Minimum Satisfying Assignments for SMT

Ișıl Dillig, Tom Dillig

Ken McMillan
Alex Aiken
College of William \& Mary Microsoft Research Stanford U.

Satisfiability Modulo Theories (SMT)

- Today, SMT solvers are underlying engine of most verification and program analysis tools

Satisfiability Modulo Theories (SMT)

- Today, SMT solvers are underlying engine of most verification and program analysis tools

Satisfiability Modulo Theories (SMT)

- Today, SMT solvers are underlying engine of most verification and program analysis tools

- An assignment σ for formula ϕ is a mapping from free variables of ϕ to values

Partial Satisfying Assignments

- Satisfying assignments provided SMT solver are full assignments \Rightarrow assign every free variable to a value

Partial Satisfying Assignments

- Satisfying assignments provided SMT solver are full assignments \Rightarrow assign every free variable to a value
- But sometimes we want partial satisfying assignments

Partial Satisfying Assignments

- Satisfying assignments provided SMT solver are full assignments \Rightarrow assign every free variable to a value
- But sometimes we want partial satisfying assignments
- A partial satisfying assignment only assigns values to a subset of free variables, but is sufficient to make formula true

Partial Satisfying Assignments

- Satisfying assignments provided SMT solver are full assignments \Rightarrow assign every free variable to a value
- But sometimes we want partial satisfying assignments
- A partial satisfying assignment only assigns values to a subset of free variables, but is sufficient to make formula true
- For formula $x<0 \vee x+y \geq 0, x=-1$ is a partial satisfying assignment

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C

$$
\begin{aligned}
& C(x)=1 \\
& C(y)=50 \\
& C(z)=1 \\
& C(w)=4
\end{aligned}
$$

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!

```
C(x) = 1
C(y) = 50
C(z) = 1
C(w)=4
```


Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!
- Assignments $x=1$ and $x=50$ have same cost

$$
\begin{aligned}
& C(x)=1 \\
& C(y)=50 \\
& C(z)=1 \\
& C(w)=4
\end{aligned}
$$

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!
- Assignments $x=1$ and $x=50$ have same cost

$$
\begin{aligned}
& C(x)=1 \\
& C(y)=50 \\
& C(z)=1 \\
& C(w)=4
\end{aligned}
$$

- If variables have equal cost, an MSA is partial sat assignment with fewest variables

Example and Applications

- Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

$$
\phi: x+y+w>0 \vee x+y+z+w<5
$$

Example and Applications

- Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

$$
\phi: x+y+w>0 \vee x+y+z+w<5
$$

- A minimum sat assignment for ϕ is $z=0$

Example and Applications

- Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

$$
\phi: x+y+w>0 \vee x+y+z+w<5
$$

- A minimum sat assignment for ϕ is $z=0$

MSAs have many applications in verification:
\checkmark Finding small counterexamples in BMC
\checkmark Classifying and diagnosing error reports
\checkmark Abductive inference
\checkmark Minimizing \# of predicates in pred abstraction

Contributions

- In propositional logic, MSAs known as min-sized prime implicants

Contributions

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants

Contributions

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants
- No work on computing MSAs for richer theories

Contributions

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants
- No work on computing MSAs for richer theories

First algorithm for computing min sat assignments for SMT formulas

Our algorithm applicable to any theory for which full first-order logic including quantifiers is decidable

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
(1) $\forall X \cdot \phi$ is satisfiable

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
(1) $\forall X \cdot \phi$ is satisfiable
(2) X maximizes cost function C

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
(1) $\forall X \cdot \phi$ is satisfiable
(2) X maximizes cost function C

X is an MUS of $\phi \Leftrightarrow$ MSA is a sat assignment of $\forall X . \phi$

Maximum Universal Subset

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
(1) $\forall X . \phi$ is satisfiable
(2) X maximizes cost function C

MSA

MUS
X is an MUS of $\phi \Leftrightarrow$ MSA is a sat assignment of $\forall X . \phi$

Our approach first computes an MUS X and extracts an MSA from a sat assignment of $\forall X . \phi$

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:

$$
\text { find_mus }(\phi, C, V, L)\{
$$

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:

$$
\text { find_mus }(\phi, C, V, L)\{
$$

- Current formula ϕ

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:

$$
\text { find_mus }(\phi, C, V, L)\{
$$

- Current formula ϕ
- Cost function C

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:
- Current formula ϕ
- Cost function C
- Remaining variables V

$$
\text { find_mus }(\phi, C, V, L)\{
$$

\}

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:
- Current formula ϕ
- Cost function C
- Remaining variables V
- Lower bound L

$$
\text { find_mus }(\phi, C, V, L)\{
$$

\}

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:
- Current formula ϕ
- Cost function C
- Remaining variables V
- Lower bound L
- L is used to prune the search

$$
\begin{aligned}
& \text { find_mus }(\phi, C, V, L)\{ \\
& \text { If } V=\emptyset \text { or } C(V) \leq L \text { return } \emptyset
\end{aligned}
$$

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:
- Current formula ϕ
- Cost function C
- Remaining variables V
- Lower bound L
- L is used to prune the search
- At each recursive call, considers new variable x and decides if x is in or out of MUS

Algorithm to Compute MUS

- Recursive branch-and-bound style algorithm with input:
- Current formula ϕ
- Cost function C
- Remaining variables V
- Lower bound L
- L is used to prune the search
- At each recursive call, considers new variable x and decides if x is in or out of MUS
- We do this by comparing cost \} of universal subsets with and without x

$$
\begin{aligned}
& \text { find_mus }(\phi, C, V, L)\{ \\
& \text { If } V=\emptyset \text { or } C(V) \leq L \text { return } \emptyset \\
& \text { Set best }=\emptyset \\
& \text { choose } x \in V \\
& V^{\prime}=V \backslash\{x\}
\end{aligned}
$$

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset

$$
\begin{aligned}
& \text { find_mus }(\phi, C, V, L)\{ \\
& \text { If } V=\emptyset \text { or } C(V) \leq L \text { return } \emptyset \\
& \text { Set best }=\emptyset \\
& \text { choose } x \in V \\
& V^{\prime}=V \backslash\{x\} \\
& \operatorname{if}(\operatorname{SAT}(\forall x \cdot \phi))\{ \\
& \}
\end{aligned}
$$

\}

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing x

```
find_mus \((\phi, C, V, L)\{\)
    If \(V=\emptyset\) or \(C(V) \leq L\) return \(\emptyset\)
    Set best \(=\emptyset\)
    choose \(x \in V\)
    \(V^{\prime}=V \backslash\{x\}\)
    \(\operatorname{if}(\operatorname{SAT}(\forall x . \phi))\{\)
        Set \(Y=\) find_mus \(\left(\forall x . \phi, C, V^{\prime} L-C(x)\right)\);
    \}
```

\}

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing x
- If cost of current universal subset is better than previous best cost, update lower bound

```
find_mus \((\phi, C, V, L)\{\)
    If \(V=\emptyset\) or \(C(V) \leq L\) return \(\emptyset\)
    Set best \(=\emptyset\)
    choose \(x \in V\)
    \(V^{\prime}=V \backslash\{x\}\)
    \(\operatorname{if}(\operatorname{SAT}(\forall x . \phi))\{\)
        Set \(Y=\) find_mus \(\left(\forall x . \phi, C, V^{\prime} L-C(x)\right)\);
        Int cost \(=C(Y)+C(x)\)
        If \((\) cost \(>L)\{\) best \(=Y \cup\{x\} ; L=\) cost \(\}\)
\}
```


Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing x
- If cost of current universal subset is better than previous best cost, update lower bound
- Next, compute cost of universal subset not containing x

```
find_mus \((\phi, C, V, L)\{\)
    If \(V=\emptyset\) or \(C(V) \leq L\) return \(\emptyset\)
    Set best \(=\emptyset\)
    choose \(x \in V\)
    \(V^{\prime}=V \backslash\{x\}\)
    \(\operatorname{if}(\operatorname{SAT}(\forall x . \phi))\{\)
        Set \(Y=\) find_mus \(\left(\forall x . \phi, C, V^{\prime} L-C(x)\right)\);
        Int cost \(=C(Y)+C(x)\)
        If \((\) cost \(>L)\{\) best \(=Y \cup\{x\} ; L=\) cost \(\}\)
    \}
    Set \(Y=\) find \(\_\operatorname{mus}\left(\phi, C, V^{\prime}, L\right)\);
```


Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing x
- If cost of current universal subset is better than previous best cost, update lower bound
- Next, compute cost of universal subset not containing x
- Compare the two costs and return whichever is best
find_mus $(\phi, C, V, L)\{$
If $V=\emptyset$ or $C(V) \leq L$ return \emptyset
Set best $=\emptyset$
choose $x \in V$
$V^{\prime}=V \backslash\{x\}$
$\operatorname{if}(\operatorname{SAT}(\forall x . \phi))\{$
Set $Y=$ find_mus $\left(\forall x . \phi, C, V^{\prime} L-C(x)\right)$;
Int cost $=C(Y)+C(x)$
If $($ cost $>L)\{$ best $=Y \cup\{x\} ; L=$ cost $\}$
\}
Set $Y=$ find_mus $\left(\phi, C, V^{\prime}, L\right)$;
If $(C(Y)>L)\{$ best $=Y\}$
return best;
\}

Discussion of Algorithm

- This algorithm is branch-and-bound style

Discussion of Algorithm

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS

Discussion of Algorithm

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate

Discussion of Algorithm

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X . \phi$ becomes unsat

Discussion of Algorithm

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X . \phi$ becomes unsat
- These two pruning strategies eliminate many search paths, but still exponential

Discussion of Algorithm

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X . \phi$ becomes unsat
- These two pruning strategies eliminate many search paths, but still exponential
- To make algorithm practical, must consider more optimizations

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective
(2) Variable order

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective
(2) Variable order
- Basic algorithm chooses variables randomly

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective
(2) Variable order
- Basic algorithm chooses variables randomly
- But some variable orders much better than others

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:
(1) Initial cost estimate

- Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective
(2) Variable order
- Basic algorithm chooses variables randomly
- But some variable orders much better than others
- Turns out better to consider variables likely to be in MSA first

Finding Initial Cost and Variable Order

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS

Finding Initial Cost and Variable Order

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost $=$ Cost of free vars - MSA cost

Finding Initial Cost and Variable Order

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost $=$ Cost of free vars - MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost

Finding Initial Cost and Variable Order

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost $=$ Cost of free vars - MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost
- Good approximate MSA gives good variable order b / c if x is in MSA, $\forall x . \phi$ more likely unsat

Finding Initial Cost and Variable Order

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost $=$ Cost of free vars - MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost
- Good approximate MSA gives good variable order b / c if x is in MSA, $\forall x . \phi$ more likely unsat

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^{+}by replacing every literal in ϕ by boolean variable

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^{+}by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPI to find a theory-satisfiable MinPI

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^{+}by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPI to find a theory-satisfiable MinPI
- Theory-sat PI implies boolean structure of formula and is satisfiable modulo theory

Approximate MSA from Prime Implicants

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^{+}by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPI to find a theory-satisfiable MinPI
- Theory-sat PI implies boolean structure of formula and is satisfiable modulo theory

SAT

$$
\left(b_{1} \wedge b_{2}\right) \vee\left(b_{1} \wedge b_{3}\right)
$$

MinPI

- Approximate MSA as variables in MinPI

Summary of First Optimization

SAT
$\left(b_{1} \wedge b_{2}\right) \vee\left(b_{1} \wedge b_{3}\right)$
MinPI

- Optimize basic B\&B algorithm by finding good lower bound estimate on MUS and variable order

Summary of First Optimization

- Optimize basic B\&B algorithm by finding good lower bound estimate on MUS and variable order
- To find good estimate and variable order, compute approximate MSA

Summary of First Optimization

- Optimize basic B\&B algorithm by finding good lower bound estimate on MUS and variable order
- To find good estimate and variable order, compute approximate MSA
- Approximate MSA is obtained from theory-satisfiable min PI of boolean structure

Another Improvement: Non-Universal Subsets

- Suppose we knew a set of variables V is a non-universal set (i.e., $\forall V . \phi$ is UNSAT)

Another Improvement: Non-Universal Subsets

- Suppose we knew a set of variables V is a non-universal set (i.e., $\forall V . \phi$ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without $\operatorname{SAT}(\forall X . \phi)$ check

Another Improvement: Non-Universal Subsets

- Suppose we knew a set of variables V is a non-universal set (i.e., $\forall V . \phi$ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without $\operatorname{SAT}(\forall X . \phi)$ check
- Furthermore, if V is a non-universal subset of implicate of ϕ, it is also non-universal subset of of ϕ.

Another Improvement: Non-Universal Subsets

- Suppose we knew a set of variables V is a non-universal set (i.e., $\forall V . \phi$ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without $\operatorname{SAT}(\forall X . \phi)$ check
- Furthermore, if V is a non-universal subset of implicate of ϕ, it is also non-universal subset of of ϕ.

How can we "quickly" find implicates with small non-universal subsets?

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if $\neg \psi$ sat, then $\forall \operatorname{free}(\psi) . \psi$ unsat

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if $\neg \psi$ sat, then \forall free $(\psi) . \psi$ unsat
- Thus, if ψ is an implicate of ϕ whose negation is sat, free (ψ) is a non-universal set

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if $\neg \psi$ sat, then \forall free $(\psi) . \psi$ unsat
- Thus, if ψ is an implicate of ϕ whose negation is sat, free (ψ) is a non-universal set
- Can quickly find implicates with this property from boolean structure of simplified form

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if $\neg \psi$ sat, then \forall free $(\psi) . \psi$ unsat
- Thus, if ψ is an implicate of ϕ whose negation is sat, free (ψ) is a non-universal set
- Can quickly find implicates with this property from boolean structure of simplified form
- When all variables in ψ are \forall-quantified,
 backtrack without checking satisfiability

Experimental Evaluation

- Implemented algorithm in Mistral SMT solver

Experimental Evaluation

- Implemented algorithm in Mistral SMT solver
- Evaluated algorithm on 400 Presburger arithmetic formulas

Experimental Evaluation

- Implemented algorithm in Mistral SMT solver
- Evaluated algorithm on 400 Presburger arithmetic formulas
- Formulas taken from static analysis tool that uses MSAs for performing abduction, in turn used for diagnosing error reports

Experimental Evaluation

- Implemented algorithm in Mistral SMT solver
- Evaluated algorithm on 400 Presburger arithmetic formulas
- Formulas taken from static analysis tool that uses MSAs for performing abduction, in turn used for diagnosing error reports
- Formulas contain up to 40 variables and several hundred boolean connectives

Experimental Results

Experimental Results

- Basic algorithm very sensitive to \# vars

Experimental Results

- Basic algorithm very sensitive to \# vars
- Optimizations have dramatic impact on performance

Experimental Results

- Basic algorithm very sensitive to \# vars
- Optimizations have dramatic impact on performance
- Optimized version grows slowly in \# of variables

Experimental Results

- Basic algorithm very sensitive to \# vars
- Optimizations have dramatic impact on performance
- Optimized version grows slowly in \# of variables

Even with both optimizations, computing MSAs 25 times more expensive than checking satisfiability

Experimental Results, cont.

Experimental Results, cont.

- Problem easier if \# vars in MSA very small or very large

Experimental Results, cont.

- Problem easier if \# vars in MSA very small or very large
- Problem hardest for formulas when ratio of vars in MSA to free vars is ≈ 0.6

Summary

- First algorithm for finding MSAs of SMT formulas
- Recursive branch-and-bound style algorithm with two crucial optimizations
- MSAs can be computed in reasonable time for a set of benchmakrs obtained from static analysis
- But finding MSAs much more expensive than finding full sat assignment
- We believe significant improvements are still possible

