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MINIMUM L1-NORM ESTIMATION FOR FRACTIONAL
ORNSTEIN–UHLENBECK TYPE PROCESS

UDC 519.21

B. L. S. PRAKASA RAO

Abstract. We investigate the asymptotic properties of the minimum L1-norm esti-
mator of the drift parameter for fractional Ornstein–Uhlenbeck type process satisfy-
ing a linear stochastic differential equation driven by a fractional Brownian motion.

1. Introduction

Long range dependence phenomenon is said to occur in a stationary time series
{Xn, n ≥ 0} if the Cov(X0, Xn) of the time series tend to zero as n → ∞ and yet
the condition

∞∑
n=0

|Cov(X0, Xn)| = ∞

is satisfied. In other words, the Cov(X0, Xn) tend to zero but so slowly that their sum
diverges. This phenomenon was first observed by the hydrologist Hurst (1951) on projects
involving the design of reservoirs along the Nile river (cf. Montanari (2003)) and by others
in hydrological time series. It was recently observed that a similar phenomenon occurs
in problems concerning traffic patterns of packet flows in high-speed data networks such
as the Internet (cf. Willinger et al. (2003), Norros (2003)). The long range dependence
pattern is also observed in macroeconomics and finance (cf. Henry and Zafforoni (2003)).
Long range dependence is also related to the concept of self-similarity for a stochastic
process. A stochastic process {X(t), t ∈ R} is said to be H-self-similar with index H > 0
if for every a > 0, the processes {X(at), t ∈ R} and the process {aHX(t), t ∈ R} have
the same finite-dimensional distributions. Suppose a self-similar process has stationary
increments. Then the increments form a stationary time series which exhibits long range
dependence. A Gaussian H-self-similar process with stationary increments with 0 <
H < 1 is called a fractional Brownian motion. A recent monograph by Doukhan et al.
(2003) discusses the theory and applications of long range dependence and properties
of fractional Brownian motion (Taqqu (2003)). If H = 1

2 , then the fractional Brownian
motion reduces to the standard Brownian motion also called the Wiener process.

Diffusion processes and diffusion type processes satisfying stochastic differential equa-
tions driven by Wiener processes are used for stochastic modelling in wide variety of
sciences such as population genetics, economic processes, signal processing as well as for
modeling sunspot activity and more recently in mathematical finance. Statistical in-
ference for diffusion type processes satisfying stochastic differential equations driven by
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Wiener processes have been studied earlier, and a comprehensive survey of various meth-
ods is given in Prakasa Rao (1999). There has been a recent interest in studying similar
problems for stochastic processes driven by a fractional Brownian motion to model pro-
cesses involving long range dependence. Le Breton (1998) studied parameter estimation
and filtering in a simple linear model driven by a fractional Brownian motion. In a re-
cent paper, Kleptsyna and Le Breton (2002) studied parameter estimation problems for
fractional Ornstein–Uhlenbeck process. Such processes play a potentially important role
in the modelling of financial time series. The fractional Ornstein–Uhlenbeck process is
a fractional analogue of the Ornstein–Uhlenbeck process, that is, a continuous time first
order autoregressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional
homogeneous linear stochastic differential equation driven by a fractional Brownian mo-
tion (fBm) WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ ( 1
2 , 1). Such a process is the

unique Gaussian process satisfying the linear integral equation

(1.1) Xt = X0 + θ

∫ t

0

Xs ds + σWH
t , t ≥ 0.

The above-mentioned authors investigate the problem of estimation of the parameters θ
and σ2 based on the observation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood
estimator θ̂T is strongly consistent as T → ∞.

Parametric estimation for more general classes of stochastic processes satisfying the
linear stochastic differential equations driven by fractional Brownian motion, observed
over a fixed period of time T , is studied in Prakasa Rao (2003a,b). It is well known that
the sequential estimation methods might lead to equally efficient estimators from the
process observed possibly over a shorter expected period of observation time. We have
investigated the conditions for such a phenomenon for estimating the drift parameter of
a fractional Ornstein–Uhlenbeck type process in Prakasa Rao (2004). Novikov (1972)
investigated the asymptotic properties of a sequential maximum likelihood estimator for
the drift parameter in the Ornstein–Uhlenbeck process.

In spite of the fact that maximum likelihood estimators (MLE) are consistent and
asymptotically normal and also asymptotically efficient in general, they have some short-
comings at the same time. Their calculation is often cumbersome as the expressions for
MLE involve stochastic integrals which need good approximations for computational pur-
poses. Furthermore, MLE are not robust in the sense that a slight perturbation in the
noise component will change the properties of MLE substantially. In order to circumvent
such problems, the minimum distance approach is proposed. Properties of the minimum
distance estimators (MDE) were discussed in Millar (1984) in a general framework.

Our aim in this paper is to obtain the minimum L1-norm estimates of the drift pa-
rameter of a fractional Ornstein–Uhlenbeck type process and investigate the asymptotic
properties of such estimators following the work of Kutoyants and Pilibossian (1994).

2. Preliminaries

Let (Ω,F , (Ft), P) be a stochastic basis satisfying the usual conditions, and suppose
that the processes discussed in the following are (Ft)-adapted. Further the natural
filtration of a process is understood as the P-completion of the filtration generated by
this process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst

parameter H ∈ ( 1
2 , 1), that is, a Gaussian process with continuous sample paths such

that WH
0 = 0, E(WH

t ) = 0 and

(2.1) E
(
WH

s WH
t

)
=

1
2

[
s2H + t2H − |s − t|2H

]
, t ≥ 0, s ≥ 0.
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Consider a stochastic process {Xt, t ≥ 0} defined by the stochastic integral equation

(2.2) Xt = x0 + θ

∫ t

0

X(s) ds + εWH
t , 0 ≤ t ≤ T,

where θ is an unknown drift parameter. For convenience, we write the above integral
equation in the form of a stochastic differential equation

(2.3) dXt = θX(t) dt + εdWH
t , X0 = x0, 0 ≤ t ≤ T,

driven by the fractional Brownian motion WH . For a discussion of the equivalence of (2.2)
and (2.3), see Cheridito et al. (2003). Even though the process X is not a semimartingale,
one can associate with it a semimartingale Z = {Zt, t ≥ 0}, which is called a fundamental
semimartingale, such that the natural filtration (Zt) of the process Z coincides with the
natural filtration (Xt) of the process X (Kleptsyna et al. (2000)). Define, for 0 < s < t,

kH = 2HΓ
(

3
2
− H

)
Γ

(
H +

1
2

)
,(2.4)

κH(t, s) = k−1
H s1/2−H(t − s)1/2−H ,(2.5)

λH =
2HΓ(3 − 2H)Γ(H + 1

2 )
Γ( 3

2 − H)
,(2.6)

wH
t = λ−1

H t2−2H ,(2.7)

(2.8) MH
t =

∫ t

0

κH(t, s) dWH
s , t ≥ 0.

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros
et al. (1999)), and its quadratic variance is 〈MH

t 〉 = wH
t . Furthermore, the natural

filtration of the martingale MH coincides with the natural filtration of the fBM WH .
Let

(2.9) KH(t, s) = H(2H − 1)
d

ds

∫ t

s

rH−1/2(r − s)H−3/2 dr, 0 ≤ s ≤ t.

The sample paths of the process {Xt, t ≥ 0} are smooth enough so that the process Q
defined by

(2.10) Q(t) =
d

dwH
t

∫ t

0

κH(t, s)Xs ds, t ∈ [0, T ],

is well defined, where wH and kH are as defined in (2.7) and (2.5) respectively and the
derivative is understood in the sense of absolute continuity with respect to the measure
generated by wH . Moreover, the sample paths of the process Q belong to L2([0, T ], dwH)
a.s. [P]. The following theorem due to Kleptsyna et al. (2000) associates with the process
X a fundamental semimartingale Z such that the natural filtration (Zt) coincides with
the natural filtration (Xt) of X.

Theorem 2.1. Let the process Z = (Zt, t ∈ [0, T ]) be defined by

(2.11) Zt =
∫ t

0

κH(t, s) dXs,

where the function κH(t, s) is defined in (2.5). Then the following results hold:
(i) The process Z is an (Ft)-semimartingale with the decomposition

(2.12) Zt = θ

∫ t

0

Q(s) dwH
s + εMH

t ,

where MH is the Gaussian martingale defined by (2.8).
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(ii) The process X admits the representation

(2.13) Xt =
∫ t

0

KH(t, s) dZs,

where the function KH is as defined in (2.9).
(iii) The natural filtrations of (Zt) and (Xt) coincide.

Even though the fBm {WH
t , t ≥ 0} is not a semimartingale, it is still possible to define

stochastic integration with respect to the fBm for deterministic integrands. For instance,
for f ∈ L2(R+) ∩ L1(R+), one can define a stochastic integral of the form∫ T

0

f(s) dWH
s

(cf. Grippenberg and Norris (1996), Norros et al. (1999)). Such a stochastic integral can
be represented in terms of another stochastic integral with respect to the fundamental
Gaussian martingale MH . The following result is due to Kleptsyna et al. (2000).

For any measurable function f on [0, T ] and for t ∈ [0, T ], define

(2.14) Kf
H(t, s) = −2H

d

ds

∫ t

s

f(r)rH−1/2(r − s)H−3/2 dr, 0 ≤ s ≤ t,

where the derivative exists in the sense of absolute continuity with respect to Lebesgue
measure (cf. Samko et al. (1993)).

Lemma 2.2. Let MH be the fundamental martingale associated with the fBm WH . Then
the following equality holds a.s. [P]:

(2.15)
∫ T

0

f(s) dWH
s =

∫ T

0

Kf
H(t, s) dMH

s , t ∈ [0, T ],

provided both integrals on both sides are well defined.

Alos et al. (2001) used the stochastic calculus of variations or Malliavin calculus to
develop a stochastic calculus with respect to Gaussian processes, in particular, for a
fractional Brownian motion. The fractional Brownian motion WH

t can be represented in
the form

WH
t =

∫ t

0

KH(t, s) dWs,

where {Wt, t ≥ 0} is a Brownian motion and the kernel KH is singular if H < 1
2 and

regular if H > 1
2 . For the definition of singularity and regularity of a kernel, see Alos et

al. (2001). They develop an Itô formula in the regular case and in the singular case for
H > 1

4 . We will not go into more discussion here.
The following lemma due to Grippenberg and Norris (1996) gives the covariance be-

tween the two stochastic integrals∫ T

0

f(s) dWH
s and

∫ T

0

g(s) dWH
s .

Lemma 2.3. For f, g ∈ L2(R+) ∩ L1(R+),

E

(∫ ∞

0

f(s) dWH
s

∫ ∞

0

g(s) dWH
s

)

= H(2H − 1)
∫ ∞

0

∫ ∞

0

f(s)g(t)|s − t|2H−2 dt ds.

(2.16)
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The result in Lemma 2.3 can be proved under weaker conditions. Pipiras and Taqqu
(2000) showed that for H ∈ ( 1

2 , 1) and for any two real-valued measurable functions

f, g ∈
{

f :
∫ ∞

−∞

∫ ∞

−∞
|f(u)| · |f(v)| · |u − v|2H−2 du dv < ∞

}
,

the result in Lemma 2.3 holds.

3. Minimum L1-norm estimation

We now consider the problem of estimation of the parameter θ based on the observation
of a fractional Ornstein–Uhlenbeck type process X = {Xt, 0 ≤ t ≤ T} satisfying the
stochastic differential equation

(3.1) dXt = θX(t) dt + ε dWH
t , X0 = x0, 0 ≤ t ≤ T,

for a fixed time T , where θ ∈ Θ ⊂ R, and study its asymptotic properties as ε → 0.
Let xt(θ) be the solution of the above differential equation with ε = 0. It is obvious

that

(3.2) xt(θ) = x0e
θt, 0 ≤ t ≤ T.

Let

(3.3) ST (θ) =
∫ T

0

|Xt − xt(θ)| dt.

We define θ∗ε to be a minimum L1-norm estimator if there exists a measurable selec-
tion θ∗ε such that

(3.4) ST (θ∗ε) = inf
θ∈Θ

ST (θ).

Conditions for the existence of a measurable selection are given in Lemma 3.1.2 in Prakasa
Rao (1987). We assume that there exists a measurable selection θ∗ε satisfying the above
equation. An alternative way of defining the estimator θ∗ε is by the relation

(3.5) θ∗ε = arg inf
θ∈Θ

∫ T

0

|Xt − xt(θ)| dt.

Consistency. Let
WH∗

T = sup
0≤t≤T

|WH
t |.

The self-similarity of the fractional Brownian motion WH
t implies that the random vari-

ables WH
at and aHWt have the same probability distribution for any a > 0. Furthermore,

it follows from the self-similarity that the supremum process WH∗ has the property that
the random variables WH∗

at and aHWH∗
t have the same probability distribution for any

a > 0. Hence we have the following observation due to Novikov and Valkeila (1999).

Lemma 3.1. Let T > 0 and {WH
t , 0 ≤ t ≤ T} be an fBm with Hurst index H. Let

WH∗
T = sup0≤t≤T WH

t . Then

(3.6) E
(
WH∗

T

)p
= K(p, H)T pH

for every p > 0, where K(p, H) = E(WH∗
1 )p.

Let θ0 denote the true parameter. For any δ > 0, define

(3.7) g(δ) = inf
|θ−θ0|>δ

∫ T

0

|Xt(θ) − xt(θ0)| dt.

Note that g(δ) > 0 for any δ > 0.
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Theorem 3.2. For every p > 0, there exists a constant K(p, H) such that for every
δ > 0,

(3.8) P
(ε)
θ0

{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0|Tp(g(δ))−pεp = O((g(δ))−pεp).

Proof. Let ‖ · ‖ denote the L1-norm. Then

P
(ε)
θ0

{|θ∗ε − θ0| > δ} = P
(ε)
θ0

{
inf

|θ−θ0|≤δ
‖X − x(θ)‖ > inf

|θ−θ0|>δ
‖X − x(θ)‖

}

≤ P
(ε)
θ0

{
inf

|θ−θ0|≤δ
(‖X − x(θ0)‖ + ‖x(θ) − x(θ0)‖)

}

< inf
|θ−θ0|>δ

(‖x(θ) − x(θ0)‖ − ‖X − x(θ0)‖)

= P
(ε)
θ0

{
2‖X − x(θ0)‖ > inf

|θ−θ0|>δ
‖x(θ) − x(θ0)‖

}

= P
(ε)
θ0

{
‖X − x(θ0)‖ >

1
2
g(δ)

}
.

(3.9)

Since the process Xt satisfies the stochastic differential equation (3.2), it follows that

Xt − xt(θ0) = x0 + θ0

∫ t

0

Xs ds + εWH
t − xt(θ0)

= θ0

∫ t

0

(Xs − xs(θ0)) ds + εWH
t

(3.10)

since xt(θ) = x0e
θt. Let Ut = Xt − xt(θ0). Then it follows from the above equation that

(3.11) Ut = θ0

∫ t

0

Us ds + εWH
t .

Let Vt = |Ut| = |Xt − xt(θ0)|. The above relation implies that

(3.12) Vt = |Xt − xt(θ0)| ≤ |θ0|
∫ t

0

Vs ds + ε
∣∣WH

t

∣∣ .

Applying the Gronwall–Bellman lemma, we obtain that

(3.13) sup
0≤t≤T

|Vt| ≤ εe|θ0T | sup
0≤t≤T

|WH
t |.

Hence

P
(ε)
θ0

{
‖X − x(θ0)‖ >

1
2
g(δ)

}
≤ P

{
sup

0≤t≤T
|WH

t | >
e−|θ0T |g(δ)

2εT

}

= P

{
WH∗

T >
e−|θ0T |g(δ)

2εT

}
.

(3.14)

Applying Lemma 3.1 to the estimate obtained above, we get that

P
(ε)
θ0

{|θ∗ε − θ0| > δ} ≤ 2pT pH+pK(p, H)e|θ0T |p(g(δ))−pεp

= O
(
(g(δ))−pεp

)
. �

Remarks. As a consequence of the above theorem, we obtain that θ∗ε converges in prob-
ability to θ0 under P

(ε)
θ0

-measure as ε → 0. Furthermore, the rate of convergence is of
order O(εp) for every p > 0.
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Asymptotic distribution. We will now study the asymptotic distribution if any of the
estimator θ∗ε after suitable scaling. It can be checked that

(3.15) Xt = eθ0t

{
x0 +

∫ t

0

e−θ0sε dWH
s

}

or equivalently

(3.16) Xt − xt(θ0) = εeθ0t

∫ t

0

e−θ0s dWH
s .

Let

(3.17) Yt = eθ0t

∫ t

0

e−θ0s dWH
s .

Note that {Yt, 0 ≤ t ≤ T} is a Gaussian process and can be interpreted as the “derivative”
of the process {Xt, 0 ≤ t ≤ T} with respect to ε. Applying Lemma 2.2, we obtain that,
P-a.s.,

(3.18) Yte
−θ0t =

∫ t

0

e−θ0s dWH
s =

∫ t

0

Kf
H(t, s) dMH

s , t ∈ [0, T ],

where f(s) = e−θ0s, s ∈ [0, T ], and MH is the fundamental Gaussian martingale asso-
ciated with the fBm WH . In particular it follows that the random variable Yte

−θ0t and
hence Yt has normal distribution with mean zero, and furthermore, for any h ≥ 0,

Cov(Yt, Yt+h) = e2θ0t+θ0hE

[∫ t

0

e−θ0u dWH
u

∫ t+h

0

e−θ0v dWH
v

]

= e2θ0t+θ0hH(2H − 1)
∫ t

0

∫ t

0

e−θ0(u+v)|u − v|2H−2 du dv

= e2θ0t+θ0hγH(t) (say).

(3.19)

In particular

(3.20) Var(Yt) = e2θ0tγH(t).

Hence {Yt, 0 ≤ t ≤ T} is a zero mean Gaussian process with Cov(Yt, Ys) = eθ0(t+s)γH(t)
for s ≥ t.

Let

(3.21) ζ = arg inf
−∞<u<∞

∫ T

0

∣∣Yt − utx0e
θ0t

∣∣ dt.

Theorem 3.3. As ε → 0, the random variable ε−1(θ∗ε − θ0) converges in probability to
a random variable whose probability distribution is the same as that of ζ under Pθ0 .

Proof. Let x′
t(θ) = x0te

θt and let

(3.22) Zε(u) =
∥∥Y − ε−1(x(θ0 + εu) − x(θ0))

∥∥
and

(3.23) Z0(u) = ‖Y − ux′(θ0)‖.
Furthermore, let

(3.24) Aε = {ω : |θ∗ε − θ0| < δε}, δε = ετ , τ ∈
(

1
2
, 1

)
, Lε = ετ−1.

Observe that the random variable u∗
ε = ε−1(θ∗ε − θ0) satisfies the equation

(3.25) Zε(u∗
ε) = inf

|u|<Lε

Zε(u), ω ∈ Aε.
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Define

(3.26) ζε = arg inf
|u|<Lε

Z0(u).

Observe that, with probability one,

sup
|u|<Lε

|Zε(u) − Z0(u)| =
∣∣∣∣
∥∥∥∥Y − ux′(θ0) −

1
2
εu2x′′(θ̃)

∥∥∥∥ − ‖Y − ux′(θ0)‖
∣∣∣∣

≤ ε

2
L2

ε sup
|θ−θ0|<δε

∫ T

0

|x′′(θ)| dt ≤ Cε2τ−1.

(3.27)

Here θ̃ = θ0 + α(θ − θ0) for some α ∈ (0, 1). Note that the last term in the above
inequality tends to zero as ε → 0. Furthermore, the process {Z0(u),−∞ < u < ∞} has
a unique minimum u∗ with probability one. This follows from the arguments given in
Theorem 2 of Kutoyants and Pilibossian (1994). In addition, we can choose the interval
[−L, L] such that

(3.28) P
(ε)
θ0

{u∗
ε ∈ (−L, L)} ≥ 1 − βg(L)−p

and

(3.29) P{u∗ ∈ (−L, L)} ≥ 1 − βg(L)−p,

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈ [−L, L],
and Z0(u), u ∈ [−L, L], satisfy the Lipschitz conditions and Zε(u) converges uniformly
to Z0(u) over u ∈ [−L, L]. Hence the minimizer of Zε(·) converges to the minimizer of
Z0(u). This completes the proof. �

Remarks. We have seen earlier that the process {Yt, 0 ≤ t ≤ T} is a zero mean Gaussian
process with the covariance function

Cov(Yt, Ys) = eθ0(t+s)γH(t)

for s ≥ t. Recall that

(3.30) ζ = arg inf
−∞<u<∞

∫ T

0

∣∣Yt − utx0e
θ0t

∣∣ dt.

It is not clear what the distribution of ζ is. Observe that for every u, the integrand in
the above integral is the absolute value of a Gaussian process {Jt, 0 ≤ t ≤ T} with the
mean function E(Jt) = −utx0e

θ0t and the covariance function Cov(Jt, Js) = eθ0(t+s)γH(t)
for s ≥ t. It would be interesting to say something about the distribution of ζ through
simulation studies even if an explicit computation of the distribution seems to be difficult.
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