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Minimum Length from Quantum Mechanics and Classical General Relativity
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We derive fundamental limits on measurements of position, arising from quantum mechanics and
classical general relativity. First, we show that any primitive probe or target used in an experiment must
be larger than the Planck length lP. This suggests a Planck-size minimum ball of uncertainty in any
measurement. Next, we study interferometers (such as LIGO) whose precision is much finer than the
size of any individual components and hence are not obviously limited by the minimum ball.
Nevertheless, we deduce a fundamental limit on their accuracy of order lP. Our results imply a device
independent limit on possible position measurements.
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It is widely believed that a minimum length, of order
the Planck length lP, results from combining quantum
mechanics and classical general relativity [1–3]. That
is, no operational procedure (experiment) exists which
can measure a distance less than of order lP. The key
ingredients used to reach this conclusion are the uncer-
tainty principle from quantum mechanics, and gravita-
tional collapse (black hole formation) from general
relativity.

A dynamical condition for gravitational collapse is
given by the Hoop Conjecture (HC) [4], due to Kip
Thorne: if an amount of energy E is confined at any
instant to a ball of size R, where R< E, then that region
will eventually evolve into a black hole [5]. Recent results
on black hole production in particle collisions [6] show
strong support for the HC, even in the least favorable
instance where all of the energy E is in the kinetic energy
of two particles moving past each other at the speed of
light.

From the HC and the uncertainty principle, we imme-
diately deduce the existence of a minimum ball of size lP.
Consider a particle of energy E which is not already a
black hole. Its size r must satisfy

r * max�1=E;E�; (1)

where 	C � 1=E is its Compton wavelength and E arises
from the hoop conjecture. Minimization with respect to
E results in r of order unity in Planck units [7], or r� lP .
If the particle is a black hole, then its radius grows with
mass: r� E� 1=	C. This relationship suggests that an
experiment designed (in the absence of gravity) to mea-
sure a short distance l � lP will (in the presence of
gravity) only be sensitive to distances 1=l. This is the
classical counterpart to T duality in string theory [9].

It is possible that quantum gravitational corrections
modify the relation between E and R in the HC [10].
However, if E is much larger than the Planck mass, and
R much larger than lP, we expect semiclassical consid-
erations to be reliable. (Indeed, in two particle collisions
with center-of mass energy much larger than the Planck
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mass the black holes produced are semiclassical.) This
means that the existence of a minimum ball of size much
smaller than lP does not depend on quantum gravity—the
energy required to confine a particle to a region of size
much smaller than lP would produce a large, semiclassi-
cal black hole.

Before proceeding further, we give a concrete model of
minimum length that will be useful later. Let the position
operator x̂ have discrete eigenvalues fxig, with the sepa-
ration between eigenvalues either of order lP or smaller.
(For regularly distributed eigenvalues with a constant
separation, this would be equivalent to a spatial lattice.)
We do not mean to imply that nature implements mini-
mum length in this particular fashion—most likely, the
physical mechanism is more complicated, and may in-
volve, for example, spacetime foam or strings. However,
our concrete formulation lends itself to detailed analysis.
We show below that this formulation cannot be excluded
by any gedanken experiment, which is strong evidence for
the existence of a minimum length.

Quantization of position does not by itself imply quan-
tization of momentum. Conversely, a continuous spec-
trum of momentum does not imply a continuous
spectrum of position. In a formulation of quantum me-
chanics on a regular spatial lattice, with spacing a and
size L, the momentum operator has eigenvalues which are
spaced by 1=L. In the infinite volume limit the momen-
tum operator can have continuous eigenvalues even if the
spatial lattice spacing is kept fixed. This means that the
displacement operator

x̂�t� 	 x̂�0� 
 p̂�0�
t
M

(2)

does not necessarily have discrete eigenvalues [the right-
hand side of (2) assumes free evolution; we use the
Heisenberg picture throughout]. Since the time evolution
operator is unitary the eigenvalues of x̂�t� are the same as
x̂�0�. Importantly though, the spectrum of x̂�0� [or x̂�t�] is
completely unrelated to the spectrum of the p̂�0�, even
though they are related by (2) [11]. Consequently, we
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stress that a measurement of the displacement is a mea-
surement of the spectrum of p̂�0� (for free evolution) and
does not provide information on the spectrum of x̂. A
measurement of arbitrarily small displacement (2) does
not exclude our model of minimum length. To exclude it,
one would have to measure a position eigenvalue x and a
nearby eigenvalue x0, with jx	 x0j � lP.

Many minimum length arguments (involving, e.g., a
microscope or scattering experiment [1]) are obviated by
the simple observation of the minimum ball. However, the
existence of a minimum ball does not by itself preclude
the localization of a macroscopic object to very high
precision. Hence, one might attempt to measure the spec-
trum of x̂�0� through a time of flight experiment in which
wave packets of primitive probes are bounced off of well-
localized macroscopic objects. Disregarding gravitational
effects, the discrete spectrum of x̂�0� is in principle
obtainable this way. But, detecting the discreteness of
x̂�0� requires wavelengths comparable to the eigenvalue
spacing. For eigenvalue spacing comparable or smaller
than lP, gravitational effects cannot be ignored, because
the process produces minimal balls (black holes) of size
lP or larger. This suggests a direct measurement of the
position spectrum to accuracy better than lP is not pos-
sible. The failure here is due to the use of probes with very
short wavelength.

A different class of instrument —the interferometer—
is capable of measuring distances much smaller than the
size of any of its subcomponents [12]. An interferometer
can measure a distance

�x�
	

b
����
N

p �
L

�
����
N

p
�
; (3)

where 	 
 1=� is the wavelength of light used, L is the
length of each arm, � the time duration of the measure-
ment, and N the number of photons. More precisely, �x is
the change over the duration of the measurement in the
relative path lengths of the two arms of the interferome-
ter. b 
 �=L is the number of bounces over which the
phase difference builds, so (3) can also be written as

�� 

b�x
	

�
1����
N

p ; (4)

which expresses saturation of the quantum mechanical
uncertainty relationship between the phase and number
operators of a coherent state.

From (3) it appears that �x can be made arbitrarily
small relative to 	 by, e.g., taking the number of bounces
to infinity [13]. Were this the case, we would have an
experiment that, while still using a wavelength 	 much
larger than lP, could measure a distance less than lP along
one direction, albeit at the cost of making the measured
object (e.g., a gravity wave) large in the time direction.
This would contradict the existence of a minimum inter-
val, though not a minimum ball in spacetime. (Another
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limit which increases the accuracy of the interferometer
is to take the number of photons N to infinity, but this is
more directly constrained by gravitational collapse.
Either limit is ultimately bounded by the argument dis-
cussed below.)

A constraint which prevents an arbitrarily accurate
measurement of �x by an interferometer arises due to
the standard quantum limit (SQL) and gravitational col-
lapse. The SQL [14] is derived from the uncertainty
principle (we give the derivation below; it is not specific
to interferometers, although see [15]) and requires that

�x �

��������
t

2M

r
; (5)

where t is the time over which the measurement occurs
and M the mass of the object whose position is measured.
In order to push �x below lP, we take b and t to be large.
But from (5) this requires that M be large as well. In order
to avoid gravitational collapse, the size R of our measur-
ing device must also grow such that R>M. However, by
causality R cannot exceed t. Any component of the device
a distance greater than t away cannot affect the measure-
ment, hence we should not consider it part of the device.
These considerations can be summarized in the inequal-
ities

t > R>M: (6)

Combined with the SQL (5), they require �x > 1 in
Planck units, or

�x > lP: (7)

(Again, we neglect factors of order 1.)
Notice that the considerations leading to (5)–(7) were

in no way specific to an interferometer, and hence are
device independent. We repeat: no device subject to the
SQL, gravity, and causality can exclude the quantization
of position on distances less than the Planck length.

It is important to emphasize that we are deducing a
minimum length which is parametrically of order lP, but
may be larger or smaller by a numerical factor. This point
is relevant to the question of whether an experimenter
might be able to transmit the result of the measurement
before the formation of a closed trapped surface, which
prevents the escape of any signal. If we decrease the
minimum length by a numerical factor, the inequality
(5) requires M � R, so we force the experimenter to work
from deep inside an apparatus which has far exceeded the
criteria for gravitational collapse (i.e., it is much denser
than a black hole of the same size R as the apparatus). For
such an apparatus a horizon will already exist before the
measurement begins. The radius of the horizon, which is
of order M, is very large compared to R, so that no signal
can escape.

We now give the derivation of the standard quantum
limit. Consider the Heisenberg operators for position x̂�t�
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and momentum p̂�t� and recall the standard inequality

��A�2��B�2 � 	
1

4
�h�Â; B̂�i�2: (8)

Suppose that the position of a free test mass is measured
at time t 
 0 and again at a later time. The position
operator at a later time t is

x̂�t� 
 x̂�0� � p̂�0�
t
M

: (9)

The commutator between the position operators at t 
 0
and t is

�x̂�0�; x̂�t�� 
 i
t
M

; (10)

so using (8) we have

j�x�0�jj�x�t�j �
t

2M
: (11)

We see that at least one of the uncertainties �x�0� or �x�t�
must be larger than of order

���������
t=M

p
. As a measurement of

the discreteness of x̂�0� requires two position measure-
ments, it is limited by the greater of �x�0� or �x�t�, that
is, by

���������
t=M

p
.

The assumption of a free test mass in the SQL deriva-
tion deserves further scrutiny. One might imagine that
specially designed interactions with the test mass during
the time interval �0; t� might alter the bound by extracting
some of the momentum uncertainty. However, we now
argue that if the mass M is that of the entire experimental
apparatus (as restricted by causality above), the SQL
applies.

As a simple model for interactions between the test
mass m1 and the rest of the apparatus, imagine a spring
connecting it to another mass m2. If m2 � m1 the spring
damps out the uncertainty in the position of m1 due to the
position measurement at t. [The time evolution of x̂�t�
would involve the harmonic oscillator potential, not just
the free kinetic energy used to obtain (9).] We could
further imagine that m2 is connected to other masses
mi � m2, etc. However, this construction terminates,
due to causality, with any masses which are further
than t away from m1: they are not part of the experiment
and can be neglected. Let the total mass of the system of
masses and springs be M�

P
mi. There is an uncertainty

in the center-of mass coordinate xcm of this system due to
the measurement performed on m1 at time t 
 0. Using
causality, we can show that x̂cm�t� evolves freely as in (9)
with M given by the total mass: (a) anything outside the
causal radius t cannot affect the experiment, so we can
simply remove it from our gedanken universe without
changing the results, and (b) the position of an isolated
apparatus in an empty universe must evolve freely accord-
ing to (9). The uncertainty �xcm contributes to �x, which
one can see by writing x̂�t� 
 x̂cm�t� � ŷ�t�, with
�x̂cm�t�; ŷ�t�� 
 0. We obtain a bound on �x which is
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independent of the specifics of the interactions—we
need only use the total mass M of all objects which can
interact with m1 during the measurement.

The argument of the previous paragraph focuses on the
center-of-mass degree of freedom, but there are classes of
experiments—such as interferometers—that are only
sensitive to relative changes in position. For free particle
motion the minimal length bound detailed above also
applies to the relative coordinate. However, one might
imagine interactions involving the relative degree of free-
dom that could limit the growth of uncertainty. Still,
there are fundamental limits on the ability of an external
potential to extract the uncertainty in momentum intro-
duced by the initial measurement of x�t�. Let the
Hamiltonian for each arm be that of a simple oscillator

H 

1

2
m _x2 �

1

2
m�2�x	 x0�

2: (12)

The width of the ground state wave function is ��
1=

�������
m�

p
, which must be less than lP. In natural units,

this requires m � �	1. The HC then requires L>m �
�	1, which contradicts the causality requirement that
L< �	1—i.e., that the size of the arm (spring plus
masses) not exceed the oscillation time scale. If the
causality requirement is violated, the system no longer
behaves like an oscillator with a single displacement
degree of freedom x.

There has been considerable discussion in the literature
of defeating the SQL using contractive states [16,17] or
other quantum nondemolition (QND) techniques [15,18–
21]. Contractive states allow for uncertainties in position
that do not grow in time as rapidly as (5). Naively this
may seem to allow for an accurate measurement of the
discreteness of the position operator, but recall that two
measurements of position are needed to do this.
Straightforward algebra using the properties of contrac-
tive states (see, e.g., [16]) shows that the uncertainties in
two subsequent measurements of position are still
bounded by (11). Alternatively, this follows directly
from the Heisenberg operator equations of motion, or
more intuitively, because for a given level of desired
uncertainty for both measurements, the time between
measurements cannot be arbitrarily long, since for these
states the uncertainty in position eventually begins to
grow. We emphasize that as (11), not (5), was essential
to our derivation, the use of contractive states will not
allow for a measurement of the discreteness of position on
scales less than the Planck scale.

Similarly, we note that the QND proposals typically
amount to measurements of the displacement operator
(2), or of the time-integrated force on a test mass, which
would appear on the right-hand side of (2) if we had not
assumed free evolution. In measuring the displacement
operator [but not the position operator x̂�t� itself at differ-
ent times], correlations between the initial and final states
can be used to cancel the dependence on the initial state of
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the test mass. However, we have argued that such mea-
surements do not probe the discretization of the position
operator, and hence cannot address the question of mini-
mum length.
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