifts in level and is described by Zt = [ 

1,t, D1t, D2t]', where Djt = 1 for t ≥ TBj + 1, j = 1, 2, and 0 otherwise. TBj denotes the time period 

when a break occurs. Model C includes two changes in level and trend and is described by Zt = 

[ 1,t, D1t, D2t, DT1t DT2t]', where DTjt = t - TBj for t ≥ TBj + 1, j = 1, 2, and 0 otherwise. Note that the 

DGP includes breaks under the null (β = 1) and alternative (β < 1) hypothesis in a consistent 

manner. For instance, in model A (a similar argument can be applied to model C), depending on 

the value of β, we have 

(2a) Null yt = µ0 + d1 + B1t + d2B2t + yt-1 + v1t, 

(2b) Alternative yt = µ1 + yt + d1D1t + d2D2t + v2t, 

where v1t and v2t are stationary error terms; Bjt = 1 for t = TBj + 1, j = 1, 2, and 0 otherwise; and d 

= (d1, d2)'. In model C, Djt terms are added to (2a) and DTjt terms to (2b), respectively. Note that 

the null model (2a) includes dummy variables Bjt. Perron (1989,p. 1393) showed that including 

Bjt is necessary to ensure that the asymptotic distribution of the test statistic is invariant to the 

size of breaks (d) under the null.( n6) In the LP test it is assumed that d1 = d2 = 0 under the unit 

root null (thus omitting Bjt terms; LP, p. 212), and critical values of the test were derived under 

this assumption. As previously noted, this assumption is required; otherwise, the distribution of 



the LP test will depend on breakpoint nuisance parameters describing the location and 

magnitude of breaks under the null. 

The two-break LM unit root test statistic can be estimated by regression according to the LM 

(score) principle as follows: 

( 3) Δyt = δ'ΔZt + ΦSt-1 + ut, 

where St = yt - ψx - Ztδ, t = 2,..., T; δ are coefficients in the regression of Δyt on ΔZt; ψx is given 

by y1 - Z1δ (see SP); and y1 and Z1 denote the first observations of yt and Zt, respectively. The 

unit root null hypothesis is described by Φ = 0, and the LM test statistics are given by 

(4a) ρ = Tφ, 

(4b) τ = t-statistic testing the null hypothesis φ = 0. 

Assuming that the innovations εt satisfy the regularity conditions of Phillips and Perron (1988,p. 

336), we define two error variances, assumed to exist and to be positive, as follows: 

σ2, sub &epsilon; = lim T-1E(ε2, sub 1 + ... + ε2, sub T), T → ∞ 

σ² = lim T-1E(ε1 + ... + εT)². T → ∞ 

We additionally assume (i) the data are generated according to ( 1), with Zt = [ 1,t, D1t, D2t]' for 

model A and Zt = [ 1,t, D1t, D2t, DT1t, DT2t]' for model C; and (ii) TBj/T → λj as T → ∞, where λ = 

(λ1, λ2)'. Then, from the asymptotic results demonstrated in the Appendix, we can show that 

under the null hypothesis, 

(5a) ρ → - ½ σ2, sub &epsilon;/σ² (∫1, sub 0 V(m), sub B (r)² dr)-1 

(5b) τ → - ½ σ&epsilon;/σ (∫1, sub 0 V(m), sub B (r)² dr) -&frac12;, 

where V(m), sub B(r) is defined for m = A and C, respectively. 

An important implication of (5a) and (5b) is the invariance property. In the Appendix, we show 

that the expression V(A), sub B(r) is the same as a de-meaned Brownian bridge, V(r) = V(r) - ∫1, sub 0 

V(r) dr. This result implies that the asymptotic null distribution of the two-break LM unit root test 

for model A is invariant to the location (λ) and magnitude (d) of structural breaks. This property 

follows from the results shown in Amsler and Lee (1995) for their exogenous one-break LM unit 

root test. Fortunately, this same outcome carries over to the endogenous break LM unit root 

test. Thus, the asymptotic distribution of the endogenous break LM unit root test will not diverge 

in the presence of breaks under the null and is robust to their misspecification. Unfortunately, 

this invariance property does not strictly hold for model C, as the asymptotic null distribution of 

the endogenous break LM test depends on λ (see Appendix). However, unlike the LP test, the 

minimum LM unit root test statistic for model C does not diverge in the presence of breaks 

under the null, even when the breaks are large (see section III). 

The two-break minimum LM unit root test determines the breakpoints (TBj) endogenously by 

utilizing a grid search as follows: 



(6a) [Multiple line equation(s) cannot be represented in ASCII text] 

(6b) [Multiple line equation(s) cannot be represented in ASCII text] 

The breakpoint estimation scheme is similar to that in the LP test; the breakpoints are 

determined to be where the test statistic is minimized. As is typical in endogenous break tests, 

trimming of the infimum over [κ, 1 - κ] for some κ, say 10%, is utilized to eliminate endpoints. 

Then, utilizing the limit theory on continuity of the composite functional in Zivot and Andrews 

(1992), the asymptotic distributions of the endogenous two-break LM unit root tests can be 

described as follows: 

(7a) [Multiple line equation(s) cannot be represented in ASCII text] 

(7b) [Multiple line equation(s) cannot be represented in ASCII text] 

Critical values are derived using 50,000 replications for the exogenous break tests and 20,000 

replications for the endogenous break tests in samples of T = 100.( n7) Pseudo-iid N(0, 1) 

random numbers are generated using the Gauss (version 3.2.12) RNDNS procedure.( n8) 

Results are shown in tables 1 and 2. 

 

III. SIMULATIONS  

This section examines simulation experiments to evaluate the performance of the two-break 

minimum LM unit root test. Since the performance of the LM&rho; test statistic is similar, we 

discuss only LM&tau;. To highlight the invariance results, we first examine an exogenous version 

of the two-break LM test and then proceed to the endogenous test. Simulations are performed 

using 20,000 replications in the exogenous test and 5,000 replications in the endogenous test, 

in samples of T = 100. Throughout, R denotes the number of structural breaks, λ is a vector 

containing the locations of the breaks, and d is a vector containing the magnitudes of the breaks 

in the DGP. Re and λe denote the values assumed in the test regression. All measures of size 

and power are reported using 5% critical values. 

A. Exogenous Break Test 

Simulation results using the exogenous two-break LM unit root test are reported in table 3. We 

first examine model A (two level shifts). Experiment 1 investigates effects of assuming two 

breaks when no breaks are present. The results show no significant size distortion, implying that 

it does not hurt to allow for breaks when they do not exist. Note that the power of the LM test 

under the alternative (β = 0.9) in this baseline case is higher than that of the LP test (reported in 

parenthesis). In this respect, these findings are similar to those noted by Stock (1994) when 

comparing power of the no-break LM unit root test with no-break DF tests. 

Experiment 2 investigates invariance properties using breaks of different locations (λ) and sizes 

(d). These findings clearly demonstrate the invariance properties of the LM test. Regardless of 

the location and magnitude of breaks under the null, the two-break LM unit root test rejects the 

null at 4.8%. As expected, under the null with break, the LP test exhibits overrejections, which 



increase with the magnitude of the breaks. As previously noted, the greater rejections of the null 

in the LP test can be viewed as demonstrating high power when the alternative hypothesis is 

"structural breaks are present," or as spurious rejections when the null includes a unit root with 

break. 

Experiment 3 examines effects of underspecifying the number of breaks (Re < R). As expected, 

the two-break LM test is mostly invariant, under the null, to assuming too few breaks. Under the 

alternative there is a loss of power, which suggests that we should allow for breaks to increase 

power. Experiment 4 examines effects of incorrectly specifying the breakpoints. Again, the two-

break LM unit root test is mostly invariant to assuming incorrect break points under the null, and 

there is a loss of power under the alternative. 

Results of the exogenous two-break LM unit root test for model C (two levels and trend shifts) 

are similar to those for model A, except that the test statistic is no longer invariant to the location 

of breaks (λ) under the null, but is nearly so. As with model A, the LM test remains invariant to 

the size of breaks (d) under the null. Most important, the two-break LM test for model C does 

not exhibit high rejection in the presence of breaks under the null. Experiment 3' and 4' show a 

negative size distortion when the number of breaks is underspecified or their location is 

incorrect. 

 

B. ENDOGENOUS BREAK TEST 

Simulation results for the endogenous two-break LM unit root test are displayed in table 4. We 

first examine the results for model A (two level shifts). Experiment 5 compares 5% rejection 

rates using different break locations and magnitudes. Overall, the endogenous LM unit root test 

performs well in the presence of breaks under the null and shows no serious size distortions. In 

addition, these results indicate that the same critical values can be utilized regardless of the 

location and size of breaks under the null. In contrast, the endogenous two-break LP test 

exhibits significant rejections in the presence of breaks under the null, and more so as the 

magnitudes increase. Under the alternative, we observe in experiment 6 that the power of the 

LM test is relatively stable for moderate size breaks. For relatively large breaks d = ( 10, 10)', a 

loss of power is observed. However, this result may not be surprising, given that the time series 

would exhibit big swings and thus a low frequency would dominate the spectrum. 

Simulation results for model C are shown at the bottom of table 4. The endogenous two-break 

LM unit root test has slightly greater size distortions than in model A, but rejection rates are still 

close to 5%. Most important, as in model A, the LM test does not diverge and remains free of 

the overrejections observed in the LP test when breaks occur under the null. Thus, the 

endogenous two-break LM test may still be utilized for model C, but for greater accuracy critical 

values should be employed corresponding to the breakpoints (see table 2). 

As noted in table 4, the two-break LP test exhibits overrejections in the presence of breaks 

under the null, but seemingly high power under the alternative. Given the common interest in a 

trend-stationary alternative, a more appropriate power comparison for model C can be made by 



examining the size-adjusted power, which uses adjusted critical values corresponding to the 

magnitude of breaks. While the unadjusted power of the LP test appears high, especially when 

the magnitude of breaks is large, the size-adjusted power is comparable to the endogenous LM 

test. In experiment 6' the size-adjusted power of the LP test is 0.096, 0.061, 0.059, 0.063, and 

0.073, which is somewhat lower than that of the LM test. 

The accuracy of estimating the break points is examined on the right side of table 4. For model 

A, the minimum LM test estimates breakpoints reasonably well under the alternative, whereas 

the accuracy declines in model C. In simulation results not reported here, we show that the LP 

test tends to select breakpoints most frequently at TBj - 1.( n9) 

 

IV. EMPIRICAL TESTS  

In this section, the two-break minimum LM unit root test is applied to Nelson and Plosser's 

(1982) data. We use an augmented version to correct for serial correlation. Results are 

compared with the two-break minimum LP test. Nelson and Plosser's data comprise fourteen 

annual time series ranging from 1860 (or later) to 1970 and have the advantage of being 

extensively examined in the literature. All of the series are in logs except the interest rate. In 

each test, we determine the number of lagged augmentation terms by following the general-to-

specific procedure described in Perron (1989) and suggested in Ng and Perron (1995). Starting 

from a maximum of k = 8 lagged terms, the procedure looks for significance of the last 

augmented term. We use the 10% asymptotic normal value of 1.645 on the t-statistic of the last 

first-differenced lagged term. After determining the optimal k at each combination of two 

breakpoints, we determine the breaks where the endogenous two-break LM t-test statistic is at a 

minimum. To do so, we examine each possible combination of two breakpoints over the time 

interval [0.1T, 0.9T] (to eliminate endpoints). We follow Perron (1989) and ZA and assume 

model A in all series except for the real wage and the S&P 500 stock index, in which cases 

model C is assumed. 

Overall, we find stronger rejections of the null using the LP test than with the LM test. At the 5% 

significance level, the null is rejected for six series with the LP test and four series with the LM 

test.( n10) For example, whereas the null is rejected at the 5% significance level for real GNP, 

nominal GNP, per-capita real GNP, and employment using the LP test, the null is rejected only 

at higher significance levels with the LM test.( n11) As previously noted, the LP test often 

selects breakpoints near one period before the LM test. 

To investigate the potential for overrejections using the LP test, we estimate the size of breaks 

under the unit root null. If coefficients of the one-time dummy variables Bjt are significant, then 

we expect the LP test to reject the unit root null hypothesis more often. The null model in (2a) is 

estimated using the first-differenced series as follows. Briefly, for each possible combination of 

TB1 and TB2 in the interval [0.1 T, 0.9T] (to eliminate endpoints), we again include k augmented 

terms using the general-to-specific procedure. After determining the optimal k at each 

combination of two breakpoints, the breaks are determined to be where the Schwarz Bayesian 

criterion statistic is minimized. The estimated break coefficients are shown in standardized units, 



along with other results, in table 5. Break terms under the null are found to be significant in most 

series, with (absolute) magnitudes ranging from near 2 to 8. These results suggest that even 

modest-size breaks under the null can potentially lead to different inference findings, or at least 

to different levels of significance. 

 

V. CONCLUDING REMARKS  

In many economic time series, allowing for only one structural break may be too restrictive. This 

paper proposes a two-break minimum LM test, which endogenously determines the location of 

two breaks in level and trend and tests the null of a unit root. Contrary to the endogenous two-

break unit root test of Lumsdaine and Papell (1997), the endogenous two-break LM test does 

not diverge in the presence of breaks under the null. Thus, using the two-break minimum LM 

test, researchers will not conclude that a time series is trend-stationary with breaks when it is 

actually difference-stationary with breaks. In summary, the two-break minimum LM unit root test 

provides a remedy for a limitation of the two-break minimum LP test that includes the possibility 

of a unit root with break(s) in the alternative hypothesis. Using the two-break minimum LM unit 

root test, rejection of the null hypothesis unambiguously implies trend stationarity. 

 

 

NOTES 

(n1) See Raj and Slottje (1994), Ashworth, Evans, and Teriba (1999), Mehl (2000), and Ben-

David, Lumsdaine, and Papell (2002), among others, for examples of papers that employ the ZA 

or LP endogenous break tests and conclude that rejection of the null indicates trend stationarity. 

(n2) An anonymous referee convincingly points out that the high rejection rates in the LP test 

can be viewed as high power. This point is valid if the desired alternative is the existence of 

breaks. Otherwise, if the null is rejected, one may then need to examine the source of the 

rejection, as the alternative includes a unit root with break. In this case, the question whether a 

time series is trend-stationary or difference-stationary would still remain. We take the view that it 

is desirable to employ tests that allow for the possibility of structural change in a unit root 

process. One may pose the question "can structural change coincide with a unit root process?" 

We answer this question in the affirmative. First, we note that Perron (1989) allowed for a break 

under the null in his initial unit root test. Second, our view is consistent with Harvey, Leybourne, 

and Newbold (2001), who suggest that a structural break under the unit root null can be 

interpreted as a large permanent shock or outlier. 

(n3) Strictly speaking, the endogenous-break LM unit root test is invariant to breakpoint 

nuisance parameters only for model A (level shifts). The LM test for model C (level and trend 

shifts) is not invariant to nuisance parameters, but is nearly so. However, in no case does the 

LM test diverge or exhibit any systematic pattern of overrejections in the presence of breaks 

under the null (see footnote 9). 



(n4) The baseline SP LM test statistics are driven via a likelihood function that assumes εt, ∼ iid 

normal, but the iid assumption can be relaxed to correct for serial correlation. The test statistic 

can easily be extended to the case of autocorrelated errors by assuming that A(L)εt = B(L)ut, 

wherein A(L) and B(L) are finite-order polynomials with ut ∼ iid (0, σ2, [sub u) (see Ahn, 1993, and 

Lee & Schmidt, 1994). Further, following Phillips (1987) and Phillips and Perron (1988), we can 

assume the same regularity conditions that permit a degree of heterogeneity and serial 

correlation in εt. Then, to correct for autocorrelated errors, lagged augmented terms ΔSt-j, j = 1, 

... , k, can be included in (3) as in the augmented DF test. Alternatively, a corrected test statistic 

using consistent estimates of the error variances can be employed as in the Phillips-Perron test. 

(n5) Model B is omitted from further discussion, as it is commonly held that most economic time 

series can be adequately described by model A or C. 

(n6) In revisions to their structural break unit root tests, Perron (1993) and Perron and 

Vogelsang (1992) again include Bt terms in their testing regressions of the additive outlier (AO) 

model to be consistent under the null. They note that with B1 not included, the test statistic 

diverges as the size of a break under the null increases. The same would be true for the 

innovative outlier (IO) model. 

(n7) LP used 2,000 replications to obtain their endogenous break test critical values. 

(n8) Copies of the Gauss computer codes utilized in this paper can be obtained at the Web site 

http://www.cba.ua.edu/&sim;jlee/gauss/. 

(n9) The problem of estimating breakpoints at TBj - 1 occurs when Bjt terms are included in the 

test regression and may be avoided if these terms are omitted as in LP [equation (1), p. 212]. 

When Bjt terms are omitted, the estimated breakpoints tend to move from TBj - 1 to TBj, thus 

seeming to solve the problem of their incorrect estimation. However, with or without Bjt terms in 

the test regression, the two-break LP test statistic diverges and overrejects in the presence of 

breaks under the null. Results are available upon request. 

(n10) The empirical results in table 5 use critical values from table 2 (model A) and table 3 

(model C) in Lumsdaine and Papell (1997) for the two-break minimum LP test, while including 

Bjt in the testing regression. For comparison, the critical values used in the two-break minimum 

LM test in table 5 were derived using the same sample size and trimming as in LP (T = 125 and 

1%). The LM test critical values are -4.571, -3.937, and -3.564 for model A, and -6.281, -5.620, 

and -5.247 for model C, at the 1%, 5%, and 10% significance levels, respectively. 

(n11) For the real wage and money stock the opposite is the case. 

 

 

 

 



TABLE 1.--CRITICAL VALUES OF THE EXOGENOUS TWO-BREAK LM UNIT ROOT TEST (T = 100)  

Model A(a) 

 

Legend for Chart: 

 

B - 1% 

C - 5% 

D - 10% 

 

 A           B          C            D 

 

τ      -3.610     -3.047     -2.763 

ρ     -23.13     -17.80     -14.87 

 

Model C(b) 

 

Legend for Chart: 

 

A - λ1 

B - λ2 0.4 

C - λ2 0.6 

D - λ2 0.8 

 

A               B                      C 

                                       D 

 

τ 

 

0.2    -4.82, -4.19, -3.89    -4.92, -4.31, -4.00 

                              -4.76, -4.19, -3.88 

 

0.4    --                     -4.91, -4.33, -4.03 

                              -4.87, -4.32, -4.03 

 

0.6    --                     -- 

                              -4.84, -4.19, -3.89 

 

ρ 

 

0.2    -38.1, -30.2, -26.4    -39.3, -31.6, -27.9 

                              -37.2, -30.1, -26.3 

 

0.4    --                     -39.1, -31.6, -27.9 

                              -37.2, -30.1, -26.3 

 

0.6    --                     -- 

                              -38.3, -30.2, -26.4 

 

(a) Owing to the invariance property of the LM test, 

critical values for model A are the same as those in 

Schmidt and Phillips (1992). 

 

(b) Critical values are at the 1%, 5% and 10% levels, 

respectively, λj denotes the locations 

of breaks. 



TABLE 2.--CRITICAL VALUES OF THE ENDOGENOUS TWO-BREAK LM UNIT ROOT TEST (T = 100)  

Legend for Chart: 

 

B - 1% 

C - 5% 

D - 10% 

 

      A              B          C          D 

 

Model A 

 

LM&tau;      -4.545     -3.842     -3.504 

LM&rho;     -35.726    -26.894    -22.892 

 

Model C (I)(a) 

 

LM&tau;      -5.823     -5.286     -4.989 

LM&rho;     -52.550    -45.531    -41.663 

 

Model C (II) 

Legend for Chart: 

 

A - λ1 

B - λ2 0.4 

C - λ2 0.6 

D - λ2 0.8 

 

 A                      B                     C 

                                              D 

 

LM&tau; 

 

0.2             -6.16, -5.59, -5.27   -6.41, -5.74, -5.32 

                                      -6.33, -5.71, -5.33 

 

0.4             --                    -6.45, -5.67, -5.31 

                                      -6.42, -5.65, -5.32 

 

0.6             --                    -- 

                                      -6.32, -5.73, -5.32 

 

LM&rho; 

 

0.2             -55.4, -47.9. -44.0   -58.6, -49.9, -44.4 

                                      -57.6, -49.6, -44.6 

 

0.4                                   -59.3, -49.0, -44.3 

                                      -58.8, -48.7, -44.5 

 

0.6 

                                      -57.4, -49.8, -44.4 

 

(a) In the DGP, λ1 and λ2 

are assumed to be absent. 

 



(b) Critical values are at the 1%, 5%, and 10% 

levels, respectively. λj denotes 

the locations of breaks. 

 

 

TABLE 3.--REJECTION RATES OF THE EXOGENOUS TWO-BREAK LM&tau; UNIT ROOT TEST (T = 100)  

Legend for Chart: 

 

A - Expt. 

B - DGP R 

C - DGP λ' 

D - DGP d' 

E - Estimation Re' 

F - Estimation λ' e] 

G - Size and Power(a) Under the Null (β = 1.0) 

H - Size and Power(a) Under the Alternative (β = 0.9) 

 

A                 B        C           D 

                  E        F           G 

                                       H 

 

Model A 

 

1                 0    --          -- 

                  2    .25, .50    .048 (.040) 

                                   .248 (.114) 

 

                  2    .25, .75    .048 (.040) 

                                   .246 (.110) 

 

                  2    .50, .75    .049 (.039) 

                                   .247 (.105) 

 

2                 2    .25, .50    5, 5 

                  2    .25, .50    .048 (.487) 

                                   .248 (.763) 

 

                                   10, 10 

                  2    .25, .50    .048 (.955) 

                                   .248 (.998) 

 

                  2    .25, .75    5, 5 

                  2    .25, .75    .048 (.485) 

                                   .246 (.757) 

 

                                   10, 10 

                  2    .25, .75    .048 (.956) 

                                   .246 (.997) 

 

3                 2    .25, .50    5, 5 

                  0    --          .055 

                                   .130 

 

                       .25, .50    5, 5 

                  1    .25         .047 



                                   .152 

 

                       .25, .50    5, 5 

                  1    .50         .046 

                                   .141 

 

                  2    .25, .50    10, 10 

                  0    --          .039 

                                   .021 

 

                       .25, .50    10, 10 

                  1    .25         .034 

                                   .041 

 

                       .25, .50    10, 10 

                  1    .50         .033 

                                   .027 

 

4                 2    .25, .50    5, 5 

                  2    .25, .75    .048 

                                   .149 

 

                                   10, 10 

                  2    .25, .75    .034 

                                   .039 

 

Model C 

 

1'                0    --          -- 

                  2    .25, .50    .051 (.050) 

                                   .113 (.101) 

 

                  2    .25, .75    .047 (.052) 

                                   .112 (.101) 

 

                  2    .50, .75    .050 (.055) 

                                   .117 (.105) 

 

2'                2    .25, .50    5, 5 

                  2    .25, .50    .051 (.625) 

                                   .115 (.773) 

 

                                   10, 10 

                  2    .25, .50    .051 (.986) 

                                   .115 (.998) 

 

                  2    .25, .75    5, 5 

                  2    .25, .75    .047 (.627) 

                                   .112 (.773) 

 

                                   10, 10 

                  2    .25, .75    .047 (.986) 

                                   .112 (.999) 

 

3'                2    .25, .50    5, 5 

                  0    --          .000 

                                   .000 



                       .25, .50    5, 5 

                  1    .25         .002 

                                   .003 

 

                       .25, .50    5, 5 

                  1    .50         .004 

                                   .004 

 

                  2    .25, .50    10, 10 

                  0    --          .000 

                                   .000 

 

                       .25, .50    10, 10 

                  1    .25         .000 

                                   .000 

 

                       .25, .50    10, 10 

                  1    .50         .000 

                                   .000 

 

4'                2    .25, .50    5, 5 

                  2    .25, .75    .015 

                                   .013 

 

                                   10, 10 

                  2    .25, .75    .000 

                                   .000 

 

(a) For comparison, the corresponding size and power of 

the LP test is shown in parentheses. 

 

 

TABLE 4.--REJECTION RATES OF THE ENDOGENOUS TWO-BREAK LMT UNIT ROOT TEST  

Legend for Chart: 

 

A - Expt. 

B - λ' 

C - d' 

D - 5% Rej.(a) 

E - Frequency of Estimated Break Points in the Range 

    TB - 1 

F - Frequency of Estimated Break Points in the Range 

    TB 

G - Frequency of Estimated Break Points in the Range 

    TB ± 10 

H - Frequency of Estimated Break Points in the Range 

    TB ± 30 

 

   A                 B          C           D            E 

                                F           G            H 

Model A 

 

Under the Null (β = 1) 

 

5                 --          0, 0      .058 (.046)     -- 



                              --        --              -- 

 

                  .25, .5     5, 5      .069 (.192)     .000 

                              .116      .240            .668 

 

                  .25, .5     10, 10    .037 (.748)     .002 

                              .234      .450            .744 

 

                  .25, .75    5, 5      .066 (.170)     .000 

                              .032      .130            .599 

 

                  .2, .3      5, 5      .058 (.260)     .000 

                              .244      .396            .623 

 

Under the Alternative (β = .9) 

 

6                 --          0, 0      .282 (.098)     -- 

                              --        --              -- 

 

                  .25, .5     5, 5      .200 (.318)     .000 

                              .226      .396            .726 

 

                  .25, .5     10, 10    .049 (.954)     .000 

                              .538      .740            .851 

 

                  .25, .75    5, 5      .230 (.298)     .004 

                              .101      .237            .673 

 

                  .2, .3      5, 5      .148 (.336)     .000 

                              .325      .496            .681 

 

Model C 

 

Under the Null (β = 1) 

 

5'                --          0, 0      .052 (.052)     -- 

                              --        --              -- 

 

                  .25, .5     5, 5      .031 (.272)     .006 

                              .016      .452            .903 

 

                  .25, .5     10, 10    .024 (.882)     .002 

                              .016      .731            .995 

 

                  .25, .75    5, 5      .032 (.262)     .004 

                              .018      .539            .950 

 

                  .2, .3      5, 5      .066 (.146)     .002 

                              .000      .142            .502 

 

Under the Alternative (β = .9) 

 

6'                --          0, 0      .113 (.098)     -- 

                              --        --              -- 

 

                  .25, .5     5, 5      .084 (.346)     .006 

                              .041      .529            .938 



                  .25, .5     10, 10    .060 (.968)     .000 

                              .041      .750            1.00 

 

                  .25, .75    5, 5      .074 (.348)     .006 

                              .026      .592            .976 

 

                  .2, .3      5, 5      .107 (.246)     .002 

                              .002      .198            .556 

 

(a) For comparison, the corresponding size and power 

of the LP test is shown in parentheses. The corresponding 

size-adjusted power of the LP test in experiment 

6' is .096, .061, .059, .063, and .073, respectively. 

 

 

TABLE 5.--EMPIRICAL RESULTS  

Legend for Chart: 

 

A - Model 

B - Series 

C - LP k 

D - LP TB 

E - LP Stat. 

F - LM&tau; k 

G - LM&tau; TB 

H - LM&tau; Stat. 

I - Null Model d*, sub 1, d*, sub 2(a,b) 

J - Null Model TB 

 

A                        B    C         D                E 

 

                              F         G                H 

 

                                        I                J 

 

Real GNP                 A    2    1928               -7.00(*) 

                                   1937 

 

                              7    1920               -3.62 

                                   1941 

 

                                   3.09, -2.67        1921 

                                  (2.97, -2.65)       1929 

 

Nominal GNP              A    8    1919               -7.50(*) 

                                   1928 

 

                              8    1920               -3.65 

                                   1948 

 

                                   -4.84, -3.46       1920 

                                  (-4.80, -3.27)      1931 

 

Per capita real GNP      A    2    1928               -6.88(*) 

                                   1939 



 

                              7    1920               -3.68 

                                   1941 

 

                                   3.07, -2.60        1921 

                                  (2.94, -2.57)       1929 

 

Industrial production    A    8    1917               -7.67(*) 

                                   1928 

 

                              8    1920               -4.32(*) 

                                   1930 

 

                                   -3.73, -4.38       1920 

                                  (-3.63, -4.13)      1931 

 

Employment               A    8    1928               -6.80(*) 

                                   1955 

 

                              7    1920               -3.91 

                                   1945 

 

                                   -2.90, 2.51        1931 

                                  (-2.73, 2.33)       1941 

 

Unemployment rate        A    7    1928               -6.31(*) 

                                   1941 

 

                              7    1926               -4.47(*) 

                                   1942 

 

                                   -3.43, 1.97        1917 

                                  (-3.38, 1.83)       1920 

 

GNP deflator             A    8    1916               -4.74 

                                   1920 

 

                              1    1919               -3.18 

                                   1922 

 

                                   3.88, -8.49        1917 

                                  (3.73, -7.14)       1921 

 

CPI                      A    2    1914               -4.03 

                                   1944 

 

                              4    1916               -3.92 

                                   1941 

 

                                   -2.44, -7.78       1920 

                                  (-7.13, -2.41)      1930 

 

Nominal wage             A    7    1914               -5.85 

                                   1929 

 

                              7    1921               -3.84 

                                   1942 



 

                                   -3.75, -2.98       1920 

                                  (-3.62, -2.89)      1931 

 

Real wage                C    4    1921               -6.27 

                                   1940 

 

                              8    1922               -6.24(*) 

                                   1939 

 

                                   -3.10, -.57        1931 

                                  (-2.54, -3.01)      1945 

 

Money stock              A    8    1929               -6.22 

                                   1958 

 

                              7    1927               -4.31(*) 

                                   1931 

 

                                   -3.54, -3.63       1920 

                                  (-3.50, -3.50)      1931 

 

Velocity                 A    1    1883               -4.62 

                                   1953 

 

                              1    1893               -2.52 

                                   1947 

 

                                   2.33, -2.28        1941 

                                  (2.32, -2.27)       1944 

 

Interest rates           A    2    1931               -1.74 

                                   1957 

 

                              3    1949               -1.58 

                                   1958 

 

                                   2.67, -2.50        1917 

                                  (2.64, -2.45)       1921 

 

S&P 500              C    1    1925               -6.37 

                                   1938 

 

                              3    1925               -5.57 

                                   1941 

 

                                   3.12, 3.35         1928 

                                  (4.82, 2.54)        1932 

 

(*) denotes significant at 5%. 

 

(a) Standardized coefficients (d*, sub i = d*, sub 

i)/σ) are reported. 

 

(b) t-statistics for di = 0 are given in parentheses. 

Data are the same as in Nelson and Plosser (1982). 
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APPENDIX  

This appendix describes the asymptotic properties of the endogenous two-break LM unit root 

test for models A (two level shifts) and C (two level and trend shifts). Consider the following 

regression imposing the restriction β = 1 in ( 1): 

(A-1) Δyt = ΔZ'tδ + ut, 

where ut = εt under the null, and Zt allows for exogenous trend break functions in addition to a 

linear trend function considered in SP. We define ut as the residual from the above regression: 

(A-2)[Multiple line equation(s) cannot be represented in ASCII text] 

Then the expression for St in the testing regression ( 3) can be obtained as a partial-sum 

process of utt. Letting St = Σt, sub j=2 εj and [rT] be the integer part of rT, r ∈ [0, 1], we obtain 

(A-3) [Multiple line equation(s) cannot be represented in ASCII text] 

As we will see below, the asymptotic properties of the LM test statistics are determined by the 

weak limit of this partial-sum-of-residuals process. Specifically, from regression ( 3), we obtain 

(A-4) φ = (S'1M&Delta;ZS1)
-1(S'1M&Delta;ZΔy), 

where S1 = (S1,...,ST-1)', ΔZ = (ΔZ2,....,ΔZT)
', Δy = (Δy2,..., ΔyT)', and M&Delta;Z = 1 - 

Delta;Z(ΔZ'ΔZ)¹ΔZ. Then, following SP, it can be shown that 

(A-5) T-2S'1M&Delta;ZS1 → σ² ∫ 1, sub 0 V(m), sub B(r)² dr, 

where V(m), sub B(r), m = A, C, is the projection of the process V(m), sub B(r) on the orthogonal 

complement of the space spanned by the trend break function dz(λ, r) as defined over the 

interval r ∈ [0, 1]. That is, 

(A-6) V(m), sub B(r) = V (m), sub B(r) - dz(λ, r)δ for m = A, C, 

with 

[Multiple line equation(s) cannot be represented in ASCII text] 

Here, V(m), sub B(r) is the weak limit of the partial sum residual process S[rT] in (A-3) and is defined 

so as to depend on the first difference of the exogenous trend break functions, viz. dz(λ, r), 

which is defined differently for each break model. In this appendix, we wish to show the explicit 

expression for V(m), sub B(r), m = A, C. As a special case of the usual SP test not allowing for 

breaks, dz(λ, r) is simply a constant function, dz(λ, r) = 1, and V(m), sub B(r) becomes a standard 

Brownian bridge V(r) = W(r) - rW( 1). 

For model A with two level shifts, we let Zt = (t, W't)', where Wt = (D1t,...., Dmt)' and δ = (δ1, δ'2)'. 

Amsler and Lee (1995) derive asymptotic distributions of the LM test statistics with one known 

or exogenous structural break. Here we consider a more general case with a finite number of, 



say, m *(This character cannot be converted in ASCII text) T structural breaks. Then the partial-

sum process in (A-3) can be written as 

(A-7) [Multiple line equation(s) cannot be represented in ASCII text] 

The first term on the right-hand side of (A-7) follows T-1/2S[rT] → σW(r). For the second term, 

T&frac12;(*(This character cannot be converted in ASCII text)1 - δ1) = (T-1i'M&Delta;Wi)-1T-1/2 

i'M&Delta;Wε, where M&Delta;W = I - ΔW(ΔW'ΔW) -1ΔW'. Here, T-1i'M&delta;WI → 1, since I'ΔW = I'm(the 

1 x m vector of ones) and I'Maw[sub ΔWi = T - m. Then 

[Multiple line equation(s) cannot be represented in ASCII text] 

We can show that the third term vanishes asymptotically. Since W[rT - W1 → im, 

[Multiple line equation(s) cannot be represented in ASCII text] 

where ΔW'] M1 ΔW = Im - ImT-1 → Im and ΔW' M1ε = (εTB1+1,..., &epsilon;[sub TBm+1)' - imε. Thus, 

combining results, the terms in (A-7) follow 

T-&frac12;S[rT] → σ[W(r) - rW( 1)] = σV(r), (A-8) 

where V(r) is a Brownian bridge. Thus, V(A), sub B(r) can be expressed as V(r). This is the same 

expression as obtained from the usual SP test ignoring a break [see the equation before (A3.1) 

in SP, 1992, p. 283]. In addition, note that 

V(A), sub B (r) = V(A), sub B (r) - δ1 - [b1(λ, r),..., bm(λ, r)]δ2, 

where bj(λ, r) = 1 if r = λ, j = 1 ,..., m, and 0 otherwise. The last term is again asymptotically 

negligible as shown for (A-7). Thus, we can show that V(A), sub B(r) in (A-5) will be a de-meaned 

Brownian bridge V(A), sub B(r) = V(r), where V(r) = V(r) - ∫1, sub 0 V(r) dr. Then (A-5) becomes 

(A-9) T-2S'1M&Delta;ZS1 → σ² ∫1, sub 0 V(r)² dr. 

Following SP, we can similarly show that for the second term in (A-4), 

(A-10) T-1S'1M&Delta;ZΔy = T-1S'1M&Delta;Zε = T-1S'1ε → -0.5σ2, sub &epsilon;, 

y where ε = M&Delta;Zε and the result is T-1/2SrT] = T-1/2Σt, sub j=2εj. Combining this result with (A-9), 

we obtain for model A 

(A-11) ρ = Tφ → -0.5 σ2, sub &epsilon;/σ² (∫1, sub 0 V(r)² dr)-1, 

which is the same limiting distribution as the usual SP statistic not allowing for breaks. 

Accordingly, the limiting distribution of τ is obtained as in SP. 

For model C with two breaks in both level and trend, we let Zt = (t, W't)' where Wt = (D1t, D[sub 2t, 

DT1t, DT2t)'. We additionally define dz(λ, r) = [b1(λ, r), b2(λ, r), d1(λ, r), d2(λ, r)], where dj(λ, r) = 1 if 

r > λj, j = 1, 2, and 0 otherwise. We note that the first two terms denoting a one-time break are 

asymptotically negligible, as we observed for model A. Thus, without loss of generality we can 



simplify the algebra by using dz(λ, r) ≈ [d1(λ, r), d2(λ, r)], δ = (δ1, δ'2' and Zt ≅ (t, DT1t, DT2t)'. 

Then letting DT = diag [T, T, T], we have, as in SP, 

(A-12) [Multiple line equation(s) cannot be represented in ASCII text] 

→ σB-1 ∫1, sub 0 dz(λ, r) dW(r), 

where 

[Multiple line equation(s) cannot be represented in ASCII text] 

and W(r) is a standard Wiener process. Then the partial-sum process in (A-3) follows as 

[Multiple line equation(s) cannot be represented in ASCII text] 

(A-13) [Multiple line equation(s) cannot be represented in ASCII text] 

where z(λ, r) = (r, dt1(λ, r), dt2(λ, r)), dtj(λ, r) = r, if r > λj, j = 1, 2, and 0 otherwise; and we call 

V(C), sub B(λ, r) a break Brownian bridge. The process V(C), sub B(λ, r), which we call a debreaked 

Brownian bridge, is accordingly given by (A-6); we note that it depends on λ. Then, from (A.13), 

(A-14) T-2S'1M&Delta;ZS1 → σ² ∫1, sub 0 V(C), sub B(λ, r) dr. 

The result in (A-10) continues to hold for model C. When we use *(This character cannot be 

converted in ASCII text) = M&Delta;Zε with ΔZt ≈ ( 1,D1t, D2t', it follows that 

(A-15) T-1S'1M&Delta;ZΔy → -0.5σ2, sub &epsilon;. 

Thus, the asymptotic distributions of the LM test statistics for model C are given by (A-14) and 

(A-15). 

 


