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of edges incident to v in graph G, i.e., those for which v is a member of theedge pair. Two vertices are adjacent if they have a common incident edge.Similarly, two edges are adjacent if they have a common incident vertex.For a given vertex v of graph G, let NG(v) denote the open neighborhoodof v, being the set of vertices adjacent to v. Let NG[v] denote the closedneighborhood of v, being NG(v) [ fvg.For a given pair of vertices, u and v, in G, let the distance between them,distG(u; v) be the length of a shortest path from u to v in G. Two adjacentvertices are at a distance 1 and are said to be neighbors. A graph is connectedif there exists a path between every pair of vertices. A graph is 2-connectedif for every vertex v of G, the graph G0 = hV � v; E � i(v)i is connected.In other words, removing any vertex of G does not disconnect the graph.Obviously, a self-repairing graph must be 2-connected. Various properties ofk-connected graphs, for k =2 and 3, have been de�ned and studied previously[5, 6, 2].In the following, we will refer by name to the three-cycle (cycle of threevertices), the four-cycle (cycle of four vertices) and the cube graph (the 8vertex, 12 edge skeleton of the cube) and the complete bipartite graph K2;khaving k+2 vertices, two of which are adjacent to k other vertices and haveno other adjacencies (see Figure 1).We �rst establish a property of the neighborhoods of vertices in aself-repairing graph.Theorem 1: A graph G is self-repairing if and only if, for every vertexv and for each pair of vertices u; w 2 NG(v), NG0 [u] \ NG0[w] 6= ;, whereG0 = hV � fvg; E � iG(v)i.Proof: The necessity of the condition follows easily for any two verticesu; w 2 NG(v), for if NG0 [u] \NG0 [w] = ; then distG0(u; w) > distG(u; w) = 2.For su�ciency consider a pair of vertices, x and y in G0, such that thereexists a shortest path in G between x and y that includes v. Then we mustshow that there exists a path in G0 of the same length. The shortest paththrough v in G contains edges (u; v) and (v; w), for some vertices u; w 2NG(v), where there are zero or more vertices between u and x and between yand w. By our assumption as to the non-empty intersection of neighborhoodsof u and w in G0, there exist vertex v0 and edges (u; v0) and (v0; w) in G0 (uand w are not adjacent because the (x; y) path has the shortest length).Thus, distG(x; y) = distG0(x; y). 2



We can restate Theorem 1 as the following corollary in terms of the max-imum possible length of a minimum cycle involving a pair of neighbors ofany vertex in a self-repairing graph.Corollary: G is a self-repairing graph if and only if, for each vertex v in Gand for each pair of vertices u; w 2 NG(v), vertices u; v, and w are membersof a cycle of length at most 4 in G, i.e., a three- or a four-cycle.2 Main resultWe want to characterize self-repairing graphs with minimumnumber of edges.We �rst de�ne the class of twin graphs, which are self-repairing .Two vertices x and y in a graph G are twins if and only if NG(x) = NG(y).Based upon this notion of twin vertices, we de�ne twin graphs recursively,as follows: (i) the four-cycle is a twin graph; (ii) if G is a twin graph, thenthe graph G0 constructed by connecting a new vertex by two edges to a pairof twins in G is a twin graph.Note that, when a new vertex is connected to twins x and y, vertices xand y remain twins in G0. In fact, once a pair of twin vertices have degreehigher than 2, the two vertices must remain unique twins of each other inany twin graph constructed from this smaller graph.Fact: In a twin graph, vertices of degree greater than 2 occur in uniquelyde�ned pairs of twins.Theorem 2: A twin graph G is self-repairing.Proof: Let G be a twin graph. Each vertex has degree 2 or higher. Leta vertex v of degree 2 be removed from G to form G0. In G; v is connected totwin vertices x and y, which, by de�nition, share a non-empty neighborhoodof vertices in G0.Now, consider v having degree greater than 2. Such a vertex has a uniquetwin vertex w (by the Fact above). As such, every neighbor of v in G is alsoa neighbor of w. Thus, if v is removed to form graph G0, the intersections ofneighborhoods (in G0) of all pairs of vertices in NG(v) include w.It follows that G is self-repairing, by Theorem 1.3



Twin graphs with n vertices have 2n � 4 edges since the four-cycle has2n�4 edges and 2 edges are added for each new vertex connected to the graph.We will show that, together with the cube graph, twin graphs constituteexactly the class of minimum size self-repairing graphs.In our proofs of the tight lower bound on the number of edges in a self-repairing graph, we will use the notion of level graph of a given graph Gwith respect to (wrt.) a �xed vertex x. Vertices of G are arranged in levels,depending on their distance from the vertex x. Given a vertex x in a graph G,we assign a level to each vertex by de�ning level(x) = 0 and level(y) = i > 0to every vertex y at distance i from x (see Figure 2(a)).Lemma 1: In a level graph of a self-repairing graph, any vertex at leveli > 1 is adjacent to at least two vertices at level i� 1.Proof: Consider a vertex v at level i > 1. It must have a neighbor x atlevel i� 1, which in turn has a neighbor y at level i� 2. Since v; x and y arein a four-cycle, v must have another neighbor at level i� 1.With the fact that self-repairing graphs are 2-connected, Lemma 1 givesus the following lemma.Lemma 2: In a level graph of a self-repairing graph, each level i > 0, exceptfor the maximum level, contains at least two vertices.We want to prove that there are no self-repairing graphs of n verticeswith fewer than 2n� 4 edges. We will proceed by assuming to the contraryand proving that such a graph cannot have a vertex of degree 2. This in turnwill be used to show that no such graph exists.Lemma 3: A self-repairing graph G with n vertices and fewer than 2n� 4edges has no degree 2 vertices.Proof: Assume that there is a degree 2 vertex x in G. We will considerthe levels de�ned wrt. x. By Lemma 1, every vertex at level i > 1 is adjacentto at least 2 vertices at level i� 1, which totals at least 2(n� 3) edges. Thevertex x and its neighbors induce at least 2 edges. Thus G has at least2n� 6 + 2 = 2n� 4 edges, a contradiction.4



Not having any degree 2 vertices, a self-repairing graph G with n verticesand fewer than 2n� 4 edges must have some degree 3 vertices. We will showthat this cannot happen. Thus, there are no such graphs.Lemma 4: In a level graph of a self-repairing graph G with n vertices andfewer than 2n � 4 edges, where levels are de�ned wrt. a degree 3 vertex,every vertex at level i > 1 has exactly two neighbors at level i � 1 and noneighbors at level i.Proof: By Lemma 3, such a graph G does not have a degree 2 vertex andthus must have a degree 3 vertex x. We will consider the levels de�ned wrt.x. Lemma 1 requires that there are at least 2 level i� 1 neighbors of a leveli > 1 vertex; thus the n� 4 vertices of G�N [x] account for at least 2n� 8edges. This is also the maximum number of edges incident with vertices atlevels i > 1 if G is to have fewer than 2n� 4 edges, since at least 3 edges areinduced by N [x]. Thus every vertex at level i > 1 has exactly two neighborsat level i� 1 and no neighbors at level iTheorem 3: The minimum number of edges in a self-repairing graph of nvertices is 2n� 4.Proof: In a self-repairing graph G with n vertices and fewer than 2n� 4edges, every vertex at level i > 1 has exactly two neighbors at level i � 1and no neighbors at level i (by Lemma 4). This implies that vertices on themaximum level de�ned wrt. x have degree 2. This contradicts the result ofLemma 3, which states that there are no degree 2 vertices in G. Thus, thereare no self-repairing graphs with n vertices and fewer than 2n� 4 edges.We have seen that twin graphs are self-repairing and reach the lowerbound on the number of edges. We will show that, except for the cubegraph, there are no other minimum self-repairing graphs. Here again, we willconsider level graphs of minimum self-repairing graphs de�ned wrt. a vertexof degree 2 or 3.Lemma 5: A minimum self-repairing graph with more than 4 vertices andhaving a degree 2 vertex is a twin graph.Proof: Assume to the contrary and consider a smallest minimum self-repairing graph G, with a degree 2 vertex x, that is not a twin graph. In thelevel graph of G de�ned wrt. x, every vertex at level i > 1 is adjacent toexactly 2 vertices at level i�1 and has no neighbors at level i. By Lemma 1,5



the number of level i � 1 neighbors for such a vertex is at least 2 and x isincident with 2 edges for a total of 2(n � 3) + 2 = 2n � 4 edges. The twoneighbors of x have identical neighborhoods (x and all level 2 vertices) andthus are twins. Therefore, x can be removed from G resulting in a minimumself-repairing graph G0. G0 has a degree 2 vertex (as discussed in the proofof Theorem 3). Thus, G0 is a twin graph and so is G,which contradicts ourassumption.Lemma 6: A minimum self-repairing graph without degree 2 vertices hasno three-cycle involving a degree 3 vertex.Proof: Assume to the contrary that three vertices induce a cycle. Con-sider the levels de�ned wrt. a degree 3 vertex x from this cycle. The remain-ing n� 4 vertices account for at least 2n� 8 edges which together with the 4edges induced by x and its neighbors gives 2n� 4 edges. Thus, the verticesat the maximum level must have degree 2, a contradiction.Lemma 7: The only minimum self-repairing graph with no degree 2 verticesis the cube graph.Proof: Such a graph G with n vertices has 2n�4 edges and thus at least8 degree 3 vertices. Consider the level graph of G de�ned wrt. a vertex vof degree 3. By an edge counting argument similar to that in the proof ofLemma 6, only one vertex at any of the levels i > 1 can have 3 neighborsat level i� 1, or only two vertices at the same level i > 1 can be neighbors.By the absence of degree 2 vertices, the above conditions could apply onlyto the maximum level, k. In fact, vertices at level k must satisfy one of thesetwo conditions, by the same edge counting argument.If there were two adjacent vertices of degree 3 at level k, they would haveto be adjacent to four di�erent level k � 1 vertices (by Lemma 6). This andthe absence of other edges between vertices at the same level (Lemma 4)violates the requirement that the vertices of any two adjacent edges in aself-repairing graph belong to a four-cycle.Assume therefore that the maximum level k consists of exactly one degree3 vertex u. The level graph of G wrt. to u has the same connectivityproperties as the level graph of G wrt. to v. Thus, every vertex at leveli; 0 < i < k�1; (wrt. v) has exactly two neighbors at level i+1. This impliesthat all intermediate levels have 3 vertices and the same pattern of adjacencieswith vertices at the neighboring levels. Graphs with vertices at three (or6



more) intermediate levels violate the self-repairing property. Suppose thereexist three consecutive levels, i� 1; i; i+1, with three vertices each. A vertexx at level i� 1 is connected to two vertices at level i, which have only onecommon neighbor at level i+ 1. Neither of the other two vertices is in afour-cycle with x. Thus, k � 3. For k = 2 we have K2;3, a twin graph, andfor k = 3 we have the cube graph.Lemmas 6 and 7 imply our main result.Theorem 4: A minimum self-repairing graph is either a twin graph orthe cube graph.3 ConclusionsWe have presented a constructive characterization of the class of minimumself-repairing graphs. With one exception, the class is identical with the classof twin graphs, which are thus useful as graphs underlying communicationnetworks immune to certain element failures ([3, 4]). It is easy to see thattwin graphs can be recognized by an e�cient algorithm. Such a linear timealgorithm is based on iterated removal of degree 2 vertices adjacent to ver-tices of identical neighborhoods. There is an additional advantage of thetwin graph recognition algorithm, pertaining to the graph as the topologyof a self-repairing communication network, [4]. Since the recognition processreverses a possible iterative construction process, if a self-repairing commu-nication protocol (i.e., routing tables) was not established during a graph'sconstruction, it is possible to create correct entries during the recognitionprocess.There is a fairly obvious bijective relation between the set of free treeswith m internal nodes and k leaves and the set of twin graphs with k degree2 vertices and m pairs of twins of higher degree (cf. Figure 2). The existenceof a tree describing a given twin graph indicates the possibility of an e�cientalgorithmic treatment of these graphs. We exploit here the concept of thetreewidth of a graph (cf. [7, 1]) which is de�ned by its tree-decomposition:a tree with vertex subsets as nodes such that every vertex is in some nodes,for every edge there is a bag containing its end vertices, and for every vertex,7



the set of nodes containing it induces a (connected) subtree of the tree-decomposition. The treewidth is one less than the maximum size of a nodein a tree-decomposition minimizing this size.Given a twin graph, the above mentioned bijection determines a tree-decomposition with at most 4 vertices per node: each degree 2 vertex isin a node together with its twin vertices, and each pair of twin vertices ofhigher degree is in a node with twins to which they were connected in theconstruction process. Thus, twin graphs have treewidth at most 3.Actually, only twin graphs K2;i; i > 2, (represented by trees of starshape) have treewidth 2. (This follows from the property of such graphs thatexcludes subgraphs homeomorphic to K4.) We notice that, though most twingraphs have treewidth 3, their minimal separators are of size 2. Thus, manyoptimization algorithms for twin graphs, guided by the tree-decomposition ofthe input graph, should be more e�cient than the corresponding algorithmfor generic treewidth 3 graphs (see, for instance [1]).References[1] Arnborg S. and Proskurowski, A., Linear time algorithms for NP-hardproblems restricted to partial k-trees, Discrete Applied Mathematics 23,11-24 (1989).[2] Dawes, R., Minimally 3-connected graphs, J. of Combinatorial Theory,B, 40, 159-167 (1986);[3] Farley, A.M. and Proskurowski, A., "Reliable minimum-time broadcastnetworks", Proc. of 18th Southeastern Conference on Combinatorics,Graph Theory, and Computing, Congressus Numerantium 59, 37-48(1987).[4] Farley, A.M. and Proskurowski, A., Self-repairing networks, Parallel Pro-cessing Letters 3(4), 381-391 (1994).[5] Harary, F., Graph Theory, Addison-Wesley, Reading, Mass. (1969);[6] Hedetniemi, S.T., Characterizations and constructions of minimally 2-connected graphs and minimally strong digraphs, in Proc. 2nd. Louisiana8



Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathe-matica, Winnipeg, 76-85 (1979);[7] Robertson, N. and Seymour, P.D., Graph Minors II: Algorithmic aspectsof treewidth, J. Algorithms 7, 39-61 (1986).
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