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l. INTRODUCTION 

With feature sizes decreasing and chip area increasing it becomes more 

and more time consuming to transport signals over long distances across the 

chip [ 5]. Designers are already introducing more levels of metal connections , 

using wider and thicker paths for longer distances. Another recent development 

is the introduction of an additional level of connections between the chip and the 

pc-board , multilayer ceramic chip carriers. The trend is undoubtedly towards 

even more connecting levels. 

In this paper we demonstrate that it is possible to achieve propagation 

delays that are logarithmic in the lengths of the wires, provided the connection 

pattern is designed to meet rather strong constraints. These constraints are, in 

effect, satisfied only by connection patterns that exhibit a hierarchical structure. 

We also show that, even at the ultimate physical limits of the technology, the 

propagation for reasonably sized VLSI chips is dominated by these considerations, 

rather than by the speed of light. 

2. PROPAGATION DELAY 

We compute the time it takes a minimum sized transistor to drive a wire 

of length 1 with width and thickness s . We assume the wire to have a distance 

s to its neighboring wires and layers. Let s
0 

be the minimal width of a wire on 

the chip, so that a minimal transistor has area s~ . 

The following equation is an excellent approximation to the total time T 

required to drive the wire . 
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Rt is the resistance of the minimal transistor, Rw the resistance of the wire an.:l 

C its capacitance . The resistance of a wire is proportional to its length and w 
inversely proportional to its cross section : 

( 2) 

The capacitance of a wire is inversely proportional to the distance of its neigh­

boring wires and layers, and it is proportional to the area of the side facing 

that neighboring wire or layer: 

( 3) 

We notice that the product of R and C is already quadratic in .R.. w w 
Thus the time it takes to drive a wire is at least quadratic in the wire length . 

However, things are not as bad as they look: Rt, the resistance of a minimal 

transistor, is the dominant term in ( l). We can decrease that t erm by fitting 

a larger driver to the wire. But that driver must then in its turn be charged 

by the minimal transistor and it seems that we have hardly gained anything. 

That, however, is not true, for we can use a sequence of drivers instead of 

just one. The first one is the minimal transistor, the next one is bigger by a 

factor a . It drives another driver that is again bigger by a factor a, etc., 

until we finally reach a driver that is large enough to drive the whole wire in 

a sufficiently short time. 

There exists a simple rule to determine the lime required to have a 

driver charge another driver [ 2]. Let T be the time lt takes a minimal transistor 

to charge the gate of another minimal transistor. The rule is then that the time 

required to have a driver with capacitance c
1 

drive another driver with capacitance 

c
2 

(c
2 

> c
1

) is 

( 4) 

Let Ct be the capacitance of a minimal transistor. We have it drive a 

driver with capacitance aCt, this second one drives a driver with capacitance 
? 

a·ct, etc ., until the last driver has a gate capacitance of about Cw/a. The 

number of drivers (including the initial transistor) required is 

c 
log w 

a ct 
( 5) 
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The capacitance Ct of a minimal transistor is equal to (t,s~) /d, in which 

d is the thickness of the gate insulator . The n umber of drivers is then log 1d cr 
and we get for the time T d spent in driving a zero resistance wire through the 

sequence of drivers: 

We may replace formula (1) by 

T = T + R C d w w 

From (2), (3), (6), and (7) we conclude 

T .: cr T log cr 
1 ~ + pf. 

1 ~ 
so s 

( 6) 

( 7) 

( 8) 

We now have a formula for the propagation delay with both a logarithmic 

and quadratic term. One can see why a longer wire requires a larger s : that 

decreases the quadratic t erm . Actually, we wish to restrict the lengths of wires 

to values of 1 that are sufficiently small to assure that the quadratic term does 

not dominate. We restrict ourselves to values of J. for which the quadratic tertn 

grows at a slower rate than the logarthmic one. Therefore , we determine the 

value of 1 for which the derivates with respect to l. of the two terms are equal: 

crT =-J.lncr ( 9) 

d l. 
2 

2pf.1 
dT pf. 2 :s: 2 

s s 

(10) 

If a signal has to go distance 1 we choose a path with width and thick­

ness s for which (9) and (10) arc equal: 

5 x 1 J2pf.lncr 
crT 

Substitution of ( 11) in ( 8) yields 

Or, approximately, 
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T = Ta log a ( 13) 

We have assumed that the values of s could be chosen from a continuous 
•' 

range. Although this is a good conceptualization of the increasing number of 

different connection layers, in practice we will have to choose s from a discrete 

set. The connecting wires will be placed at different levels. The widths of the 

paths at the next l evel will be some factor !3 times the widths at the preceding 

level. Given a distance 1. the signal has to travel, formula ( ll) gives us the 

ideal s and we choose a level at which the widths of the wires are closest to s. 

This leads to an interesting observation, the "magnifying glass phenomenon: 11 

not only will the widths of the wires at any given level be the same but their 

lengths will also be about equal. The patterns at different levels are similar, 

at the next level the features are just magnified by a factor !3 . 

2. 1 Velocity of Light 

Asymptotically, no signal can travel faster than the velocity of light. 

We mus t ask under what conditions the above considerations will set a limit which 

is more stringent , i.e., when the velocity of light limit is not attainable. In ( 13) 

we can substitute T = s
0

/v where v is the limiting velocity of electrons in the 

channel (a few 10 
6 

em I sec in silicon) 

a s 0 
T • log v a (14) 

The maximum "velocity " with which signals can propagate is given by 1/(dT/dJ.) 

dT a so 
di • vi. 1n a 

The domain of validity of the above results is "velocity" < c 

c a so 
1 < vln a 

( 15) 

(16) 

For typical technology today, s
0 

= 4 microns, allna about 6 and 1 should be l ess 

than about a foot. Hence the velocity of light cannot be reached using the best 

MOS technology in the most optimal way within a typical small card bay, but will 
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be important at larger dimensions. Even for the ultimate t echnology (s0 = 0. 25 

rdcrons), the results given above will dominate over speed-of-light considerations 

for chips up to about an inch across. 

3. AREA 

The arrangements outlined in the preceding section, allowing us to treat 

propagation delays as being logarithmic, will only work if we can allot enough 

area at the lowest level for the drivers and at the higher levels for the wires. 

A minimal transistor has area s~. The next driver in the sequence 

requires an area as~ , the third one a2s~, etc . The total area A of the drivers 

thus becomes 

2 2 
A = s 0 (1 +-a+a + • • ·) (logi terms) (17) 

2 
so(.t-1) 

A • a- 1 
(18) 

Or 1 approximately 1 

A ..: (19) 

Notice that we can trade area for tim e . By increasing a the area of the drivers 

decreases, cf. (19) , but the propagation delay increases, cf • ( 13). 

A transistor that has to drive a wire of length 1. requires area s~ 1/ (a -1) 

at the lowest level. This area is proportional to the length of the wire . That is 

fortunate: if we double both the length and the width of a chip we also double 

the lengths of the longest (cross chip) wires and the areas of their drivers. But 

the total area of the chip will quadruple and we will thus be able to double the 

number of wires as well. 

The longer wires come on higher levels on which the wires arc wider, 

thereby consuming more area . Each level, however, has the same area . A s a 

result, we can accommodate the wires at the higher levels only if we do not have 

too many of them. Assume again that at the next level the wires are 13 times 

thicker, longer, and wider. Call the lowest level number 0 and let N. be the 
1 

T 1 
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number of wires at level i (i > 0), then we must have 

N "" N A - 2i 
i O'"' 

( 20) 

The number of wires as a function of their lengths must decrease 

exponentially fast. This is a strong restriction . It suggests that efficient chips 

must have a tree-like structure . It is again a reason to design hierarchical 

chips [ 2 ] , [ 4] . If a design does not meet this exponential rule the best we can 

do is getting the propagation delay linear in the wire length by inserting 

repeaters at equidistant positions along the wires . The consequences of linear 

wire delays arc discussed in [ 1] . 

One may also sec complexity computations that assume that wires have no 

delay . Thompson, e . g., writes in [6]: 

"The propagation time can be made independent of the length of 
the wire, by fitting larger drivers to longer wires . Larger 
drivers of course occupy more area, but need not take more than 
10% of the area of the wire they drive. By fudging X. upwards by 
5%, the area of the drive r is thus absorbed into the area of its wire . 11 

We have seen that the area of the driver is indeed proportional to the wire 

l ength , but Thompson neglects the fact that charging the gate of the larger 

driver will also take time . Our choice of the sequences of exponentially grow­

ing drivers allowed us to do this in a time tha t is logarithmic in the wire length , 

a technique that can work only if we have very few long wires. Thompson's 

model also neglects tha t the drivers have to be at the lowest level, in poly silicon 

and diffusion, independent of the level of the wire . 
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