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MSE Equalization of Digital  Fiber  Optic  Systems 
DAVID G .  MESSERSCHMITT, MEMBER,  IEEE 

Ahtract-The  optimum minimum MSE equalization, both linear 
and decision feedback, of a digital fiber optic transmission system with 
Poisson  signal statistics and  additive  wide-sense  stationary noise is 
considered. The  problem is reduced to the solution of a certain  integral 
equation, with solutions  obtained for certain  special  cases,  including 
white and  band-limited  additive noise. Numerical  results  are  given for 
white noise and an exponential input pulse. 

1 .O INTRODUCTION 

T HE  performance  of linear equalization  for a digital fiber 
optic system  has been determined for the raised cosine 

family of equalized average pulses [l ] . In  [2] this author 
reported a solution  for  the  optimum  equalization  with no con- 
straint  on  the equalized pulses for a  mean-square error  criterion, 
including  decision feedback as well as linear equalization. This 
paper elaborates  on  [2] , provides the promised  closed-form 
solution  of  the governing integral equation  for some special 
cases and also some closed form  solutions  for  the  exponential 
pulse case. A  generalization of  the integral equation derived 
here to  the m-ary case has  been given in [8]. 

2.0 MODEL OF  THE RECEPTION 

At the  input to the equalizer (output  of  the  optical  detector) 
we assume  a current waveform of  the  form er(t)   (e = electron 
charge),  where 

r ( t )  = 2 ~ ( t  - tn> + n( t )  (2-1) 
n 

and n( t )  is a wide-sense stationary  random process with  auto- 
correlation R,(r) and power spectrum N(w)  and  the { t n }  are 
arrival times obeying Poisson statistics  with time-varying rate 
parameter 

h( t )  = ho + B k p ( t -  kT). (2-2) 
k 

In (2-2) ho corresponds to dark  current  (current  at  the  detector 
output  in  the absence of  input  optical energy), the { B k }  are 
the sequence of  data digits,  possibly  multilevel, and p ( t )  > 0 
(with  Fourier  transform P(w))  is the  detector average output 
in  electrons/second  corresponding to an isolated transmitted 
pulse. The  detector  input  optical power is hvp(t)/v where v is 
the  detector  quantum efficiency and hv is the energy of  one 
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photon.  For  simplicity,  in (2-1) we have not assumed avalanche 
detection,  although  it could easily be incorporated  into  the 
subsequent analysis. Further, we assume a  sequence of  uncor- 
related data digits where 

(note  that mB > 0 since Bk 2 0) and 

E(B,B,) = uB26,,, + mB2. 

Independence  of { B k } ,  { t n } ,  and n ( t )  is assumed. 

2.1 Model of the  Receiver 

We constrain  the receiver to be  a  linear  filter  followed by a 
sampler and  threshold  detector  with (possibly) decision  feed- 
back. Specifically, let h(r)  be the impulse  response of a  linear 
filter  with  output x ( t )  (the  constant e has  been  absorbed  into h), 

x ( t ) = x h ( t - t , ) +  
n 

(2-5) 

To  make a  decision on B k ,  the waveform x ( t )  is sampled at 
t = kT and applied to a set  of  thresholds.  To  account  for  the 
possibility of decision feedback, we also subtract prior to the 
thresholds  the  quantity 

m 

bmkk-m 
m = I  

where the {b,} are the coefficients of a feedback filter (all 
zero for  the linear  equalizer) and  the S k - m  are  past  decisions. 
In calculating receiver performance, we will pr!sume that there 
have been no past  decision errors, so that B k - m  = B k - m ,  

m 2 1.  The  constant C will be  chosen to  minimize the MSE, 
and is helpful because of a  d.c. offset in the equalizer  filter 
output  due  to  dark  current  and  other  factors. 

2.2 Calculation of MSE 
The  criterion  of  optimization will be the MSE between  the 

decision threshold  input  and  the  current  data digit, Bh : 

In  Appendix A it is shown  that ( 2 6 )  is minimized by 
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where bo 1, and  further  that  the MSE is Decision-Feedback Equalizer, MSE Criterion  (DFE-MSE) 
Minimize (2-8) with  no  constraints, 

I -1 

and ec2 is the MSE of  the classical equalizer without  shot-noise, 
- 

(2-16) 
? = \\Rn(. - s)h(-~)h(-s) d7ds 

Decision-Feedback Equalizer-Zero-Forcing Criterion 

Minimize (2-8) with  the  constraint rk = 0 ,  k < 0,  ro = 1 ,  
(DFE-ZF) 

m 

In (2-7) through (2-9) 
(2-1 7) 

rk = I p(u + kT)h(--u)  du (2-10) 

is the average equalizer response at sample times to  an isolated 
input pulse, and 

3.0 CONDITIONS FOR MINIMUM  MSE 

The  minimization  of 3 given in (2-14)-(2-17) over h ( t )  is 
straightforward  by  the variational method.  In each case the 
specification of h( t )  is in the  form of an integral equation: 

(2-1 1) 
m 

is a  periodic function with  period T and  has  Fourier series 
representation $ (t)h(-t)  + Rn(t  - s)~(-s)  ds I 

(2-12) 
= oB2 x Cmp(t  + mT). 

m 

Observe from (2-8) that  for  the MSE criterion  the  effect  of  the 
shot noise nature  of  the signal is to add an  effective nonsta- 
tionary noise with  autocorrelation $ ( t )6( t  - 7) to  the  input 
wide sense stationary noise. The  subsequent  solution  for  the 
optimum equalizer depends strongly on  the fact that $ ( t )  is 
periodic. 

We list below the  four  standard criteria we  will  use for 
optimization  and  the MSE formulas  for  those  criteria, where 
the  factor 

The  different' cases differ only as to choice of  the  constants 
{ C m } ,  which we summarize  below (note  that  the rm depend 
on h (t)): 

LE-MSE 

1 - r o ,  m = O  
cm =[ - 

rm > m#O 

LE-ZF 
The {Cm}m+o chosen to  satisfy the  constraints F(h) = \ $ (u)h2(-u)  du 

rm = 6,. 

+ / / R n ( u  - u)h(-u)h(-u) du  du (2-13) 

is common  to all cases: 
Linear Equalizer, MSE Criterion (LE-MSE) 
Minimize (2-8) with  the  constraint b, = 0 ,  m > 0,  

DFE-MSE 

m>O 

(3-5) 

m < O  

b ,  = rm,  m > 0. (3-5) 

Linear Equalizer, Zero-Forcing Criterion (LE-ZF) 
Minimize (2-8) with  the  constraint bm = 0 ,  m > 0 and rk = 

O , k # O , r ,  = 1 ,  

e 2  = F(h).  
- 

(2- 15) 

DFE-ZF 

cm = o ,  m > O  

b m = r m ,  m>O 
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Although it has not been shown  yet, we assume in  the following 
that S(z) is real-valued and non-negative on  the  unit circle. 

We now use (4-4) and  the results of  Section 3.0 to deter- 
mine the  tap gains. Once the  tap gains are determined,  then so is 
the performance through (3-9). 

LE-MSE 
From (3-2) and (4 -4) we have 

The { C m } m ~ O  are chosen to  satisfy the  constraints 

0 ,  m<O 

1 ,  m = O  

In  addition,  it is shown  in  Appendix B that  in  all.four cases 

(4-5) 

4.0 SOLUTION OF INTEGRAL EQUATION  (3-1) 

An analytical solution  of (3-1) can be obtained  for some 
interesting special cases, most  notably when the noise spec- 
trum is white, periodic, or  bandlimited. Most any  spectrum of 
interest can  be approximated  by  one  of these cases. Further- 
more, when $(t)  is constant, (3-1) reverts to a classical 
problem which is easily solved. 

4.1 General Form of the Solution of (3-1) 

It  will be shown  in  Section 4.3 that  the  solution  of (3-1) 
can  be written  in  the  form 

and  hence from  (3-9) 

L E-ZF 
From (3-3) and (4-4) 

and 
h(-t) = uB2 x Cmg(t f m T )  

m 

where g(t)  is some time waveform which is dependent  on ho, 
T, m B ,  and P(w),  but  not  on uB2 or {Cm}. The conclusion of 
(4-1) is that  the  optimum equalizer  consists of a  filter with 
impulse  response g(t)  (not necessarily a matched filter) 
followed by a  transversal  filter with  tap-coefficients {Cm}. The 
latter  depend  on  the  criterion of optimization,  and will be 
found shortly. 

Our  approach will be to first find  the  tap gains ICm} as a 
function  of g(t)  in  Section  4.2  and  then  find g(t)  itself in 
Section 4.3. 

which is independent  of uB2.  

From (3-4) and  (4-4), 
DFE-MSE 

4.2 Solution for  the Tap Gains 

Section 3.0 gives relationships between  the  tap gains {C,} 
and  the average equalized pulse samples {rk}.  In  fact, (2-10) 
and (4-1) give another  relationship, 

The  solution to this  equation is well known  [6] . Let 

1 

OB 
- + s ( ~ )  = s+(z)s-(zj 

m 

S+(z) = x ymzm 
m=O 

(4-1 1) 
m 

s-(z) = S+(z- l )  (4-12) where 

be the  standard  spectral  factorization  of S(z) .  Then  the 
solution  of (4 -9) is 

is specified by g(t) and  not by the  tap gains. Taking the z- 
transform  of  (4-2), we get (4-13) 

R ( z )  = x rkzk 
k 

and  in particular 

1 
(4 -4) 

ro = 1 -___ 
(JB 2Yo 

(4-14) 
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Hence,  from (3-9) we have which is the classical matched  filter plus  whitening  filter solu- 
tion  with  the noise spectrum  augmented  by $o. 

(4-16) 
4.3.2 N(w)  = No, White  Noise 

DFE-ZF When N ( w )  = N O ,  g(t)  becomes 
From (3-6) (3-8), and  (4-4), 

(4  -23) 

In  particular, when the p ( t  + mT) pulses do  not overlap, we 
The  solution  of  this  equation follows from  [6, Appendix A, get 
Eq. (72)]  with R ( e )  = 1 / O B  as 

P ( 0  
g( t )  = NO + ho + mBP(t) ' 

(4-24) 
1 5 Ckzk = (4-18) 

k=- m oB2yOs-(z> 
In  either case, g(t)  differs from  the classical solution in that  it 

where now is not a matched  filter,  but  rather has an impulse response 
weighted during  each  symbol interval  according to periodic 

generally exceeds that  ofp(t) when the  latter is bandlimited. 
S(z) = s+(z)s-(z)  (4-19)  function $(t). Interestingly,  the  bandwidth of the equalizer 

I Many equivalent formulas  for S(z) can  be given, but per- 
(4-20) haps the most useful is to  substitute (4-24) into (4-3). ' 

and  (4-16)  holds as before. 

4.3  Solution for g(t)  

That (4-1) is a solution of (3-1) can  be verified directly 
by  substitution, with the result that g(t)  must satisfy the 
integral equation 

In  Sections 4.3.1 and 4.3.2 (4-21) will be solved directly for 
two special cases, and  then in subsequent  Sections  more diffi- 
cult cases will be solved using the  LaurentCauchy  Transform 
(LCT). 

4.3.3 Transfonnation of  (4-21)  into a Difference  Equation 

For  more difficult cases (neither $ ( t )  nor N ( w )  constant)  it 
is useful to  transform  (4-21)  into a  difference equation using 
the  concept of the  Laurent-Cauchy  Transform (LCT) [5]. 
Given a function f ( t )  with'Fourier  transform F ( o ) ,  define 

71 

Then  the LCT of f ( t ) ,  FLc(z, w), is defined as 

(4-25) 

(4-26) 

4.3.1 $( t )  = Jl0,  A Constant The inverse is easily determined by taking  the inverse z-trans- 
form followed by  the inverse Fourier  transform. 

From (2-12) P ( t )  has no energy at the sympol Now (4-21)  can  be  transformed  into a  difference equation 
rate 1 /T  Hz or harmonics  thereof, $( t )  is a constant $0 = by  substituting  for $(t)  from (2-12) and taking the  Fourier 
ho + mBP(O)/T. This case, or an approximation to it,  will Transform to obtain 
frequently  occur in practice. By taking  the  Fourier  Transform 
of (4-21) we get 

and  it is easily shown  that When w is replaced by w + m(277/T) and w is restricted to  
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I I < TIT, we obtain 

= Pm (w), I w I < n/T (4 -28) 

which is a linear difference equation  with time-varying CO- 

efficients for fixed W .  

The  solution to  (4-28) is facilitated  by taking the  z-transform 
of both sides, 

m 

There  are two special cases, considered  in the following two 
sections,  for which (4-29) can  be  solved. 

4.3.4 N(w)  Periodic in N2nlT 
A case for which (4-29) can  be solved occurs when 

(4-30) 

or equivalently 

Nk+N(w)=Nk(w).  (4-31) 

When N = 1, the  solution follows immediately as 

1 w 1 <n/T. (4-32) 

The similarity to (4-22) is striking. For N > 1, solution is 
still possible, but  tedious.  For  example, when N = 2, we can 
write PLC (z, w )  and  GLC(z, a) each as the  sum of two  terms, 
one  containing even powers ofz  and  the  other  odd powers ofz,  

PLC(Z, a) = Pe(Z9 a) + Po(z, a) (4 -33) 

GLC(Z, 0) = Ge(z, a) + C ~ ( Z ,  W )  (4-34) 

and  substituting  into  (4-31) we get two  equations,  one  for 
even powers, 

and  the  other  for  odd powers, 

These two  equations  can be solved simultaneously  for Ce(z, w )  
and Go(z, w )  from  which GLC(Z, a) can  be constructed. 

An alternate  method  of  solution  for N > 1 is to rewrite 
(4-28) as a  vector  difference equation  with  constant coeffi- 
cients,  for  which  solution is straightforward [7] . For  example, 
when N = 2 and P,(O) = 0, In I > 1, (4-28)  can  be  rewritten as 

L 1 0 

Using the  fact  that A2k = A 0  andAZk+l  =AI,  (4-37) can be 
rewritten  in  the  form of another first order difference equa- 
tion  with  constant  coefficients, 

X 2 k + 2  =A1AOX2k +AlY2k + Y2k+l. (4-38) 

4.3.5 N ( w )  Bandlimited 

If we assume that N ( w )  = 0 for I w I > (N + 1/2)(2n/T) 
then it follows that Nm (w)  = 0 for m 1 > N and 1 w I d n/T. 
Accordingly, (4-29) becomes 

N 

+ Nm(w)G,(w)zm 
m=-N 

This equation can be solved by writing Gk(w)  in  terms  of 
GLC(Z9 01, 
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and  substituting  for GLc from (4-39) to  obtain 

N 

where 

(4-42) 

(4-43) 

For I k I G N ,  (4-41) is a set  of (2N + 1) equations in (2N + 1) 
unknowns which can  be solved by  matrix inversion. For I k I > 
NGk(cd) can  then  be  determined directly from (4-41). 

5.0 EXAMPLE 

In [2] a  numerical  example is  given for a Gaussian shaped 
optical power  pulse,  which is characteristic of relatively long 
optical fiber  links with significant mode conversion [8]. Here 
we will concentrate  on an exponential  input pulse [ l ]  , 
primarily because its analytical tractability is conducive to 
gaining significant  insight. The receiver input pulse is 

g(t )  

0.5 

0.5 

0.25 

I P = '  3.- 
h t / T  
0 I 2 3 4 

Figure 1. Impulse  Response of Optimum  Equalizer  Prefilter. 

where ne is the average number  of  detector  output  electrons 
per bit,  and  the rms pulse width is (50 = a-l. For convenience  This  impulse response is plotted in Fig. 1 for mB = 0.5 and 
we define a = 1 as p varies. When p = 0 ,  g(t) is interestingly  a sum  of 

square  pulses, and as p increases, g(t) approaches  the shape of 
(5-2) the  input pulse (i.e.,  a classical matched filter for white noise). 

Where p ( t )  is causal and g(t) is  given by (4-23), S k  in (4-3) 

p = e-"' = e - l l o  

where u = uO/T is the rms pulse width in time slots. By can be written in the  form 
straightforward calculation, 

$ ( t ) = h o + - e - a T ,   O G t G T .  mBnea 

1 - 0  
s k ' g /  

T p ( u  + (m + k)T)p(u + mT) 

( 5  -3) 
du (5-6) 

m=Z 0 No + 

where 1 = -k for k < 0 and 1 = 0 for k > 0. Substituting  from 
Consider the  white noise case of  Section 4.3.2. An im- (5-1), after Some manipulation,  we get 

portant  parameter is 

and hence 

which is the ratio of average number  of noise electrons per K 
time slot to signal electrons per transmitted  symbol (with s(Z) = 

Bk = 1). Then g(t) is  given by (4-23), (1 -Pz>( l  -P/z> 

where 
P k  O G t G T  

apefft  + mB/(l - 6)' k 2 0  

0 ,  t < O  
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The tap-gains are readily determined  from (5-8) and  from 

(5-10) 

u = b - d = < l  (5-1 1) 

1 + uB2K + p 2  
20 

b =  (5-12) 

The tap-gains and MSE of all four equalizers are now readily 
determined  (the  latter using (3-9)): 

L  E-MSE 

(5-13) 
a(l - Pz)(l - P/z> 
p(1 - m)(l - a/z) 

C(Z) = 

(5-14) 

LE-ZF 

(5-15) 

(5-16) 

I p =  10 
DFE-MSE 

0-r 
( c )  0 2 3 

Figure 2. Penalty  in Receiver  Optical  Power  (Relative to  u = 0, 
p = 0) Required to Maintain  SNR = 16.28 (dB). 

(5-17) 

(5-18) significant mode conversion, the Gaussian model of [2] is 
more germaine. 

DFE-ZF 6.0 CONCLUSIONS 

The  most  interesting aspect of  the  solution  of  the MMSE 
equalization  problem is the emergence of a transversal filter 
prceeded by a nonmatched filter as the  solution. 

The  most serious shortcomings  of  the  present  work are two- 
fold:  First,  the  restriction  of  consideration to linear  equaliza- 
tion  or decision-feedback equalization, while possibly 
conforming  to practical constraints,  does  not give insight into 
the  benefit  of  arbitrarily  complex processing. Second,  the MSE 
criterion, while being extremely  tractable, is not as desirable 
a criterion  of  optimization as would be the  error  rate.  Both  of 
these shortcomings are  addressed with some success in  [9- IO]. 

4f 
S+(Z) = - 

1 - 0 2  
(5-19) 

(5-20) 

The  reduction  in MSE for  the  DFE relative to  the LE is evident 
from these equations  for  both  the MSE and ZF criteria. 

As pointed  out  in  [2],  the  most meaningful way to present 
an  example is to  plot  the increase in input  optical power 
required to maintain a constant MSE (and  hopefully relatively 
constant  error rate).  This is done in Fig. 2 for  the same example 
as in Fig. 1. Comparing  with  the Gaussian pulse example in 
[2] ,  we  see that  the penalties are somewhat smaller for  the 
exponential pulse (intersymbol  interference is less severe for 
a given 0). Further,  the  performance advantage  in going to  the 
more  complicated receiver structure  of  the  DFE is not nearly 
as large for  the same  reason. For longer multi-mode fibers with 

APPENDIX  A 
Defining 

A = x ( k T )  --K (A.1) 
m 

K =  b,,,Bk-,, bo = 1 ('4.2) 
m=O 
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we get E(x2(i??!)) 
- 
e 2  = E(A - C)2. 

Minimizing with respect to c, we get 

c = E @ )  

- 
e 2  = E(A2) -E(A)2. 

We take these expectations first over the Poisson  statistics, 
using Campbells Theorem [ 1 ] , 

E x h(kT - tn) L ) 2  

= 1 X(T)h2(kT- 7) d7 + X(7)h(kT- 7) d7 (1 Y 
E 2 h(kT-  tn) L ) 

+ I / R n  (7 - s)h (--7)h (-s) drds 

m 

= X o m ~  / h ( T ) d r  b, + m B 2  x r m  c b, 
m 

J n=O m n=O 

m 

+ uB2 2 rnbn 
n=O 

(A.11) 

(A.  12) 

2 

E ( K 2 ) = m B 2 (  2 bm)  u~~ 5 b m 2 .  (A.13) 
m =O m=O 

=I X(r)h(kT-7)d7 (A.6) Finally,  these terms can be combined  in  (AS)  to  obtain 

using (A.6) 

+ o B 2 ( G r m 2  + 2 b m 2 - 2  x ca rmbm 
m = O  m=O 

(A.14) 
J n J  

APPENDIX B 

m 
To calculate the MSE, multiply  both sides of (3-1)  byh(-t) 

and  integrate to obtain 

F(h) = OB Cm rm . 
m 

h (3) d7 ds. (A*7) For  the LE-MSE, substitute  (3-2)  in  (B.l)  to  obtain 

J m 
and  substituting (B.2) and  (3-2) in (2-14),  (3-9) follows. The 
other cases follow by  the same method. Now we are prepared to take  the  expectation over the  data 

utilizing (2-3)  and  (2-4).  First, we have that 
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