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Abstract. In this paper we consider the minimum weight multicolored
subgraph problem (MWMCSP), which is a common generalization of
minimum cost multiplex PCR primer set selection and maximum likeli-
hood population haplotyping. In this problem one is given an undirected
graph G with non-negative vertex weights and a color function that as-
signs to each edge one or more of n given colors, and the goal is to find a
minimum weight set of vertices inducing edges of all n colors. We obtain
improved approximation algorithms and hardness results for MWMCSP
and its variant in which the goal is to find a minimum number of vertices
inducing edges of at least k colors for a given integer k ≤ n.

1 Introduction

In this paper we consider the following minimum weight multicolored subgraph
problem (MWMCSP): given an undirected graph G with non-negative vertex
weights and a color function that assigns to each edge one or more of n given
colors, find a minimum weight set of vertices of G inducing edges of all n colors.
We also consider the generalization of MWMCSP in which one seeks a minimum
weight set of vertices inducing edges of at least k colors for a given integer k ≤ n,
referred to as the minimum weight k-colored subgraph problem (MWkCSP), and
the unweighted versions of MWMCSP and MWkCSP, denoted MMCSP and
MkCSP, respectively. As detailed below, MWMCSP and its variants model two
important bioinformatics problems: minimum cost multiplex PCR primer set
selection and maximum likelihood population haplotyping.
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1.1 Primer Set Selection for DNA Amplification by PCR

A critical step in many high-throughput genomic assays is the cost-effective am-
plification of DNA sequences containing loci of interest via biochemical reactions
such as the Polymerase Chain Reaction (PCR). In its basic form, PCR requires
a pair of short single-stranded DNA sequences, referred to as PCR primers,
flanking the amplification locus on the two strands of the template. In multiplex
PCR, multiple genomic loci are amplified simultaneously (and a primer may si-
multaneously participate in multiple amplifications). In addition to constraints
on individual primer properties that affect reaction efficiency, such as primer
melting temperature and lack of secondary structure, multiplex PCR primer
set selection must ensure various pairwise compatibility constraints between se-
lected primers. Since the efficiency of PCR amplification falls off exponentially
as the length of the amplification product increases, an important practical con-
straint is that the two primer sites defining a product must be within a certain
maximum distance L of each other. In applications such as spotted microarray
synthesis [1] a further pairwise compatibility constraint is the requirement of
unique amplification: for every desired amplification locus there should be a pair
of primers that amplifies a DNA fragment surrounding it but no other fragment.

Subject to these constraints, one would like to minimize the total cost of
the primer set required to amplify the n given loci. As noted by Fernandes and
Skiena [1], primer selection problem subject to pairwise compatibility constraints
can be easily reduced to M(W)MCSP: each candidate primer becomes a graph
vertex and each pair of primers that feasibly amplifies a desired locus becomes
an edge colored by the respective locus number. More generally, the problem of
selecting the minimum size/cost set of primers required to amplify at least k of
the n loci reduces to M(W)kCSP; this problem arises when several multiplex
reactions are required to amplify the given loci.

1.2 Maximum Likelihood Population Haplotyping

The most common form of genomic variation between individuals, is the pres-
ence of different DNA nucleotides, or alleles, at certain chromosomal locations,
commonly referred to as single nucleotide polymorphisms (SNPs). For diploid
organisms such as humans, the combinations of SNP alleles in the maternal and
paternal chromosomes of an individual are referred to as the individual’s hap-
lotypes. Finding the haplotypes in human populations is an important step in
determining the genetic basis of complex diseases [2].

With current technologies, it is prohibitively expensive to directly determine
the haplotypes of an individual, but it is possible to obtain rather easily the
conflated SNP information in the so called genotype. The population haplotyp-
ing problem (PHP) seeks to infer the set of haplotypes explaining the genotypes
observed in a large population. Formally, a haplotype is represented as a 0/1
vector – e.g., by representing the most frequent SNP allele as a 0 and the alter-
nate allele as a 1 – while a genotype is a 0/1/2 vector, where 0 (1) means that
both chromosomes contain the respective SNP allele and 2 means that the two
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chromosomes contain different SNP alleles. We say that a set H of haplotypes
explains a given set G of genotypes if, for every g ∈ G, there exist h, h′ ∈ H with
h + h′ = g, where h + h′ is the vector whose i-th component is equal to 2 when
hi �= h′

i, and to the common value of hi and h′
i when hi = h′

i.
Several optimization objectives have been considered for PHP and the related

genotype phasing problem, which seeks a pair of haplotypes explaining each of the
given genotypes – see, e.g., [3, 4, 5] for recent surveys. In the maximum likelihood
approach to PHP, one assumes an a priori probability ph for every possible
haplotype h (inferred, e.g., from genotype frequencies [6]), and seeks the most
likely set H of haplotypes explaining the observed genotypes, where the likelihood
of a set H is given by L(H) =

∏
h∈H ph. In the special case when all a priori

haplotype probabilities are equal, likelihood maximization recovers the maximum
parsimony approach to PHP [7, 8], in which one seeks the smallest set H of
haplotypes explaining G.

The maximum likelihood PHP can be reduced to MWMCSP by associating
a vertex of weight − log ph to each candidate haplotype h, and adding an edge
(h, h′) colored by h+h′ whenever h+h′ is one of the given genotypes. Maximum
parsimony PHP reduces to MMCSP in a similar way. Notice that in resulting
M(W)MCSP instances each edge is assigned at most one color (in fact, color
classes form a matching in the underlying graph). This property is no longer
true for the more general versions of PHP in which the input contains missing
data, i.e., when the input consists of partial genotypes which are vectors over the
alphabet {0, 1, 2, ∗}, and the goal is to resolve each “∗” symbols into a 0, 1, or
a 2, and find a most likely/smallest set of haplotypes that explain the resolved
genotypes. We also remark that the reductions of PHP to M(W)MCSP are not
polynomial, as the number of haplotypes compatible with the given genotypes
may be exponential. Nevertheless, in practice the reductions yield instances of
manageable size [7].

1.3 Previous Work

Gusfield [7] proposed an (exponential size) integer program formulation for the
maximum parsimony PHP. He reports that the commercial integer programming
solver CPLEX finds optimal solutions in practical running time for instances
with up to 150 genotypes and up to 100 SNPs. For the same problem, Wang and
Xu [9] proposed a greedy heuristic and an exact branch and bound algorithm.
Lancia et al. [8] proved that maximum parsimony PHP is APX-hard, and gave
two straightforward algorithms with approximation factors of

√
n and q, where

n is the number of genotypes and q is the maximum number of haplotype pairs
compatible with a genotype. These results immediately imply APX-hardness of
M(W)MCSP and M(W)kCSP (even when only one color can be assigned to
each edge), and can be shown to yield approximation factors of

√
n and m for

MMCSP with one color per edge and MWMCSP, respectively, where m is the
maximum size of a color class (i.e., the maximum number of edges sharing the
same color).
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Brown and Harrower [10] and Lancia et al. [11] independently proposed poly-
nomial size integer programs for maximum parsimony PHP. Although these for-
mulations are more compact than the one proposed by Gusfield [7], experimental
results in [10] indicate that they often take longer to solve for instances of prac-
tical interest, even when augmented with sophisticated sets of valid constraints.
This may be explained by the fact that there is no known integrality gap for the
formulations in [11] and [10], whereas the results in Section 4, imply an integral-
ity gap of O(

√
q log n) for Gusfield’s formulation. The formulations in [10] and

[11] do not seem to extend to the maximum likelihood PHP problem.
Fernandes and Skiena [1] studied MMCSP with at most one color per edge

in the context of multi-use primer selection for synthesis of spotted microarrays.
They gave practical greedy and densest-subgraph based heuristics for the prob-
lem and proved, by a direct reduction from set cover, that even this special case of
MkCSP cannot be approximated within a factor better than (1−o(1)) ln n−o(1),
where n is the number of colors. Konwar et al. [12] introduced a string-pair cov-
ering formulation for multiplex PCR primer set selection when there are only
amplification length constraints, and proved that in this special case a modifica-
tion of the classical greedy algorithm for set cover gives an approximation factor
of 1 + ln(nL), where L is the upperbound on the amplification length. The al-
gorithm in [12] cannot enforce arbitrary pairwise compatibility constraints, such
as ensuring amplification uniqueness.

Very recently, Hassin and Segev [13] showed that a suitable adaptation of the
greedy set cover algorithm yields an approximation factor of O(

√
n log n) for the

MMCSP, and Huang et al. [14] gave a factor O(log n) approximation algorithm
for maximum parsimony PHP based on semidefinite programming.

1.4 Our Results and Techniques

In this paper we give several approximation algorithms and hardness results
for MWMCSP and its variants. Unlike approximation factors in [8, 13, 14], our
results hold for the weighted version of the problem and do not require the
assumption that edges belong to a single color class. Our contributions are as
follows:

– First, in Section 2, we present a
√

k(1 + lnΔ) approximation algorithm for
MkCSP using an algorithm of Slavik [15] for the partial set cover problem.
Here Δ is the maximum number of colors assigned to an edge.

– Then, in Section 3, we present evidence of potential polynomial inapprox-
imability for MkCSP problem by showing a novel reduction from the densest
k-subgraph maximization problem to our minimization problem. We believe
that our approach can serve as a general technique to reduce hardness from
other budgeted graph-theoretic maximization problems to the corresponding
minimization problems.

– Finally, in Section 4, we give an O(
√

m logn) approximation algorithm for
MWMCSP, where m is the maximum size of a color class and n is the number
of colors. For PCR primer set selection with arbitrary pairwise compatibility
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constraints in addition to amplification length constraints, m = O(L2). Thus,
reduction to MWMCSP gives an approximation factor of O(L log n). For
maximum likelihood PHP, m = O(2t), where t is the maximum number of
2’s in a genotype. Thus, our algorithm yields an approximation factor of
O(2t/2√log n) in this case. Our approximation algorithm for MWMCSP is
based on LP-rounding, and we show that the approximation factor is almost
tight by showing a matching (up to the logarithmic factor) integrality gap
for the underlying linear program.

2 Approximation Algorithm for MkCSP

Notice that arbitrarily picking a set of k color classes and an arbitrary edge
from each color class yields a factor O(

√
kΔ) approximation for MkCSP, where

Δ denotes the maximum number of colors that can be assigned to an edge. The
following theorem gives an improved approximation algorithm.

Theorem 1. There exists an approximation algorithm with factor
√

2kH(Δ) =
O(

√
k(1 + lnΔ)) for MkCSP, where H(Δ) = 1 + 1

2 + . . . + 1
Δ .

Proof. The algorithm is as follows. Let X be the set of selected vertices; initially
empty. While the number of colors covered is less than k, we choose an edge with
maximum number of uncovered colors and add both of its endpoints to X (if
they are not already in X). Let i be the number of edges that we choose in this
process, clearly i ≤ k. We know that |X | ≤ 2i. On the other hand, by a result
of Slavik [15], we know that the above greedy algorithm for the partial set cover
problem, i.e., finding the minimum number of sets to cover at least k elements,
is an H(Δ) approximation algorithm. This means that the minimum number of
edges needed to cover at least k colors is at least i/H(Δ). It is easy to see that,
in order to induce at least i/H(Δ) edges, the optimum MkCSP solution should
pick at least

√
2i/H(Δ) vertices. The approximation factor follows immediately

by using this lower bound.

Remark. For the case when k = n and Δ = 1, i.e., for MMCSP with one color
per edge, the above algorithm corresponds to the

√
k-approximation algorithm

of [8]. It is also worth mentioning that using the approximation algorithm of
Gandhi, Khuller and Srinivasan [16] for partial set cover in the proof of Theo-
rem 1, we can obtain an

√
2km approximation algorithm for MkCSP, where m

is the maximum number of edges sharing the same color. The reduction estab-
lished in next section suggests that the approximation factor for MkCSP cannot
be easily improved.

3 Hardness Result for MkCSP

In this section, we show an interesting relation between the approximability of
MkCSP and that of the densest k-subgraph problem. Formally, we show that if
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there is a polynomial time f -approximation algorithm A for MkCSP, then there
is a polynomial time 2f2-approximation algorithm for the densest k-subgraph
problem. Given a graph G and a parameter k, the densest k-subgraph problem is
to find a set of k vertices with maximum number of induced edges. The densest
k-subgraph problem is well-studied in the literature [17, 18]. The best known
approximation factor for the densest k-subgraph problem is O(min{nδ, n/k}))
for some δ < 1/3 and improvement seems to be hard [19, 18]. The connection
between MkCSP and the densest k-subgraph problem suggests that significant
improvements in the approximation ratio for MkCSP would require substantially
new ideas.

Theorem 2. If there is a polynomial time f -approximation algorithm A for
MkCSP, then there is a polynomial time 2f2-approximation algorithm for the
densest k-subgraph problem.

Proof. Given a graph G with m edges, we would like to find a set of k vertices
with maximum number of edges in the subgraph induced by this set. We assign
to each edge of G a different color and use A to find the approximate solutions
for MkCSP on the resulting graph. Suppose l is the maximum color coverage
requirement for which A outputs a solution Y with at most k vertices. That is,
there are l colors assigned to the subgraph induced by Y , and the approximate
solution returned by A when l + 1 colors are required to be covered contains at
least k + 1 vertices. Let the optimal solution to the densest k-subgraph problem
contain opt edges. We shall prove that opt ≤ 2f2l and thus Y is a solution to
the densest k-subgraph problem which is within a factor of 1

2f2 to the optimal
solution.

By our choice of l and the fact that A is an f -approximation algorithm, any
� k

f � vertices of G can induce at most l colors. Consider a subset X with k vertices.
The total number of colors induced by all possible subsets of � k

f � elements of X

is at most
(

k
� k

f �
)
l. Notice that each edge is counted exactly

( k−2
� k

f �−2

)
times. So,

the total number of edges in X is at most
(

k
� k

f �
)
l

( k−2
� k

f −2�
) =

k(k − 1)
� k

f ��( k
f − 1)�

l ≤ f2l
k(k − 1)

(k − f)(k − 2f)
< 2f2l.

The last inequality holds since we can assume without loss of generality that k >
4f2 (otherwise, any connected subgraph on k vertices is a 2f2-approximation),
and also that k is a constant such that k(k−1)

(k−f)(k−2f) < 2. Since X is an arbitrary
set with k vertices, opt ≤ 2f2l and this completes the proof.

4 LP-Rounding Based Approximation for MWMCSP

Let G = (V, E) be the input graph and X = (χ1, . . . , χn) be the family of
nonempty “color classes” of edges (without loss of generality we assume that⋃

i χi = E). We use the following integer program formulation of MWMCSP:
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∀χ ∈ X ,
∑

e∈χ

ye ≥ 1 ,

min
∑

v

wvxv, subject to ∀v ∈ V, ∀χ ∈ X ,
∑

v∈e∈χ

ye ≤ xv ,

∀e ∈ E, ye ≥ 0, ∀v ∈ V, xv ≥ 0 .

Here the xv and ye are variables associated with the vertices and edges of the
graph, and the wv denote the positive weights given in the problem instance.
Our formulation is related to that introduced by Gusfield [7] for maximum par-
simony PHP. Gusfield’s formulation lacks weights, and replaces our second set
of constraints by the simpler requirement that ye ≤ xv for every edge e incident
to a vertex v. The two sets of constraints are identical for MMCSP instances
obtained by reduction from maximum parsimony PHP, since color classes are
independent sets of edges in this case. However, using the stronger set of con-
straints is essential in establishing our approximation guarantee for arbitrary
M(W)MCSP instances; a simple example shows that in this case the integrality
gap with Gusfield’s constraints is Ω(m). Due to space constraints we omit the
proof of the following two theorems:

Theorem 3. There is an LP-rounding approximation algorithm for MWMCSP
with approximation factor of O(

√
m log |X |), where m = maxχ∈X | χ |.

Theorem 4. The linear relaxation of the above MWMCSP integer program has
an integrality gap of Ω(

√
m).

Theorem 4 suggests that the linear relaxation of the MWMCSP integer pro-
gram may have limited value in achieving approximation results beyond the

√
m

threshold. It is worth mentioning that the integrality gap in Theorem 4 holds
for Gusfield’s maximum parsimony PHP formulation [7] as well. As mentioned
in Subsection 1.2, in this case, the graph is more restricted, that is, each vertex
is a 0/1 vector and each edge between vertices h and h′ has a unique color h+h′

(which is a 0/1/2 vector). Still we can construct such a restricted graph which
shows the integrality gap is the same as that of Theorem 4.

5 Conclusions

In this paper we have proposed the first non-trivial approximation and inapprox-
imability results for the MWMCSP problem and several of its variants capturing
important applications in computational biology. Interesting open problems in-
clude closing the gap between approximation guarantees and inapproximability
results for MWMCSP, and obtaining non-trivial approximations for MWkCSP
(an approximation factor of k is obtained, e.g., by picking the lightest edge of
each color.) An important constraint on the primers for multiplex PCR not
modeled by MWMCSP is that they shouldn’t cross-hybridize. This motivates
studying the variant of MWMCSP in which certain edges are marked as “for-
bidden”, and the goal is to find a minimum multicolored induced subgraph with
no forbidden edges.
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