Minimum-Latency Aggregation Scheduling in Multihop Wireless Networks

Peng-Jun Wan ${ }^{*}$
Department of Computer
Science
Illinois Institute of Technology
Chicago, IL 60616
wan@cs.iit.edu

Scott C.-H. Huang ${ }^{\dagger}$
Department of Computer
Science
City University of Hong Kong
Kowloon, Hong Kong
shuang@cityu.edu.hk

Lixin Wang
Department of Computer
Science
Illinois Institute of Technology
Chicago, IL 60616
wanglix@iit.edu

Zhiyuan Wan
Department of Computer
Science
City University of Hong Kong
Kowloon, Hong Kong
zhiyuwan@cityu.edu.hk

Xiaohua Jia ${ }^{\ddagger}$
Department of Computer
Science
City University of Hong Kong
Kowloon, Hong Kong
jia@cs.cityu.edu.hk

Abstract

Minimum-latency aggregation schedule (MLAS) in synchronous multihop wireless networks seeks a shortest schedule for data aggregation subject to the interference constraint. In this paper, we study MLAS under the protocol interference model in which each node has a unit communication radius and an interference radius $\rho \geq 1$. All known aggregation schedules assumed $\rho=1$, and the best-known aggregation latency with $\rho=1$ is $23 R+\Delta-18$ where R and Δ are the radius and maximum degree of the communication topology respectively. In this paper, we first construct three aggregations schedules with $\rho=1$ of latency $15 R+\Delta-4$, $2 R+O(\log R)+\Delta$ and $(1+O(\log R / \sqrt[3]{R})) R+\Delta$ respectively. Then, we obtain two aggregation schedules with $\rho>1$ by expanding the first two aggregation schedules with $\rho=1$. Both aggregation schedules with $\rho>1$ have latency within constant factors of the minimum aggregation latency.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network

[^0]Architecture and Design-wireless communication; F.2.0 [Theory of Computation]: Analysis of Algorithms and Problem Complexity-General

General Terms

Algorithms, Theory

Keywords

Aggregation, communication latency, approximation algorithms

1. INTRODUCTION

Data aggregation in multihop wireless networks is a primitive communication task in which a distinguished sink node collects a packet from every other node and every intermediate node combines all received packets with its own packet into a single packet of fixed-size according to some aggregation function such as logical and/or, maximum, or minimum. A routing for an aggregation is a spanning inward arborescence of the communication topology rooted at the sink of the aggregation. Assume that all communications proceed in synchronous time-slots and each node can transmit at most one packet of a fixed size in each time-slot. A link schedule of an spanning inward arborescence is an assignment of time-slots to all links in this arborescence subject to two constraints: (1) A node can only transmit after all its children complete their transmissions to itself; and (2) all links assigned in a common time-slot are interferencefree. Thus, an aggregation schedule specifies not only a spanning in-arborescence for routing but also a link schedule of such spanning in-arborescence. The latency of an aggregation schedule is the number of time-slots during which at least one transmission occurs. The problem of computing an aggregation schedule with minimum latency in a multihop wireless network is referred to Minimum-Latency Aggregation Schedule (MLAS).

In this paper, we study the problem MLAS under the following model for wireless networks. All the networking
nodes are located in a plane and are each equipped with an omnidirectional antenna. Each node has a fixed transmission radius which is normalized to one and an interference radius $\rho \geq 1$. The communication range and the interference range of a node v are the two disks centered at v of radius one and ρ respectively (see Figure 1). Let V denote the set of networking nodes, and G be the unit-disk graph (UDG) on V. Then the communication topology of the network is the digraph \vec{G} obtained from G by replacing any edge $u v$ in G with two oppositely oriented links (u, v) and (v, u). A pair of communication links $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in \vec{G} are said to be conflict-free if the two line segments $u_{1} v_{2}$ and $u_{2} v_{1}$ are both longer than ρ. A subset of links in \vec{G} scheduled in a same time-slot are inteference-free if they are pairwise conflict-free. Such interference model is referred to as the protocol interference model [3] and is widely used because of its generality and tractability.

Figure 1: The protocol interference model: each node has a unit transmission radius and an interference radius $\rho \geq 1$.

MLAS with $\rho=1$ is NP-hard [1]. Let n be the number of nodes, and the s be the sink node of the aggregation. The radius of G with respect to s, denoted by R, is the maximum (hop) distance between s and other node in G. Both R and $\log n$ are two lower bounds on the minimum aggregation latency regardless of ρ. For $\rho=1$, two aggregation schedules of latency at most $(\Delta-1) R$ and $23 R+\Delta-18$ respectively have been developed in [1] and [4] respectively, where Δ is the maximum degree of G. Note that Δ contributes to an multiplicative factor in the former aggregation schedule, while contributes to additive factor in the latter aggregation schedule. This paper makes the following contributions to MLAS:

- For $\rho=1$, we develop three approximation algorithms which produce aggregations schedules of latency at most $15 R+\Delta-4,2 R+\Delta+O(\log R)$ and $(1+O(\log R / \sqrt[3]{R})) R+\Delta$ respectively. The first one has the simplest implementation and may outperform the other two when the radius R is small. For large radius R, the latter two speed up the aggregation schedule by using the pipelining technique.
- For $\rho>1$, we develop two approximation algorithms which produce aggregations schedules of latency at most $\beta_{\rho+1}(15 R+\Delta-4)$ and $\beta_{\rho+1}(2 R+\Delta+O(\log R))$ respectively, where

$$
\beta_{r}=\frac{\pi}{\sqrt{3}} r^{2}+\left(\frac{\pi}{2}+1\right) r+1 .
$$

We also prove that both algorithms have constant approximation ratios.

The key ingredients of the three approximation algorithms with $\rho=1$ are a special inward arborescence and two novel connected dominating sets. The inward arborescence is associated with a properly defined link labelling and node ranking. It enables the application of the pipelining technique for speeding up the aggregation schedule. In any aggregation routing, the set of relaying nodes together with the sink node s form a connected dominating set (CDS) of G. For achieving shorter aggregation latency, the CDS should have stronger structural properties such as graph radius and maximum degree than small size only. The constructions of these structures are presented in Section 3 and Section 4 respectively. The three approximation algorithms with $\rho=1$ are then described in Section 5. The two approximation algorithms with $\rho>1$ exploits a generic expansion technique which adapts a "well-separated" communication schedule with $\rho=1$ to a communication schedule with $\rho>1$. Such expansion technique is described in Section 6. We expect that these structures and the expansion technique can be applied in the scheduling of other communications.

2. PRELIMINARIES

In this section, we first introduce some standard graphtheoretic terms and notations adopted throughout this paper. Let $G=(V, E)$ be a connected graph. The subgraph of G induced by a subset U of V is denoted by $G[U]$, and the bipartite subgraph of G induced by two disjoint subsets U and W of V is denoted by $G[U, W]$. The maximum (respectively, minimum) degree of G is denoted by $\Delta(G)$ (respectively, $\delta(G)$). The inductivity of G is defined by

$$
\delta^{*}(G)=\max _{U \subseteq V} \delta(G[U])
$$

The graph distance between any two nodes u and v in G is denoted by $\operatorname{dist}_{G}(u, v)$. The radius of G with respect to a specific node $v \in V$ is denoted by $\operatorname{Rad}(G, v)$. Now, fix a node $s \in V$. The depth of a node v (with respect to s) is $\operatorname{dist}_{G}(s, v)$. For each $0 \leq i \leq \operatorname{Rad}(G, s)$, the set of nodes in V of depth i is referred to as the i-th layer of G.

A subset U of V is an independent set of G if no two nodes in U are adjacent. If U is a independent set of G but no proper superset of U is a independent set of G, then U is called a maximal independent set (MIS) of G. Any node ordering $v_{1}, v_{2}, \cdots, v_{n}$ of V induces an MIS U in the following first-fit manner: Initially, $U=\left\{v_{1}\right\}$. For $i=2$ up to n, add v_{i} to U if v_{i} is not adjacent to any node in U. A subset U of V is a dominating set of G if each node not in U is adjacent to some node in U. Clearly, every MIS of G is also a dominating set of G. If U is a dominating set of G and $G[U]$ is connected, then U is called a connected dominating set (CDS) of G.

Consider an ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ of V. For each $1<i \leq n$, let V_{i} denote the set of nodes v_{j} with $1 \leq j<i$ adjacent to v_{i}. The inductivity of the ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ is defined to be $\max _{1<i \leq n}\left|V_{i}\right|$. A natural question is whether a vertex ordering of the smallest inductivity can be computed in polynomial time. The answer to this question is positive. A special vertex ordering, known as smallest-degree-last ordering [5], achieves the smallest inductivity. It is produced iteratively as follows: Initialize H to G. For
$i=n$ down to 1 , let v_{i} be a vertex of the smallest degree in H and delete v_{i} from H. Then the ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ is a smallest-degree-last ordering. The following theorem was proven in [5].

Theorem 2.1. The smallest-degree-last ordering achieves the smallest inductivity $\delta^{*}(G)$ among all vertex orderings.

A vertex coloring of G is an assignment of colors to V satisfying that adjacent vertices are assigned with distinct colors. Given a vertex ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ of V, a coloring of V with colors represented by natural numbers can be produced in the following first-fit manner: Assign the color 1 to v_{1}. For $i=2$ up to n, assign to v_{i} with the smallest color which is not used by any neighbor of v_{i} which precedes v_{i}. Such coloring of V is referred to as the first-fit coloring in the ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$. It's easy to see the number of colors used by the first-fit coloring in the ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$ is no more than one plus the inductivity of the ordering $\left\langle v_{1}, v_{2}, \cdots, v_{n}\right\rangle$. In particular, the first-fit coloring in smallest-degree-last ordering uses at most $1+\delta^{*}(G)$ colors.

Let X and Y be two disjoint subsets of $V . Y$ is a cover of X if each node in X is adjacent to some node in Y, and a minimal cover of X if Y is a cover of X but no proper subset of Y is a cover of X. Any ordering $y_{1}, y_{2}, \cdots, y_{m}$ of Y induces a minimal cover $W \subseteq Y$ of X by the following sequential pruning method: Initially, $W=Y$. For each $i=m$ down to 1 , if $W \backslash\left\{y_{i}\right\}$ is a cover of X, remove y_{i} from W. Suppose that Y is a cover of X. A node $x \in X$ is called a private neighbor of a node $y \in Y$ with respect to Y if y is the only node in Y which is adjacent to x. Clearly, if Y is a minimal cover of X, then each node in Y has at least one private neighbor with respect to Y.

In the remaining of this section, we introduce a classic geometric result on disk packing.

Theorem 2.2 (Groemer Inequality [2]). Suppose that C is a compact convex set and U is a set of points with mutual distances at least one. Then

$$
|U \cap C| \leq \frac{\operatorname{area}(C)}{\sqrt{3} / 2}+\frac{\operatorname{peri}(C)}{2}+1
$$

where area (C) and peri (C) are the area and perimeter of C respectively.

When the set C is a disk or a half-disk, we have the following packing bound.

Corollary 2.3. Suppose that C (respectively, C^{\prime}) is a disk (respectively, half-disk) of radius r, and U is a set of points with mutual distances at least one. Then

$$
\begin{aligned}
|U \cap C| & \leq \frac{2 \pi}{\sqrt{3}} r^{2}+\pi r+1 \\
\left|U \cap C^{\prime}\right| & \leq \frac{\pi}{\sqrt{3}} r^{2}+\left(\frac{\pi}{2}+1\right) r+1
\end{aligned}
$$

3. CANONICAL INWARD ARBORESCENCE

Let $G=(V, E)$ be a connected undirected graph and s be a distinguished node in V. In this section, we present a spanning inward s-arborescence of \vec{G}, which is associated
with a link labelling and node ranking. The arborescence itself would be utilized later in aggregation routing, and the associated link labelling and node ranking will be utilized in the link scheduling. Such arborescence is referred to as a canonical inward arborescence.

We begin with a key building block of the construction algorithm. Two links $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ in \vec{G} are said to be conflicting if at least one of $u_{1} v_{2}$ and $u_{2} v_{1}$ is an edge in G. A subset A of links in \vec{G} is said to be conflict-free if any pair of links in A are not conflicting. Suppose that X and Y are two disjoint subsets of V and X is covered by Y. A single-hop (X, Y)-aggregation schedule consists of a set A of links in \vec{G} and a labeling of the links in A by natural numbers satisfying that (1) for each link $a=(x, y) \in A$, $x \in X$ and $y \in Y ;(2)$ each node in X is the tail of exactly one link in A; (3) all the links in A with the same label are conflict-free. For each link $(x, y) \in A, x$ is said to be a child of y while y is said to be a parent of x. Table 1 outlines an algorithm called iterative minimal covering (IMC). It takes as input a pair (X, Y) of disjoint subsets X and Y of V satisfying that X is covered by Y and outputs a single-hop (X, Y)-aggregation schedule.

```
IMC:
\(A \leftarrow \emptyset, l \leftarrow 0, X^{\prime} \leftarrow X, Y^{\prime} \leftarrow Y ;\)
while \(X \neq \emptyset\),
    \(C \leftarrow\) a minimal cover of \(X^{\prime}\) contained in \(Y^{\prime}\);
    for each \(y \in C\),
        \(x \leftarrow\) a private neighbor of \(y\) in \(X^{\prime}\),
        \(A \leftarrow A \cup\{(x, y)\} ;\)
        \(\ell(x, y) \leftarrow l ;\)
        \(X^{\prime} \leftarrow X^{\prime} \backslash\{x\} ;\)
        \(Y^{\prime} \leftarrow C ;\)
    output \(A\) and \(\ell\).
```

Table 1: Outline of the algorithm IMC.
Figure 2 is an illustration of the algorithm IMC. In this example, $X=\left\{x_{i}: 1 \leq i \leq 7\right\}$ and $Y=\left\{y_{i}: 1 \leq i \leq 5\right\}$. Their adjacency is depicted in Figure 2 (a). In the first iteration, y_{2}, y_{3}, y_{5} form the minimal cover, and x_{1}, x_{4}, x_{6} are their private neighbors respectively (see Figure 2 (b)). So, the three links $\left(x_{1}, y_{2}\right),\left(x_{4}, y_{3}\right)$ and $\left(x_{6}, y_{5}\right)$ are added to A and all receive the label one. After that we remove x_{1}, x_{4}, x_{6} (see Figure 2 (c)) and proceed to the second iteration. In the second iteration, y_{2}, y_{5} form the minimal cover, and x_{2}, x_{5} are their private neighbors respectively (see Figure 2 (d)). So, the two links $\left(x_{2}, y_{2}\right)$ and $\left(x_{5}, y_{5}\right)$ are added to A and both receive the label two. After that we remove x_{2}, x_{5} (see Figure $2(\mathrm{e})$) and move on to the third iteration. In the third iteration, the two links $\left(x_{3}, y_{2}\right)$ and $\left(x_{7}, y_{5}\right)$ are added to A and both receive the label three (see Figure 2 (f)). This is the last iteration as every node has been assigned as a parent. Figure $2(\mathrm{~g})$ shows all the links in A together with their labels.

Lemma 3.1. Let A and ℓ be the output by IMC. For each link $(x, y) \in A, \ell(x, y)$ is no more than the number of children of y, i.e.,

$$
\ell(x, y) \leq\left|\left\{x^{\prime} \in X:\left(x^{\prime}, y\right) \in A\right\}\right|
$$

Proof. Suppose the algorithm runs in L iterations. For each $1 \leq l \leq L$, let C_{l} be the minimum cover C computed

Figure 2: An illusrtation of the algorithm IMC.
in the l-th iteration. Then,

$$
C_{1} \supseteq C_{2} \supseteq \cdots \supseteq C_{L} .
$$

Consider an arc $a=(x, y) \in A$. Let k be the largest index such that $y \in C_{k}$. Then, $\ell(x, y) \leq k$ and y has exactly k children, each from one of the first k iterations. So, the lemma follows.

```
CBFS:
\(R \leftarrow\) radius of \(G\) w.r.t. \(s\);
for each \(0 \leq i \leq R, V_{i} \leftarrow\left\{v \in V: \operatorname{dist}_{G}(v, s)=i\right\}\);
\(R \leftarrow(V, \emptyset) ;\)
for each \(u \in V_{R}, \operatorname{rank}(u) \leftarrow 0\);
for each \(i=R\) down to one
    \(J \leftarrow\left\{\operatorname{rank}(v): v \in V_{i-1}\right\}\)
    for each \(j \in J\)
        \(V_{i j} \leftarrow\left\{v \in V_{i}: \operatorname{rank}(v)=j\right\} ;\)
        augment \(T\) by applying IMC on \(V_{i j}\) and \(V_{i-1}\);
    for each \(u \in V_{i-1}\),
        if \(u\) has no child, \(\operatorname{rank}(u) \leftarrow 0\);
        else
            \(r \leftarrow\) maximum rank of the children of \(u\);
            if only one child of \(u\) has rank \(r, \operatorname{rank}(u) \leftarrow r\);
            else \(\operatorname{rank}(u) \leftarrow r+1\);
output \(T\) and rank.
```

Table 2: Outline of the algorithm IMC.

Next, we apply the algorithm IMC to construct a canonical inward s-arborescence T. Our algorithm CBFS is outlined in Table 2. Let R be the radius of G with respect to s. For each $0 \leq i \leq R$, let V_{i} be the set of nodes in V of depth i. The construction is in the bottom-up manner. Initially, T is empty and $\operatorname{rank}(v)=0$ for each node v in the bottom
layer. For each layer i from R down to one, we first compute the links from layer V_{i} to V_{i-1} and their associated labeling by using the algorithm IMC. Specifically, let J be the set of ranks of the nodes in V_{i}. For each $j \in J$, let $V_{i j}$ be the set of nodes in V_{i} with rank j and apply the algorithm IMC on ($V_{i j}, V_{i-1}$) to augment T. After that, we compute the ranks of all nodes in V_{i-1} in a standard manner. For each node u in V_{i-1}, we assign the ranks as follows. If u has no child, $\operatorname{rank}(u)$ is set to zero. If u has at least one child, let r be the maximum rank of its children. If u has only one child of rank r, then $\operatorname{rank}(u)$ is set to r; otherwise $\operatorname{rank}(u)$ is set to $r+1$. Figure 3 is an example of the canonical inward arborescence output by the algorithm CBFS.

Figure 3: A canonical inward arborescence and the associated node ranking produced by the algorithm CBFS.

The arborescence T and the associated ranking have a number of interesting properties. Clearly, each node has rank no more than its parent in T. It's also easy to prove by induction in the bottom-up manner that for each node v, $\operatorname{rank}(v) \leq\left\lfloor\log \left|T_{v}\right|\right\rfloor$, where T_{v} is the subtree of T induced by v and all its descendents. In particular, for each node $v, \operatorname{rank}(v) \leq\lfloor\log |V|\rfloor$. A link in the canonical BFS tree is said be an express link if its two endpoints have the same rank. By Lemma 3.1, all express links are labelled with one.

4. CONNECTED DOMINATING SETS

Let $G=(V, E)$ be a connected UDG and s be the sink node of aggregation. The problem of computing a minimum CDS of G has been well-studied. While it is NP-hard, it admits constant approximations. However, for our later application in the aggregation scheduling, a CDS of small size is not sufficient. In this section, we construct two CDS's with stronger properties. Both constructions follow a general two-phased approach [6]. The first phase constructs a dominating set, and the second phase selects additional nodes, called connectors, which together with the dominators induce a connected topology. The two algorithms have the same first phase, which selects an MIS U induced by a breadth-first-search (BFS) ordering with respect to s as the
dominating set. By Corollary 2.3,

$$
|U| \leq \frac{2 \pi}{\sqrt{3}} R^{2}+\pi R+1
$$

In the next two subsections, we describe the selections of connectors in the second phase.

4.1 The First Set of Connectors

Let H be the graph on U in which there is an edge between two dominators if and only if they have a common neighbor. Then, H is connected and $\operatorname{Rad}(H, s) \leq R-1$. For each $0 \leq i \leq \operatorname{Rad}(H, s)$, let U_{i} be the set of dominators of depth i in H. Then, $U_{0}=\{s\}$. For each $0 \leq i<\operatorname{Rad}(H, s)$, let P_{i} be the set of nodes adjacent to at least one node in U_{i} and at least one node in U_{i+1}, and compute a minimal cover $W_{i} \subseteq P_{i}$ of U_{i+1}. Set

$$
W=\bigcup_{i=0}^{\operatorname{Rad}(H, s)-1} W_{i} .
$$

Then, $G[U, W]$ is connected and $U \cup W$ is a CDS of G. We refer to all nodes in W as connectors and all nodes not in $U \cup W$ as dominatees.

Clearly, $|W| \leq|U|-1$ and hence

$$
\begin{aligned}
& |U \cup W| \leq 2|U|-1 \\
& \leq 2\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R+1\right)-1 \\
& =\frac{4 \pi}{\sqrt{3}} R^{2}+2 \pi R+1
\end{aligned}
$$

Furthermore,

$$
\operatorname{Rad}(G[U, W], s)=2 \operatorname{Rad}(H, s) \leq 2(R-1)
$$

The lemma below presents some additional properties of the output CDS.

Lemma 4.1. The following statements are true.

1. For each $0 \leq i<\operatorname{Rad}(H, s)$, each connector in W_{i} is adjacent to at most 4 dominators in U_{i+1}.
2. For each $1 \leq i<\operatorname{Rad}(H, s)-1$, each dominator in U_{i} is adjacent to at most 11 connectors in W_{i}.
3. $\left|W_{0}\right| \leq 12$.

Proof. The first part of the lemma follows from the fact that every node is adjacent to at most five independent nodes. We prove the second part by contradiction. Assume to the contrary that some dominator $u \in U_{i}$ is adjacent to $k \geq 12$ nodes $w_{1}, w_{2}, \cdots, w_{k}$ in W_{i}. By the minimality of W_{i}, for each $1 \leq j \leq k$ there is a node $v_{j} \in U_{i+1}$ such that v_{j} is adjacent to w_{j} but not to any other node in W_{i}. Let v_{0} be a dominator in U_{i-1} which is adjacent to u in H, and w_{0} be the node which is adjacent to both v_{0} and u. Then, all these $k+1$ nodes $v_{0}, v_{1}, \cdots, v_{k}$ are distinct, and so are these $k+1$ nodes $w_{0}, w_{1}, \cdots, w_{k}$. In addition, for each $0 \leq j \leq k, v_{j}$ is the only node in $\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}$ which is adjacent to w_{j}. Among the $k+1$ nodes $v_{0}, v_{1}, \cdots, v_{k}$, there exist two, say $v_{j_{1}}$ and $v_{j_{2}}$, satisfying that $\angle v_{j_{1}} u v_{j_{2}} \leq \frac{2 \pi}{13}$. Denote by $B(x)$ the disk of unit radius centered at x. Since the distance between $v_{j_{1}}$ and $v_{j_{2}}$ is greater than one, either $B(u) \cap B\left(v_{j_{1}}\right) \subseteq B\left(v_{j_{2}}\right)$ or $B(u) \cap B\left(v_{j_{2}}\right) \subseteq B\left(v_{j_{1}}\right)$ (see Lemma 4 in [7]). In the former case, $w_{j_{1}} \in B\left(v_{j_{2}}\right)$, and
hence $v_{j_{2}}$ is adjacent to $w_{j_{1}}$, which is a contradiction. In the latter case, $w_{j_{2}} \in B\left(v_{j_{1}}\right)$, and hence $v_{j_{1}}$ is adjacent to $w_{j_{2}}$, which is again a contradiction. Thus, the second part of the lemma holds. By the same argument, we can show that the third part of the lemma holds.

4.2 The Second Set of Connectors

In this section, we present another set W of connectors such that $G[U \cup W]$ has shorter radius at the expense of higher maximum degree and larger $|W|$. Fix a positive integer parameter k. Let T be a BFS tree of G rooted at s. For each node v rather than s, we denote the parent of v in T by $p(v)$. In general, the node which is i hops away from v in the tree path from v to s is called the i-th ancestor of v and is denoted by $p^{i}(v)$. Since s is a dominator and is an ancestor of every other node, each node has at least one ancestor which is a dominator. Initialize W^{\prime} to be empty. For each dominator u, let i be the smallest positive integer such that $p^{i}(u)$ is a dominator, and add each $p^{j}(u)$ with $1 \leq j \leq \min \{i-1, k\}$ to W^{\prime}. Next, we compute the shortest-path tree T^{\prime} from s to all other dominators in $G\left[U \cup W^{\prime}\right]$. In other words, all the leaves of T^{\prime} are dominators. Let W be the subset of nodes in W^{\prime} contained in T^{\prime}. Then, $U \cup W$ is still a CDS. We refer to all nodes in W as connectors and all nodes not in $U \cup W$ as dominatees.

Lemma 4.2. The following three inequalities are true:

$$
\begin{aligned}
|U \cup W| & \leq(k+1)\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R\right)+1, \\
\operatorname{Rad}(G[U \cup W], s) & \leq(1+1 / k) R \\
\Delta(G[U \cup W]) & \leq 2 \sqrt{3} \pi k^{2}+3 \pi k+3+4 \pi / \sqrt{3}
\end{aligned}
$$

Proof. For each dominator rather than s, at most k connectors are added to W^{\prime}. Thus,

$$
\left|W^{\prime}\right| \leq k(|U|-1)
$$

Hence,

$$
\begin{aligned}
& |U \cup W| \leq\left|U \cup W^{\prime}\right| \\
& \leq|U|+k(|U|-1)=(k+1)|U|-k \\
& \leq(k+1)\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R+1\right)-k \\
& =(k+1)\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R\right)+1
\end{aligned}
$$

Now, we prove the second inequality in the lemma holds. Let H be the subgraph of G induced by $U \cup W$. It is sufficient to show that for each dominator u,

$$
\operatorname{dist}_{H}(u, s) \leq\left(1+\frac{1}{k}\right) \operatorname{dist}_{G}(u, s)
$$

We prove this inequality by induction on $\operatorname{dist}_{G}(u, s)$. Clearly, if $\operatorname{dist}_{G}(u, s) \leq k$ then

$$
\operatorname{dist}_{H}(u, s)=\operatorname{dist}_{G}(u, s)
$$

So, we assume that $\operatorname{dist}_{G}(u, s)>k$. Let i be the smallest integer such that $p^{i}(u)$ is a dominator. We consider two cases:

Case 1: $i \leq k+1$. Then,

$$
\begin{aligned}
& \operatorname{dist}_{G}(u, s)=\operatorname{dist}_{G}\left(p^{i}(u), s\right)+i \\
& \operatorname{dist}_{H}(u, s) \leq \operatorname{dist}_{H}\left(p^{i}(u), s\right)+i
\end{aligned}
$$

By induction hypothesis,

$$
\begin{aligned}
& \operatorname{dist}_{H}(u, s) \leq \operatorname{dist}_{H}\left(p^{i}(u), s\right)+i \\
& \leq\left(1+\frac{1}{k}\right) \operatorname{dist}_{G}\left(p^{i}(u), s\right)+i \\
& <\left(1+\frac{1}{k}\right)\left(\operatorname{dist}_{G}\left(p^{i}(u), s\right)+i\right) \\
& =\left(1+\frac{1}{k}\right) \operatorname{dist}_{G}(u, s)
\end{aligned}
$$

Case 2: $i>k+1$. If $p^{k}(v)$ is adjacent to some dominator at the same layer as $p^{k+1}(v)$, then using the same argument as in Case 1, we can show the inequality holds. So, we assume that $p^{k}(v)$ is not adjacent to some dominator at the same layer as $p^{k+1}(v)$. Then, $p^{k}(v)$ must be adjacent to some dominator v at the same layer as itself. Then,

$$
\begin{aligned}
\operatorname{dist}_{G}(u, s) & =\operatorname{dist}_{G}(v, s)+k \\
\operatorname{dist}_{H}(u, s) & \leq \operatorname{dist}_{H}(v, s)+k+1
\end{aligned}
$$

By induction hypothesis,

$$
\begin{aligned}
& \operatorname{dist}_{H}(u, s) \leq \operatorname{dist}_{H}(v, s)+k+1 \\
& \leq\left(1+\frac{1}{k}\right) \operatorname{dist}_{G}(v, s)+(k+1) \\
& =\left(1+\frac{1}{k}\right)\left(\operatorname{dist}_{G}(v, s)+k\right) \\
& =\left(1+\frac{1}{k}\right) \operatorname{dist}_{G}(u, s)
\end{aligned}
$$

Finally, we prove the third inequality in the lemma. Each connector v in W must have a descendent in T which is a dominator, and we denote by $q(v)$ the descendant dominator of v which is closest to v. For each dominator v, we set $q(v)$ to v itself. Then, $\operatorname{dist}_{G}(v, q(v)) \leq k$. Consider a node $u \in U \cup W$. Let $N(u)$ denote the set of nodes in $U \cup W$ adjacent to u, and let

$$
S(u)=\{q(v): v \in N(u)\}
$$

Then each dominator in $S(u)$ is at most $k+1$ hops away from u in G. Now, let $S_{1}(u), S_{2}(u)$ and $S_{3}(u)$ be the set of nodes in $S(u)$ which are at most $k-1, k$ and $k+1$ hops away from u respectively. Notice that each node in $N(u)$ must be either at the same layer as u, or at the layer above u,or at the layer below u. Thus, for each u^{\prime} in $S_{1}(u)$ (respectively, $\left.S_{2}(u) \backslash S_{1}(u), S_{3}(u) \backslash S_{2}(u)\right)$, the set

$$
\left\{v \in N(u): q(v)=u^{\prime}\right\}
$$

consists of at most three (respectively, two, one) nodes. Consequently,

$$
\begin{aligned}
& |N(u)| \leq 3\left|S_{1}(u)\right|+2\left|S_{2}(u) \backslash S_{1}(u)\right|+\left|S_{3}(u) \backslash S_{2}(u)\right| \\
& =\left|S_{1}(u)\right|+\left|S_{2}(u)\right|+\left|S_{3}(u)\right| .
\end{aligned}
$$

By Corollary 2.3, we have

$$
\begin{aligned}
|N(u)| & \leq \sum_{i=k-1}^{k+1}\left(\frac{2 \pi}{\sqrt{3}} i^{2}+\pi i+1\right) \\
& =2 \sqrt{3} \pi k^{2}+3 \pi k+3+\frac{4 \pi}{\sqrt{3}} .
\end{aligned}
$$

Thus, the third inequality in the lemma holds.

5. AGGREGATION SCHEDULING WITH $\rho=1$

In this section, we present three aggregation scheduling algorithms with $\rho=1$. All of them utilize a connected dominating set (CDS) for routing, which consisting of an MIS U induced by a BFS ordering (with respect to s) of V and a set W of connectors. The set W adopted by the first two schedules is the first set of connectors, and the set W adopted by the third schedule is the second set of connectors with an integer parameter $k=\Theta(\sqrt[3]{R} / \log R)$. The three schedules all consist of two phases. The first phase is a single-hop $(V \backslash(U \cup W), U)$-aggregation schedule, which can be constructed by applying the algorithm IMC presented in Section 3. Thus, the latency of the first phase is at most $\Delta-1$. The second phase is an aggregation schedule in the graph $G[U \cup W]$. In the next, we describe the aggregation schedules for the second phase.

5.1 Sequential Aggregation Scheduling

Our first algorithm is called Sequential Aggregation Scheduling (SAS). Let W be the first set of connectors. We first construct an inward s-arborescence T on $U \cup W$ by specifying the parent $p(v)$ for each node v other than s. Let $R^{\prime}=\operatorname{Rad}(G[U, W], s)$. Then, R^{\prime} is an even number no more than $2(R-1)$. For each $0 \leq i \leq R^{\prime}$, we denote the set of nodes in the i-th layer of $G[U, W]$ by V_{i}^{\prime}. Note that for even (respectively, odd) i, V_{i}^{\prime} consists of dominators (respectively, connectors). For each $1 \leq i \leq R^{\prime}$, each node $v \in V_{i}^{\prime}$ sets its parent $p(v)$ to be the node of the smallest ID in V_{i-1}^{\prime} which is adjacent to v. For each $1 \leq i \leq R^{\prime}$, A_{i} denotes the set of links from the nodes in V_{i}^{\prime} to their parents.

Our aggregation schedule proceeds in R^{\prime} rounds, with the ($R^{\prime}+1-i$-th round devoted to the links in A_{i} for each $1 \leq$ $i \leq R^{\prime}$. Specifically, we sort all links in A_{i} in the increasing order of heads (i.e., receiving nodes) and break the ties with the increasing ordering of tails (i.e., transmitting nodes). Such ordering is referred to as ID-lexicographic ordering of A_{i}. The conflict graph of A_{i}, denoted by $C G\left(A_{i}\right)$, is an undirected graph on A_{i} in which there is an edge between each pair of conflicting links in A_{i}. We compute a first-fit coloring of $C G\left(A_{i}\right)$ in the ID-lexicographic ordering. Then, each link in A_{i} with color j is scheduled in the j-th time-slot of the ($R^{\prime}+2-i$-th round.

The next theorem gives an upper bound on the latency of the aggregation schedule produced SAS.

Theorem 5.1. Algorithm SAS produces an aggregation schedule with latency at most $15 R-3$.

We prove this theorem in the remaining of this subsection. For each $1 \leq i \leq R^{\prime}$, we denote by δ_{i}^{*} the inductivity of the ID-lexicographic ordering in the graph $C G\left(A_{i}\right)$ and
denote by Δ_{i}^{*} the maximum number of tails of the links in A_{i} adjacent in G to the head of some link in A_{i}.

Lemma 5.2. For each $1 \leq i \leq 2 R^{\prime}, \delta_{i}^{*} \leq \Delta_{i}^{*}-1$.
Proof. Suppose that $(u, p(u))$ and $(v, p(v))$ are two conflicting links in A_{i} and ($u, p(u)$) precedes $(v, p(v))$ in the ID-lexicographic ordering. We claim that u is adjacent to $p(v)$. This holds trivially if $p(u)=p(v)$. So, we assume that $p(u) \neq p(v)$. Then, $p(u)$ has smaller ID than $p(v)$. By the choice of parent, v is not adjacent to $p(u)$. Therefore, u must be adjacent to $p(v)$. So, our claim holds, from which the lemma follows immediately.

The above lemma implies that the $\left(R^{\prime}+2-k\right)$-th round takes at most Δ_{i}^{*} time-slots. By Lemma 4.1, for any $1 \leq$ $i \leq R^{\prime}$,

$$
\Delta_{i}^{*} \leq\left\{\begin{array}{cl}
4 & \text { if } i \text { is even } \\
11 & \text { if } i \text { is odd and } i>1 \\
12 & \text { if } i=1
\end{array}\right.
$$

Thus, the total latency is at most

$$
\begin{aligned}
\sum_{k=1}^{R^{\prime}} \Delta_{i}^{*} & \leq(11+4) \cdot \frac{R^{\prime}}{2}+12 \\
& \leq 15(R-1)+12 \\
& =15 R-3
\end{aligned}
$$

Thus, Theorem 5.1 holds.
Theorem 5.1 implies that the latency of the entire aggregation schedule is at most $15 R+\Delta-4$.

5.2 Pipelined Aggregation Scheduling

Our second algorithm is called Piplelined Aggregation Scheduling (PAS). Let W be the first set of connectors. We first apply the algorithm CBFS on the graph $G[U, W]$ to construct an inward s-arborescence T on $U \cup W$ together with a link labelling and a node ranking. The links in T are then scheduled as follows. Let $R^{\prime}=\operatorname{Rad}(G[U, W], s)$, and $r=\operatorname{rank}(s)$. For each $0 \leq i \leq R^{\prime}$ and $0 \leq j \leq r$, set

$$
t_{i j}=\left(R^{\prime}-i\right)+44 j .
$$

Each link $(v, p(v))$ in T is scheduled in the the time-slot $t_{i j}+4(l-1)$, where i is the depth of v in T, j is rank of v, and l is the label of the link $(v, p(v))$.

Theorem 5.3. The algorithm PAS produces an aggregation schedule of latency at most $t_{0, r}$.

Proof. We first show that if u has the same depth as v but has a smaller rank than v, then u transmits earlier than v. Suppose that i is the depth of u and v, and j and j^{\prime} are the ranks of u and v respectively. Then, $i \geq 1$ and $j<j^{\prime}$. Let l be the label of $(u, p(u))$. We claim that $l \leq 11$. This is true if $i>1$. If $i=1$, then $l \leq\left|W_{0}\right|-1 \leq 11$ by Lemma 4.1. Thus, the claim is true. Hence,

$$
t_{i, j}+3(l-1) \leq t_{i, j}+40<t_{i, j+1} \leq t_{i, j^{\prime}}
$$

which means u transmits earlier than v.
Now, we show that if u and v transmit in the same timeslot, then the two links $(u, p(u))$ and $(v, p(v))$ are independent. Let i and i^{\prime} be the depths of u and v respectively. Then either $i=i^{\prime}$ or $\left|i-i^{\prime}\right| \geq 4$. In the former case, u and v must have the same rank by the previous claim and
hence the two links are independent. So we assume that latter case. Since all dominators transmit in even time-slots and all connectors transmit in odd time-slots, either both of them are dominators or both of them are connectors. If they are both dominators, then the do not share a common neighbor in G as their depths differ by more than two, and consequently the two links are independent. If they are both connectors, then $p(u)$ and $p(v)$ do not share a common neighbor as their depths also differ by $\left|i-i^{\prime}\right| \geq 4>2$, and hence the two links are independent as well.

Next, we show that if u is a node rather than s and v is a child of u, then u transmits later than v. Let i be the depth of u, and j and j^{\prime} be the ranks of u and v respectively. Then, $j \geq j^{\prime}$. If $j=j^{\prime}$, then the label of the link (v, u) is one, and hence v transmits at the time slot $t_{i+1, j}<t_{i, j}$. If $j>j^{\prime}$, then v transmits no later than the time-slot

$$
t_{i+1, j^{\prime}}+40 \leq t_{i+1, j-1}+40<t_{i+1, j}<t_{i, j}
$$

In either case, v transmits earlier than u.
Finally, we show that all nodes transmit before the timeslot $t_{0, r}$. Let v be a node last to transmit. Then $v \in W_{0}$. Let j be the rank of v, and l be the label of $(v, p(v))$. If $j=r$, then v is the only child of s with the rank r, and hence $l=1$. So, v transmits in the time-slot $t_{1, r}<t_{0, r}$. If $j<r$, then $l \leq\left|W_{0}\right| \leq 12$ by Lemma 4.1 and consequently

$$
t_{1 j}+4(l-1) \leq t_{1, r-1}+44=t_{1, r}<t_{0, r}
$$

Therefore, in either case the transmission by v ends before the time-slot $t_{0, r}$.

In the next, we show that

$$
t_{0, r}=2 R+O(\log R)
$$

Since

$$
|U \cup W| \leq \frac{4 \pi}{\sqrt{3}} R^{2}+2 \pi R+1
$$

we have

$$
r \leq \log |U \cup W|=O(\log R)
$$

As $R^{\prime} \leq 2(R-1)$, we have

$$
t_{0, r}=R^{\prime}+44 r \leq 2(R-1)+44 r=2 R+O(\log R)
$$

Theorem 5.3 implies that the latency of the entire aggregation schedule is at most $2 R+\Delta+O(\log R)$.

5.3 Enhanced Pipelined Aggregation Scheduling

Our third algorithm is called Enhanced Pipelined Aggregation Scheduling (E-PAS). Let W be the second set of connectors with an integer parameter $k=$ $\Theta(\sqrt[3]{R} / \log R)$. We first apply the algorithm CBFS on the graph $G[U \cup W]$ to construct an inward s-arborescence T on $U \cup W$ together with a link labelling and a node ranking. The links in T are then scheduled as follows. Let $R^{\prime}=\operatorname{Rad}(G[U \cup W], s), r=\operatorname{rank}(s), L$ be the maximum value of the labels of the links in T. For each $0 \leq i \leq R^{\prime}$ and $0 \leq j \leq r$, set

$$
t_{i j}=\left(R^{\prime}-i\right)+3 L j
$$

Each link $(v, p(v))$ in T is scheduled in the the time-slot $t_{i j}+3(l-1)$, where i is the depth of v in T, j is rank of v, and l is the label of the link $(v, p(v))$.

THEOREM 5.4. The algorithm $\boldsymbol{E}-\boldsymbol{P A} \boldsymbol{S}$ produces an aggregation schedule of latency at most $t_{0, r}$.

Proof. We first show that if u has the same depth as v but has a smaller rank than v, then u transmits earlier than v. Suppose that i is the depth of u and v, and j and j^{\prime} are the ranks of u and v respectively. Then, $i \geq 1$ and $j<j^{\prime}$. Hence, u transmits no later than the time-slot

$$
t_{i, j}+3(L-1)<t_{i, j+1} \leq t_{i, j^{\prime}}
$$

which means u earlier than v.
Now, we show that if u and v transmit in the same timeslot, then the two links $(u, p(u))$ and $(v, p(v))$ are independent. Let i and i^{\prime} be the depths of u and v respectively. Then either $i=i^{\prime}$ or $\left|i-i^{\prime}\right| \geq 3$. In the former case, u and v must have the same rank by the previous claim and hence the two links are independent. So we assume that latter case, the two links are independent.

Next, we show that if u is a node rather than s and v is a child of u, then u transmits later than v. Let i be the depth of u, an j and j^{\prime} be the ranks of u and v respectively. Then, $j \geq j^{\prime}$. If $j=j^{\prime}$, then the label of the link (v, u) is one, and hence v transmits at the time slot $t_{i+1, j}<t_{i, j}$. If $j>j^{\prime}$, then v transmits no later than the time-slot

$$
t_{i+1, j^{\prime}}+3(L-1) \leq t_{i+1, j-1}+3(L-1)<t_{i+1, j}<t_{i, j}
$$

In either case, v transmits earlier than u.
Finally, we show that all nodes transmit before the timeslot $t_{0, r}$. Let v be a node last to transmit. Let j be the rank of v. If $j<r$, then v transmits no later than the time-slot

$$
t_{1 j}+3(L-1)<t_{1, j+1} \leq t_{1, r}<t_{0, r}
$$

Now, we assume $j=r$. Then v is the only child of s with the rank r, and hence the label of v is one. So, v transmits in the time-slot $t_{1, r}<t_{0, r}$. Therefore, in either case the transmission by v ends before the time-slot $t_{0, r}$.

In the next, we show that

$$
t_{0, r}=\left(1+\Theta\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R
$$

By Lemma 4.2,

$$
R^{\prime} \leq(1+1 / k) R=\left(1+\Theta\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R
$$

and

$$
\begin{aligned}
& |U \cup W| \\
& \leq(k+1)\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R\right)+1 \\
& =\Theta\left(\frac{\sqrt[3]{R}}{\log R}\right)\left(\frac{2 \pi}{\sqrt{3}} R^{2}+\pi R\right)+1 \\
& =\Theta\left(\frac{R^{7 / 3}}{\log R}\right)
\end{aligned}
$$

Thus

$$
r \leq \log |U \cup W|=O(\log R)
$$

By Lemma 3.1 and Lemma 4.2,

$$
\begin{aligned}
L & \leq \Delta(G[U \cup W]) \\
& \leq 2 \sqrt{3} \pi k^{2}+3 \pi k+3+4 \pi / \sqrt{3} \\
& =\Theta\left(\frac{\sqrt[3]{R^{2}}}{\log ^{2} R}\right)
\end{aligned}
$$

So, we have

$$
\begin{aligned}
t_{0, r} & =R^{\prime}+3 L r \\
& \leq\left(1+\Theta\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R+3 \cdot \Theta\left(\frac{\sqrt[3]{R^{2}}}{\log ^{2} R}\right) \cdot O(\log R) \\
& =\left(1+\Theta\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R+O\left(\frac{\sqrt[3]{R^{2}}}{\log R}\right) \\
& =\left(1+\Theta\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R
\end{aligned}
$$

Theorem 5.4 implies that the latency of the entire aggregation schedule is at most $\left(1+O\left(\frac{\log R}{\sqrt[3]{R}}\right)\right) R+\Delta$.

6. AGGREGATION SCHEDULING WITH

 $\rho>1$In this section, we introduce a generic approach to extending a "well-separated" communication schedule with $\rho=1$ to an aggregation schedule with $\rho>1$ whose latency is increased by a $\Theta\left(\rho^{2}\right)$ factor. A communication schedule with $\rho=1$ is said to be well-separated if at each time-slot of the schedule, either all transmitting nodes have mutual distances greater than one or all receiving nodes have mutual distances greater than one. Clearly, the first two algorithms in the previous section both produce a well-separated aggregation schedules produced by SAS and PAS are wellseparated, while the aggregation schedule produced by EPAS is not.

Fix $\rho>1$. Suppose that A is a set of links in \vec{G}. A link schedule of A is a partition of A into subsets of links which are mutually conflict-free, and its latency is the number of subsets in the partition. The conflict graph of A is an undirected graph on A in which there is an edge between links in A if and only if these two links are not conflict-free. Then a link schedule for A is equivalent to a proper vertex coloring of its conflict graph of A, with the latency corresponding to the number of colors. Let $\delta^{*}(A)$ denote the inductivity of the conflict graph of A. Then, the first-fit coloring in the smallest-degree-last ordering of the conflict graph of A uses at most $1+\delta^{*}(A)$ colors. Let

$$
\beta_{r}=\frac{\pi}{\sqrt{3}} r^{2}+\left(\frac{\pi}{2}+1\right) r+1
$$

The next lemma gives an upper bound on $\delta^{*}(A)$.
Lemma 6.1. Suppose that A is a set of links in \vec{G} whose tails (respectively, heads) have mutual distances greater than one. Then, $\delta^{*}(A) \leq \beta_{\rho+1}-1$.

Proof. By symmetry, we assume that the tails of the links in A have mutual distances greater than one. Consider and arbitrary subset A^{\prime} of A. Let a be the link whose tail, denoted by u, is the rightmost one among all the tails of the links in A^{\prime}. Then, all the tails of the links in A^{\prime} which have conflict with a must lie in a half-disk of radius $\rho+1$
centered at u. By Corollary 2.3, the number of these tails is at most $\beta_{\rho+1}-1$, where the -1 term is due to that the tail of a is also in the half-disk. Hence, the minimum degree of the conflict graph of A^{\prime} is at most $\beta_{\rho+1}-1$. Thus, the lemma holds.

Lemma 6.1 implies that if A is a set of links in \vec{G} whose tails (respectively, heads) have mutual distances greater than one, the first-fit coloring in the smallest-degree-last ordering of the conflict graph of A gives a link schedule of latency at most $\beta_{\rho+1}$.

Now, consider a well-separated communication schedule with $\rho=1$ given by

$$
\mathcal{A}=\left\{A_{k}: 1 \leq k \leq \ell\right\}
$$

where A_{k} is the set of links in the k-th time-slot for each $1 \leq k \leq \ell$. We construct a communication schedule \mathcal{A}_{ρ} for $\rho>1$ as follows. The schedule is partitioned into ℓ rounds. For each $1 \leq k \leq \ell$, the k-th round is a link schedule of A_{k} corresponding to the first-fit coloring of the conflict graph of A_{k} in the smallest-degree-last ordering. The schedule \mathcal{A}_{ρ} is referred to as the ρ-expansion of \mathcal{A}. Since each round in \mathcal{A}_{ρ} takes at most $\beta_{\rho+1}$ time-slots, the latency of \mathcal{A}_{ρ} is at most $\beta_{\rho+1} \ell$. In summary, we have the following general theorem.

Theorem 6.2. For any $\rho>1$, the ρ-expansion of a communication schedule with $\rho=1$ and latency equal to ℓ has latency at most $\beta_{\rho+1} \ell$.

Theorem 6.2 immediately implies the following corollary.
Corollary 6.3. For any $\rho>1$, the ρ-expansion of the aggregation schedule produced by $\boldsymbol{S A S}$ (respectively, $\boldsymbol{P A S})$ has latency at most $\beta_{\rho+1}(15 R+\Delta-4)$ (respectively, $\beta_{\rho+1}(2 R+\Delta+O(\log R))$).

An interesting observation is that for $\rho>1, \Theta(\Delta)$ is a lower bound on the minimum aggregation latency. Let Δ_{ρ} denote the maximum number of nodes within the interference range of a node. In other words, Δ_{ρ} is the maximum degree of the ρ-disk graph of the networking nodes. Clearly, $\Delta_{\rho} \geq \Delta_{1}=\Delta$. For each $d>0$, denote

$$
\alpha_{\rho}=\frac{2 \pi}{\sqrt{3}}\left(\frac{\rho}{\rho-1}\right)^{2}+\pi\left(\frac{\rho}{\rho-1}\right)+1
$$

We have the following bound on the minimum aggregation latency.

Lemma 6.4. For any $\rho>1$, the minimum aggregation latency is at least $\Delta_{\rho} / \alpha_{\rho}$.

Proof. Let u be a node with maximum degree in the ρ-disk graph. Let C be the ρ-disk centered at u. Then, C contains $\Delta_{\rho}+1$ nodes. If s is not in C, then all these $\Delta_{\rho}+1$ nodes in C have to transmit; otherwise, exactly Δ_{ρ} nodes in C have to transmit. In either case, at least Δ_{ρ} nodes in C have to transmit. Since all nodes transmitting in the same time-slot must be apart from each other by a distance greater than $\rho-1$, at most α_{ρ} nodes in C can transmit in a time-slot by Corollary 2.3. Hence, the Δ_{ρ} transmissions by the nodes in C takes at least $\Delta_{\rho} / \alpha_{\rho}$ time-slots.

By Lemma 6.4, the minimum aggregation latency with $\rho>1$ is at least $\Delta_{\rho} / \alpha_{\rho}$. Since R is also a lower on the minimum latency regardless of ρ, the ρ-expansions of the aggregation schedules produced by SAS and PAS respectively are both constant approximations.

7. CONCLUSION

In this paper, we have developed three aggregation scheduling algorithms with $\rho=1, \mathbf{S A S}, \mathbf{P A S}$, and EPAS. All of them produce shorter aggregations schedules than those proposed in the past. Among those three, SAS has the simplest implementation and it may outperform the other two when the radius R is small. For large radius R, both PAS and E-PAS speed up the aggregation schedule by using the pipelining technique. Novel structures like the two connected dominating sets and the canonical inward arborescences used by these three algorithms are of independent interest and are expected to have applications in other communication scheduling. We also introduced a generic expansion technique which adapts a well-separated communication schedule with $\rho=1$ to a communication schedule with with $\rho>1$. With such expansion technique, we obtained two aggregation schedules with $\rho>1$ whose latencies are within constant factors of the minimum latency. We also expect that this expansion technique can be applied for the scheduling of other communications.

Acknowledgement We would like to thank Dr. Anil Vullikanti for many helpful suggestions on the revision of this paper.

8. REFERENCES

[1] X.J. Chen, X.D. Hu, J.M. Zhu, Minimum data aggregation time problem in wireless sensor networks, Lecture Notes in Computer Science 3794, pp. 133-142, 2005.
[2] H. Groemer, Über die Einlagerung von Kreisen in einen konvexen Bereich. Math. Z., 73:285-294, 1960.
[3] P. Gupta and P.Kumar, The capacity of wireless networks, IEEE Trans. Inform. Theory, vol. 46, pp. 388-404, Mar. 2000.
[4] S.C.-H. Huang, P.-J. Wan, C. T. Vu, Y. Li, and F. Yao: Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks, IEEE INFOCOM 2007.
[5] D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, Journal of the Association of Computing Machinery, 30(3):417-427, 1983.
[6] P.-J. Wan, K.M. Alzoubi, and O.Frieder: Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks, ACM Mobile Networks and Applications, Vol. 9, No. 2, pp.141-149, 2004. A preliminary version of this paper appeared in IEEE INFOCOM, 2002.
[7] P.-J. Wan, C.-W. Yi, X. Jia, and D. Kim, Approximation Algorithms for Conflict-Free Channel Assignment in Wireless Ad Hoc Networks, Wiley Journal on Wireless Communications and Mobile Computing 6(2):201-211, 2006.

[^0]: *This work was supported in part by NSF under grant CNS0831831.
 ${ }^{\dagger}$ This work was supported in part by the Research Grant Council of Hong Kong under the project CERG CityU 113807.
 ${ }^{\ddagger}$ This work was partially supported by Research Grants Council of Hong Kong under Project No. CityU 114307 and by NSF China Grant No. 60633020.

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 MobiHoc'09, May 18-21, 2009, New Orleans, Louisiana, USA.
 Copyright 2009 ACM 978-1-60558-531-4/09/05 ...\$5.00.

