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MINIMUM RANK OF A TREE OVER AN ARBITRARY FIELD∗

NATHAN L. CHENETTE† , SEAN V. DROMS‡ , LESLIE HOGBEN§ , RANA MIKKELSON¶,
AND OLGA PRYPOROVA¶

Abstract. For a field F and graph G of order n, the minimum rank of G over F is defined to
be the smallest possible rank over all symmetric matrices A ∈ F n×n whose (i, j)th entry (for i �= j)
is nonzero whenever {i, j} is an edge in G and is zero otherwise. It is shown that the minimum rank
of a tree is independent of the field.
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1. Introduction. The minimum rank problem is the problem of finding the
smallest rank of a matrix in the set of symmetric matrices having the zero-nonzero
pattern of off-diagonal entries described by a given (simple undirected) graph. This
problem has received considerable attention recently; see [1], [2], [3], [4], [5], [7], [9],
[10], [11], [13], [14], [15]. Originally the minimum rank problem was studied over the
real numbers, where it is equivalent to the question of maximum multiplicity of an
eigenvalue of the same family of matrices. The study of minimum rank was expanded
to arbitrary fields in [4] and [5].

In this paper, a graph G = (V (G), E(G)) is a simple undirected graph, i.e. a
set V (G) of vertices with a set E(G) of two-element subsets of vertices called edges.
The order of a graph G is the number of vertices in V (G) and is denoted by |G|. A
connected graph is a graph that has a path between any two vertices. A tree is a
connected graph with no cycles.

Define Sn(F ) to be the set of all symmetric n × n matrices over a field F . The
graph of A ∈ Sn(F ), denoted G(A), is the graph G with vertices {1, ..., n} and edges
{{i, j} | aij �= 0 and i �= j}. The diagonal entries of A have no bearing on the
structure of G. Define

SF (G) = {A ∈ Sn(F ) | G(A) = G}.

Define the minimum rank of G over F as

mrF (G) = min{rank(A) | A ∈ SF (G)}.
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In 1996 Nylen gave a method for computation of minimum rank for a tree, sub-
sequently improved by Johnson and Leal-Duarte [11], Johnson and Saiago [14], and
others. Convenient algorithms for computation of the minimum rank (over the reals)
of a tree (by computation of the graph parameter ∆, cf. Section 2) are available, e.g.,
in [12]. In Section 2 we show that the minimum rank of a tree is independent of field.

We will need some additional terminology and notation to prove the main result.
Given R ⊆ V (G), the subgraph of G induced by R is G[R] = (R, E(G[R])) where
E(G[R]) = {{i, j} ∈ E(G) | i, j ∈ R}. The induced subgraph G[V (G) \ R] will be
denoted by G(R). Let A be an n × n matrix and R ⊆ {1, 2, ..., n}. Let A(R) denote
the principal submatrix of A obtained by deleting the rows and columns in R. By a
slight abuse of notation, if A ∈ SF (G) and R ⊆ {1, . . . , n}, then A[R] ∈ SF (G[R])
(technically, the rows and columns of the matrix should be indexed by R, but this
distinction will be ignored). We use the following notation: Pn denotes the path on
n vertices. Kn denotes the complete graph on n vertices.

The limited progress on the (real) minimum rank problem for graphs that are not
trees has come mainly in two ways, by deleting cut-vertices (as is done in the tree
algorithms), and by characterizing graphs having relatively extreme minimal rank.
The connected graphs having minimum rank 1 are exactly the complete graphs Kn

(and this is clearly independent of field). Of course, only connected graphs need be
considered to compute minimum rank, as the minimum rank of a graph is the sum of
the minimum ranks of its connected components.

Since a singular matrix can be obtained by adjusting diagonal entries to make
every row sum equal to zero, it is clear that for any field F and graph G,
mrF (G) ≤ |G| − 1. For any field F , if A ∈ SF (Pn) and Pn has the standard vertex
labeling so A is tridiagonal, then the matrix obtained from A be deleting column 1
and row n is invertible. Hence mrF (Pn) = n − 1. In the study of minimum rank of a
graph over the real numbers, it is well-known that mrR(G) = |G| − 1 implies G is a
path. This result is obtained as a consequence of the following theorem of Fiedler.

Theorem 1.1. [8] (Fiedler’s Tridiagonal Matrix Theorem) If A is a real symmet-
ric n×n matrix such that for all real diagonal matrices D, rank(A+D) ≥ n−1, then
A is irreducible and there is a permutation matrix P such that PT AP is tridiagonal.

Fiedler’s proof of his Tridiagonal Matrix Theorem relies on continuity properties
of the real numbers, but a combinatorial proof valid over any infinite field was subse-
quently given by Rheinboldt and Shepherd [16]. More recently, Bento and Leal-Duarte
[6] established Fiedler’s Theorem for all fields except for a few 5×5 matrices over Z3.
Since the matrices involved have all off-diagonal entries nonzero, these matrices are
in SZ3(Kn), so their exceptional behavior in regards to Fielder’s Tridiagonal Matrix
Theorem does not affect the application of the theorem to minimum rank problems
(since Fiedler’s Theorem is not needed for Kn). Thus, Fiedler, Rheinboldt, Shepherd,
Bento and Leal-Duarte have established that

mrF (G) = |G| − 1 if and only if G = P|G|.

In [4] and [5] graphs having minimum rank 2 over a field F are characterized by a
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short list of forbidden induced subgraphs, and in [7] it is shown that for a finite field,
the graphs having minimum rank ≤ k can always be characterized by a finite set of
forbidden induced subgraphs. In [13] all graphs having minimum rank |G| − 2 over
an infinite field F are characterized.

2. Trees. In this section we show that the minimum rank of a tree is the same
for all fields. For any tree T , the path cover number P (T ) is the minimum number of
vertex-disjoint induced paths needed to cover all vertices of T and

∆(T ) = max{p − q | there is a set of q vertices whose deletion leaves p paths}.
Eigenvalue interlacing is used in [11] to prove that mrR(T ) ≤ |T | − ∆(T ) for

any tree T . Unfortunately, this method is not meaningful for fields other than the
reals, since the geometric and algebraic multiplicities of eigenvalues of symmetric

matrices are no longer necessarily equal; for example, the matrix
[
1 i
i −1

]
∈ C

2×2 has

eigenvalue 0 with algebraic multiplicity 2 and geometric multiplicity 1, and eigenvalue
interlacing is not valid for this matrix. However, the result mrF (T ) ≤ |T | − ∆(T )
remains valid and can be proved by examining the ranks of the matrices involved in
the interlacing technique. A similar technique was used in [1].

Proposition 2.1. For any field F and tree T , mrF (T ) ≤ |T | − ∆(T ).
Proof. Let n = |T |. Recall that ∆(T ) = max(p − q) such that there exist q

vertices of T whose deletion leaves p paths. Let Q be a set of q such vertices, where
G(Q) is p paths P (1), P (2), . . . , P (p). Let ni be the number of vertices in path P (i).
For each P (i), choose an ni ×ni matrix Ai ∈ SF (P (i)) of rank ni − 1. Embed each Ai

in an n×n matrix A so that each Ai is the principal submatrix corresponding to the
vertices of P (i). Add nonzero entries (of arbitrary value) symmetrically to the rows
and columns of the q vertices deleted, in locations corresponding to existing edges of
T , so that the resulting matrix is in SF (T ). Then

rank(A(Q)) =
p∑

i=1

rank(Ai) =
p∑

i=1

(ni − 1).

Adding each row/column can increase the rank by at most 2. So

rank(A) ≤
p∑

i=1

(ni − 1) + 2q =
p∑

i=1

ni + q + (q − p) = n − ∆(T ).

Thus mrF (T ) ≤ n − ∆(T ).

Let T be a tree. The proof of mrR(T ) ≥ |T | − P (T ) in the Theorem in [11]
remains valid over an arbitrary field, i.e., for any field F , mrF (T ) ≥ |T |−P (T ). Since
∆(T ) and P (T ) are determined by T independent of the field, and since for F = R,
∆(T ) = |T | − mrR(T ) = P (T ) [11], we have established the following theorem.

Theorem 2.2. For any field F and tree T , mrF (T ) = |T | −∆(T ) = |T | −P (T ).
In particular, for a tree, minimum rank is independent of field.
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