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We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in
which the slit dipole antenna works as a leaky-wave antenna. �e slit dipole antenna consists of a planar feeding structure, which
is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated
over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz.�e numerical results show that the antenna gain
responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius.�e lens with
the radius of 1.2�� is found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon
lens.

1. Introduction

�e congestion of the electromagnetic spectrum at micro-
wave frequencies and the rapidly increasing demand formore
bandwidth have attracted researchers to an unexplored spec-
trum of the terahertz (THz) band. A higher THz bandwidth
has the potential to achieve an extremely high data rate, such
as one terabit-per-second, for future wireless devices [1]. In
comparison with the conventional cellular systems operating
below 2GHz, we can expect that THz waves in the range of
0.1 to 1 THz can provide bandwidth 50 to 500 times larger
[2]. �is range is popular for terahertz communications due
to the existence of many low-attenuation windows, such as
the 300, 350, 410, 670, and 850GHz bands. �e terahertz
frequency range has become very attractive in many other
applications, such as radio astronomy, atmospheric research,
chemical spectroscopy, medical imaging, security screening,
and defense [3–5]. �e e
ective utilization of THz bands
is due to the availability of stable, compact, low cost, and
high sensitive sources and detectors. Extensive research has
been carried out on lens-coupled antennas (a combination of
planer antenna with a quasi-optical lens) for millimeter and

submillimeter wave systems to increase the gain by reducing
the coupling loss due to the excitation of surface wavemodes.
�e other advantages of this technique include mechanical
rigidity, thermal stability, compatibility with IC techniques,
and capability for multiple-beam formation in a simpler way.

In the past, lens-coupled antennas, including dipole
antennas [6, 7], bow-tie antennas [8], annular-slot antennas
[9], log-periodic antennas [10], and folded-dipole antennas
[11], have been studied. In particular, many researchers
focused on the coupling of leaky-wave antennas with lenses
due to their important and attractive properties, for instance,
their broad impedance bandwidth, high directivity, and
simple feeding network [12]. Various leaky dielectric lens
antennas fed by a stripline dipole [13], typical leaky-wave slot
[14], leaky-wave waveguide [15], and an array of leaky-wave
slots [16] have been studied thoroughly in the literature.How-
ever, there is no detailed study of a lens with di
erent sizes for
slit dipole antenna to determine the optimal minimum lens
size for miniaturization.

Owing to the important and attractive properties of leaky-
wave antennas, researchers have coupled these antennas with
lenses to combine the characteristics of lens antennas and
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Figure 1: Antenna geometry: (a) side view and (b) top view.

leaky-wave antennas. In this paper, we designed a slit dipole
antenna backed by an extended hemispherical silicon lens
and investigated the in�uence of lens size and shape on the
overall characteristics of the antenna at a frequency of around
0.3 THz. Based on this investigation, we found the minimum
lens size in which an antenna works as a leaky-wave antenna.
�e investigation was carried out using the �nite-integration
time-domain simulator from CST Microwave Studio [17],
which allows the complete characterization of the perfor-
mance of lens-coupled antennas at many frequency points
with one simulation run. �e paper is organized as follows.
First, the antenna geometry is described. Second, the antenna
characteristics are investigated in detail for di
erent lens sizes
and �/� ratios, and �nally, conclusions are given.

2. Antenna Geometry

Figure 1 shows the detailed geometry of the slit dipole antenna
backed by an extended hemispherical silicon lens (�� = 11.9
and tan � = 0.0). �e slit dipole antenna consists of a leaky-
wave open-ended narrow slit [18] of width�� and length �,
which is fed by a short dipole at the center. �e short dipole
has a width and gap of�� and 	, respectively.

�e silicon lens has an extension length and radius of
� and �, respectively. �e antenna is fed by a discrete port
having 50Ω characteristic impedance, placed at the center
feed gap. �e thickness of metal layer is 0.35 �m, and its
conductivity is 1.6 × 107 S/m. �e �xed and the dependent
parameters used in the study are summarized in Table 1.

�e lenses with di
erent radii (�) were selected in the
study to determine the minimal lens size, and the shape
of the lens determined by �/� ratio (the ratio between the
extension length and radius of the lens) was optimized for
each lens size by varying the �/� ratio. �e lens shape
optimization is very important because it plays a key role in
maximizing antenna gain and radiation spectral bandwidth
in lens-coupled antennas [19, 20].�erefore, the optimization
of a silicon lens is important and requires careful tuning to

Table 1: Design parameters of the antenna.

Parameter Dimension (�m)

� �/2
	 10

�� 20

�� 10

� 0.34�

achieve the best possible performance. For a fair comparison,
the �xed �/� ratio provided the same percentage increase in
overall volume of the antenna.

3. Antenna Characteristics

�e lenses with the radii (�) of 0.8�� (0.8mm), 1.2��
(1.2mm), and 1.6�� (1.6mm) were selected for study; ��
is the wavelength of the central frequency of 0.3 THz in
free space. �e shape of each lens determined by the �/�
ratio was optimized to obtain a superhemispherical lens
by changing the values of �/�. For each lens radius, the
�/� ratio, which determined the optimized lens shape, was
obtained by varying the extension length (�) behind the
hemispherical position. Figure 2 shows the antenna gain
responses with variations in the T/R ratio in a frequency
range from 0.2 to 0.4 THz. �e �/� ratio was varied from
0.26 to 0.42 in increments of 0.08. For a lens radius of 0.8��
[Figure 2(a)] the gain curves were similar for wide values
of T/R; however, a signi�cant di
erence in gain curves was
observed for the other lenses. �e gain level for lens radius
of 1.2�� [Figure 2(b)] increased when the �/� ratio increased
from 0.26 to 0.34. However, when it further increased to 0.42,
the gain level decreased. �e gain curve for �/� = 0.42
was similar to the gain curve observed at �/� = 0.26. �e
similar trend is seen with greater di
erences in gain curves
for the lens radius of 1.6��. �is behavior is attributed to
the e
ect of extension length (�) which changes the foci
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Figure 2: Comparison plots of antenna gain for di
erent�/� values with (a)�= 0.8��, (b)�= 1.2��, and (c)�= 1.6�� compared to frequency.

of lens position with respect to the antenna [21, 22]. �is
con�rms that the antenna gain is sensitive to the lens shape
(determined by �/�), especially for the larger lenses at high
frequencies [12, 23]. Interestingly, the smaller lenses support
a wider range of �/� values in which good performance in
terms of gain can be achieved and thus have an additional
degree of freedom in device fabrication. In fact, a wide range
of �/� ratios can be obtained for a small lens as a result of
a smaller change in �. �is does not a
ect the optimized
condition signi�cantly. Nevertheless, the slit antenna showed
the best gain curves for all lenses at �/� = 0.34. In other
words, it was found that when the�/� ratio was 0.34, the lens
behaved as a superhemispherical lens. �us, we maintained
this optimized ratio of �/� for each lens size in our study.

Figure 3(a) shows the antenna gain responses with di
er-
ent lens sizes with the �xed optimized ratio of �/� = 0.34.
�e gain showed an increased level of dependency on the
lens size, and it increased with the increasing lens radius.
Improvements in the gain level were obtained by increasing
the lens radius from 0.8�� to 1.2�� and from 1.2�� to 1.6��.
With the smaller lens, the antenna did not perform well
and showed low and unstable gain behavior. �e lens with
the radius of 0.8�� produced a low and �uctuated gain; the
�uctuation was very high at lower frequencies, and a reduc-
tion in �uctuation is seen at higher frequencies. For higher
frequencies, the electrical length of the slit line is increased,
which ensures the smooth decay of the current across the
slit line, resulting in decreased �uctuations.�e antenna gain
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Figure 3: Comparison plots of (a) gain and (b) radiation e�ciency for di
erent lens radii with �/� = 0.34 compared to frequency.
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Figure 4: Radiation patterns of the antenna for di
erent lens radii with �xed �/� = 0.34 at 0.3 THz: (a) �
-plane and (b) �
-plane.

was observed as 7.8 dBi at 0.2 THz and reached 12.7 dBi at
0.4 THz. �e gain of the antenna with the lens radius of
1.2�� increased smoothly from 10.5 dBi to 16.5 dBi, as the
frequency increased from 0.2 THz to 0.4 THz. Similarly, the
lens with a radius of 1.6�� produced the higher gain level of
12.5 dBi at 0.2 THz, which gradually increased to 18.5 dBi at
0.4 THz.�e results con�rm that, for each lens size, a low gain
occurs at lower frequencies, and the antenna gain increases
with frequency. �is phenomenon is reasonable because for
higher frequencies the e
ective size of the radiating element
increases.

�e radiation e�ciency for each lens size was calculated
and plotted as a function of the frequency, as shown in
Figure 3(b). �e lens with the radius of 0.8�� showed high
radiation e�ciency and had a high degree of �uctuations.
Interestingly, both �uctuations and the radiation e�ciency
decreased with an increase in lens size. �e lens with the
radius of 1.2�� gave a low �uctuated periodic radiation curve,
while a lens with a 1.6�� radius showed low but smooth
and stable e�ciency. �e average e�ciency decreased in
decrements of approximately 10% for each increment of 0.4��
in the lens radii. It was found that the average radiation
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Figure 5: Comparison plots of input impedance versus frequency for di
erent values of R with �/� = 0.34: (a) real part and (b) imaginary
part.
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e�ciency is 61% for a lens radius of 0.8�� and 52% and 41%
for a lens radius of 1.2�� and 1.6��, respectively.

It is important to note that there is a trade-o
 between the
gain and radiation e�ciency with respect to the lens radius.
A larger lens can produce high gain, but it has low radiation
e�ciency and a bulky size. Contrary to this, a lens with a
small radius is capable of high radiation e�ciency at the cost
of reduced gain. However, for a slit dipole antenna, the lens
with � = 1.2�� produced a stable gain behavior with a good
compromise in radiation e�ciency.

�e radiation patterns of the antenna on the di
erent lens
radii are plotted at the center frequency of 0.3 THz in Figure 4.
In general, the �
-plane (�-plane) presented relatively clean
pro�le patterns with few back and side lobes, while the
�
-plane (�-plane) showed more back and side lobes. �e
number of back and side lobes in both principal planes
increased with an increase in lens radius. �is is because of
the leaky-wave nature of the slit dipole antenna; the slit line
length increased for the lens of larger radii, which created a
longer travelingwave path along the slit line. Furthermore, we
saw a narrowing of the main beam and an increase in a gain
level with the increasing lens radius. �is is because of the
increasing aperture size of the lens and thus the enhancement
of the beam collimation. �e side lobe levels in the �
-plane
for all lenses remained the same at about−10.2 dB, whereas, in
the yz-plane, it was −10.2 dB, −13.8 dB, and −12.8 dB for lens
radii of 0.8��, 1.2��, and 1.6��, respectively.

�e back radiations of lens-coupled antennas are
inevitable. �e back radiations were higher for smaller lenses
and lower for the larger lens. Because the ratio of power

between dielectric and air for the slit structure is �3/2� , where
�� is the relative dielectric constant of the lens, the back
lobes may be considerably alleviated using lens material with
much higher �� values or by further increasing the lens size.

�e input impedance of the slit dipole antenna for
di
erent values of � is illustrated in Figure 5.�e high degree
of �uctuation in the input impedance decreased with the
increasing lens radius. �e high �uctuation in the lens of �
= 0.8�� decreased to a stable and constant impedance at lens
sizes � = 1.2�� and � = 1.6��. �e larger lenses enabled the
design of a longer slit and thus reduced the current re�ect
back at slit termination.�e real parts of the input impedance
for � = 1.2�� and � = 1.6�� were around 50Ω, while the
imaginary parts of the input impedance were around 25Ω in
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Figure 7: Comparison plots of antenna gain for silicon lenses with di
erent values of loss tangent (tan �) for (a) � = 0.8��, (b) � = 1.2��, and
(c) � = 1.6��.

the entire frequency range. We calculated a magnetic current
along the slit line arms in Figure 6. As the length of the slit line
increased with the increasing radius of the lens, the current
which re�ected back at the ends of the slit line decreased.�e
lens with the radius of 0.8�� showed signi�cant re�ection at
the slit termination. However, most of the current traveling
through the slit line was attenuated rapidly and reached
nearly zero at the slit termination for lens radii of 1.2�� and
1.6��. �is veri�es the leaky-wave nature of the slit dipole
antenna, particularly with larger lenses.

�e loss levels incurred by the dielectric lenses might
have a signi�cant impact on the antenna’s performance. �e
e
ect of various values of loss tangents (tan �) of silicon on
the antenna’s gain performance has been studied, as shown
in Figure 7. At �rst, the loss tangent was assumed to be

zero and then increased to 0.025 and 0.05. �e gain level
decreased in the entire frequency range of interest for all
lenses as the loss tangent value increased. Moreover, the gain
�uctuations decreased as the loss tangent value increased;
this was more signi�cant for smaller lenses. However, the
typical loss tangent value of high-resistivity silicon lens is
tan � = 0.001 at around 0.3 THz [24]. �e results with this
typical loss tangent value of silicon were almost the same
as the results with tan � = 0.0 for all lenses, as shown in
Figure 7.

It was important to understand how antenna’s perfor-
mance is a
ected by other lossy low dielectric constant
materials. �e antenna’s performance with respect to gain is
analyzed for quartz (�� = 3.8 and tan � = 0.0005) lenses for
di
erent �/� values of � = 0.8��, � = 1.2��, and � = 1.6��



International Journal of Antennas and Propagation 7

T/R = 0.6

T/R = 0.75

T/R = 0.9

0

5

10

15

20

25

30
G

ai
n

 (
d

B
i)

0.25 0.30 0.35 0.400.20

Frequency (THz)

(a)

T/R = 0.6

T/R = 0.75

T/R = 0.9

0

5

10

15

20

25

30

G
ai

n
 (

d
B

i)

0.25 0.30 0.35 0.400.20

Frequency (THz)

(b)

T/R = 0.6

T/R = 0.75

T/R = 0.9

0

5

10

15

20

25

30

G
ai

n
 (

d
B

i)

0.25 0.30 0.35 0.400.20

Frequency (THz)

(c)

Figure 8: Comparison plots of antenna gain for quartz lenses with di
erent �/� values of (a) � = 0.8��, (b) � = 1.2��, and (c) � = 1.6��.

in Figure 8. �e smaller lenses (� = 0.8�� and � = 1.2��)
did not work properly, exhibiting low and �uctuating gain
curves. �e lens with � = 1.6�� showed better performance
but signi�cant �uctuation at lower frequencies. It is important
to note that the optimized �/� ratio was 0.75 for quartz,
which was only 0.34 in the case of silicon lens. Besides
providing a compact lens size, an extended hemispherical
lens with a high dielectric constant material (e.g., silicon)
performs better than the low dielectric constant lens due to
the fact that high dielectric constant material yields a more
exact geometrical approximation of an ellipse [25]. �us,
silicon is the best candidate for the design of a minimum
lens size supporting the leaky-wave nature of the slit dipole
antenna.

4. Conclusions

�e in�uence of lens shape and size on the characteristics of
the slit dipole antenna was studied over a broad frequency
range around 0.3 THz to �nd the smallest lens that supports
the leaky-wave behavior of the slit dipole antenna.�e results
showed that the lens size and shape play a key role in
determining the best possible gain and radiation spectral
bandwidth of the antenna.�e gain response was found to be
sensitive and changedwith the change in lens size; it increased
with an increasing lens size over the entire frequency range
of interest. �e results showed that the lens with the radius
of 1.2�� (1.2mm) at 0.3 THz is the smallest lens in which
a slit dipole antenna on the extended hemispherical silicon
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lens performs as a leaky-wave antenna. Further decreasing
the lens size leads to more �uctuations in gain and input
impedance, and the smooth gain and input impedance curves
vanish.
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