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A memoryless quantum channel1 can be described by a completely positive,

trace preserving, linear super-operator M on the Hilbert space H, that maps an

input state ρ to an output state ρ′ ≡ M(ρ). In this paper we analyze the minimal

von Neumann entropy at the output of the channel2, i.e.,

S ≡ min
ρ∈H

{S(ρ′)} ≡ min
ρ∈H

{−Tr [ρ′ ln ρ′]} , (1)

where the minimization is performed over all possible input density matrices ρ. The

quantity S defined in Eq. (1) provides a “measure” of the minimum amount of noise

introduced by the channel M during the communication. It is also connected with

the channel capacity3 for the transmission of classical information. Here we focus on

Bosonic channels4 where the message is encoded onto electromagnetic field modes

and where the map describes the noise encountered during the transmission. In

particular, we consider a single mode channel with a Gaussian mapa that randomly

aThese are maps that transform states with Gaussian characteristic functions into outputs which
also have Gaussian characteristic functions.
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displaces the input signal according to a Gaussian probability distribution5,6,7, i.e.

ρ′ ≡ Nn(ρ) =

∫

d2µ Pn(µ) D(µ)ρD†(µ) (2)

where

Pn(µ) =
e−|µ|2/n

πn
, (3)

and D(µ) ≡ exp(µa† −µ∗a) is the displacement operator associated with the input

mode. This channel can be seen as a simplified version of a map in which the

signal photons interact linearly with a thermal environment6,7. In particular, Nn

transforms the vacuum input |0〉 into the thermal output

ρ′
0
≡

1

n+ 1

∞∑

m=0

(
n

n+ 1

)m

|m〉〈m| ≡

∫

d2µ Pn(µ) |µ〉〈µ| , (4)

where |m〉 and |µ〉 are Fock states and coherent states respectively. This output has

von Neumann entropy equal to

S(ρ′
0
) = g(n) ≡ (1 + n) ln(1 + n) − n lnn . (5)

Analogously one can show that the output associated with a coherent input |α〉 is

obtained by displacing ρ′0 of Eq. (4), i.e.

ρ′α = D(α) ρ′0 D
†(α). (6)

Thus, the invariance of the von Neumann entropy under unitary transformation

guarantees that all coherent-state inputs have the same output entropy.

1. A conjecture

From the concavity of the von Neumann entropy we know that the minimum in

Eq. (1) can be achieved with pure input states ρ = |ψ〉〈ψ|. Recently, it has been

conjectured6 that the minimum output entropy of a wide class of Gaussian Bosonic

channels is achieved by coherent-state inputs. In the case of Nn this is equivalent

to having

S = g(n) . (7)

The physical intuition behind this conjecture lies in the fact that the input state is

contaminated by noise from a reservoir [characterized by the probability distribu-

tion of Eq. (2)] whose quantum phase is completely random. It is hence reasonable

to expect that no coherence can be extracted from the reservoir to reduce the output

entropy below the level when no photons are sent through the channel. Theoretical

and numerical evidence6 suggests that an even stronger version of this conjecture

should apply, namely that the output states produced by coherent inputs majorize8

all the other output states. Here we will focus only on the (weaker) version (7) of

the conjecture.
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Even though the relation (7) has not been proven yet, ample supporting evidence

that supports its validity has been obtained6,7,9. In the following we discuss some

of the main results.

1.1. Local minimum

Coherent states produce local minima in the output von Neumann entropy6. In

fact, an output state σ′
0

is a local minimum of the output entropy if the following

directional derivative is non-negative, i.e.

∂

∂t
S(σ′

0
(1 − t) + σ′t)

∣
∣
∣
∣
t=0+

= Tr[(σ′
0
− σ′) lnσ′

0
] > 0, (8)

for any output σ′. In the case of vacuum input σ0 = |0〉〈0|, the output state (4)

can be written as σ′
0
∝ exp[−ζa†a] with ζ > 0. Since σ′

0
is the output state with

minimum average photon number, we have Tr[(σ′
0
− σ′)a†a] 6 0 and Eq. (8) is

satisfied for vacuum input (an analogous derivation applies in the case of generic

coherent-state inputs). If one could show that the inequality (8) is true only for

coherent-state inputs, then the conjecture would be proved.

1.2. Lower bounds

The output entropy for coherent inputs gives an upper bound for the minimum

output entropy of a channel. Lower bounds for S have been derived in Ref. 6. Here

we only analyze a few of them, i.e.,

S >







g(n− 1)

ln(2n+ 1) .

(9)

The first one is a tight bound for n� 1. It is obtained by considering the Husimi

expansion10,11 of the input state ρ,

ρ =

∫

d2α Q(α) σ(α) , (10)

where Q(α) = 〈α|ρ|α〉/π and σ(α) is a convolution of displacement operators of the

field. It implies

ρ′ =

∫

d2α Q(α) σ′(α) , (11)

where σ′(α) is the evolution of σ(α) through the channel. The first inequality of (9)

then follows from the convexity of the von Neumann entropy. The second inequality

of (9) gives a tight bound for n ∼ 0. It is derived by observing that for any state ρ,

the von Neumann entropy satisfies

S(ρ) > − ln(Tr[ρ2]), (12)

and by using the bound on Tr[ρ′2] described below.
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Fig. 1. Bounds on the minimum output entropy of the channel Nn as a function of the noise
parameter n. The curve u is the upper bound obtained feeding the channel with a coherent input;
a and b are the first and second lower bounds of Eq. (9) respectively. The minimal output entropy
S must reside between the upper and lower bounds, i.e. in the shaded area.

1.3. Rényi entropy

Generalizing an argument by Caves12 we proved7 that the output Rényi entropies

Sk of integer order k greater than or equal to 2 are minimized by coherent-state

inputs, i.e.,

Sk(ρ′) ≡
ln(Tr[(ρ′)k])

1 − k
>

ln[(n+ 1)k − nk]

k − 1
k = 2, 3, . . . (13)

To derive this inequality we express Tr[(ρ′)k] as an expectation value of a Gaussian

operator A acting on an extended Hilbert space of k modes, i.e.,

Tr[(ρ′)k] ≡ Tr[ρ⊗ ρ⊗ · · · ⊗ ρ
︸ ︷︷ ︸

k times

A]. (14)

The maximum eigenvalue of A is an upper bound for Tr[(ρ′)k] (i.e., a lower bound

for Sk(ρ′)) which is achieved by coherent-state inputs. Notice that the Rényi entropy

tends to the von Neumann entropy in the limit of k → 1. If we could generalize

Eq. (13) to any k ∈]1, 2[ then the conjecture would follow from the continuity of

Rényi entropy.

For the Gaussian Bosonic channel, the above technique also proved successful9 in

analyzing the additivity properties13 of the minimum integer-order Rényi entropies

over successive channel uses.

1.4. Wehrl entropy

The Wehrl entropy of a state ρ is the Shannon entropy of its Husimi function, i.e.

W (ρ) ≡ −

∫
d2α

π
〈α|ρ|α〉 ln〈α|ρ|α〉. (15)
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This quantity measures the localization of a state in phase space and is minimized

by coherent states10,11, as Lieb proved. Using Young’s inequality and Hausdorff-

Young’s inequality one can show7 that the Wehrl entropy at the output of Nn

achieves its minimum over coherent inputs, i.e.,

W (ρ′) > 1 + ln(1 + n). (16)

In the same way, one can prove7 that the Rényi-Wehrl entropies14 Wk with order

k greater than 1 are minimized by coherent inputs, namelyb

Wk(ρ′) ≡
ln[

∫
d2α
π 〈α|ρ′|α〉k ]

1 − k
>

ln[k(n+ 1)k−1]

k − 1
. (17)

Notice that in the limit of k → 1, Eq. (17) gives Eq. (16).

This word was funded by the ARDA, NRO, NSF and by ARO under a MURI
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