
 

Minimum Spanning Tree Of Undirected Graphs 

 

 

 

Aquila Khanam,  

PESIT, BSC 

  

 

Dr. Minita Mathew  

Associate Professor, PESIT –BSC 

  
 

 

 

ABSTRACT 

This paper presents an approach to finding the minimum 

spanning tree for simple undirected graphs and undirected 

multi-graphs. The algorithm involves choosing the 

minimum edge that connects each disjoint component of 

the graph, until a single component is formed. This single 

component is the minimum spanning tree of the given 

graph. The approach we take is a slight modification to 

Sollin’s algorithm. 

 

 

1. Introduction 

 The minimum spanning tree of an undirected 

graph is an acyclic graph (tree) of minimum weight that 

connects all the vertices of the graph.  

One may use minimum spanning trees or MSTs to 

set up communication links between cities with minimum 

cost or minimum length. Similarly, MSTs may be used to 

set up communication networks, telephone line networks, 

computer networks or piping in a flow network. Due to the 

various uses of MSTs in everyday problems, efficient 

algorithms that can solve graphs with a large number of 

vertices are required. Traditionally, Prim's and Kruskal's 

algorithms have been used to create minimum spanning 

trees, and do so efficiently. Their predecessor is Borůvka's 
(or Sollin's) algorithm, which is where the MST algorithm 

in this paper is derived from. 

Prim’s algorithm involves dividing the vertices of 

a graph into two sets - visited and unvisited, with the initial 

visited vertex being arbitrarily chosen as the starting 

vertex. On each iteration, the minimum edge connecting an 

unvisited vertex to a visited vertex is added to the tree. The 

final tree T formed, that spans the vertices of the graph is a 

minimum spanning tree. 

In Kruskal’s algorithm, each edge of the graph G 
is examined in ascending order of weight, and if the chosen 

edge does not form a cycle in the tree T, it is added to T. 

The process continues until n-1 edges have been added. 

 In this MST algorithm, each disjoint component 

of the spanning tree is connected by adding the minimum 

edge between any two components to the tree. The 

algorithm starts with taking all the vertices of the graph as 

disjoint components and examines each component to 

determine the minimum edge incident on that component. 

Effectively, this algorithm continues until only one final 

component remains, and in the worst case, each iteration 

halves the number of disjoint components remaining. This 

selection process also applies to multi-graphs, as only one 

minimum edge will be chosen between two components 

that have multiple edges connecting them. The final single 

component is the required minimum spanning tree. 

 In this paper, we give a proof as well as a pseudo 

code for our algorithm and illustrate it with an example. 

      

2. Terminology 

 

Graph: A graph is an ordered pair G = (V,E), where V is 

the vertex set whose elements are the vertices, or nodes of 

the graph. This set is often denoted V(G) or just V. E is the 

edge set whose elements are the edges, or connections 

between vertices, of the graph. This set is often denoted as 

E(G) or just E. If the graph is undirected, individual edges 

are unordered pairs {u,v}, where u and v are vertices in V. 

If the graph is directed, edges are ordered pairs (u,v). 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T



[2]
 

Example of a Graph 

 

Tree: A tree is a type of connected graph. A directed graph 

is a tree if it is connected, has no cycles and all vertices 

have at most one parent. An undirected graph is considered 

a tree if it is connected, has vertices one more than the 

number of edges. Such a graph is acyclic  

               

 

 

 

 

 

 

 

 

 

 

Example of a tree
[3]

 

 

Spanning Tree: For a graph G = (V,E), a spanning tree T 

= (V,E) is a tree that contains all the vertices of G, and 

whose set of edges is a subset of the edges of G (E’ E). 

 

 

Weighted Trees: A weighted tree associates a label 

(weight) with every edge in the graph. We denote the 

weight of an edge “e” as wt(e). The weight of a tree 

wt(T)  is the sum of the weights of the edges. 

 

Minimum Spanning Tree: A spanning tree with the 

smallest possible weight among all spanning trees for a 

given graph.
[4]

 

[5]
 

 

3.  Algorithm 

 

We consider all the vertices of the graph as disjoint 

components. First to each vertex we identify the edge with 

minimum weight on it. Ties are broken arbitrarily. These 

selected edges become the required edges of our minimum 

spanning tree. In the next stage we are left with several 

connected components. We then select the edge with the 

minimum weight between two components. The process is 

continued till we get a connected component. This 

selection process also applies to multi-graphs, as only one 

minimum edge will be chosen between two components.  

We claim the tree S thus obtained is a minimal spanning 

tree.  

 

3.1.  Proof 

 

S is a spanning graph because the algorithm ensures that all 

the vertices of G are present. Since the algorithm stops 

when there is one connected component, the graph G is 

also connected. Further since we either do not add edges 

whose vertices are already in S, or only add edges from the 

vertices of one component to the vertices of the other 

component, cycles are not formed. Hence S is a spanning 

tree. We now show that the spanning tree formed by this 

algorithm and the minimum spanning tree (MST) ”T” 

obtained by any other standard algorithm like Prim’s or 
Kruskal’s have the same weight. 
 

Let neee ,, 21  be the edges of S as added by the 

algorithm. Suppose the edge  vuek ,  differs from that 

in T. Let P be the path between u and v in T, and let e be 

the edge by which u is connected to T. Consider keT  . 

This will create a cycle C in T. Since the algorithm has 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



picked up ke ,  it  means that ke  is the edge with the least 

weight incident on either u or v. Without loss of generality 

let us assume ke  is the edge of least weight incident on u. 

Then wt(e)   wt( ke ). Therefore, delete e from the tree 

and replace it by .ke  Continuing this process we can 

replace every edge that is present in T and not present in S 

by an edge present in S which is of less than equal to 

weight. Hence wt(S)   wt(T). Since T is a minimum 

spanning tree. Then wt(S) = wt(T), as T is a minimum 

spanning tree and the weight of S cannot be less than the 

weight of T. Therefore, the weight of S must be equal to 

the weight of T. Hence, S is a minimum spanning tree. 

 

The same proof holds for a multi-graph, as only the least 

edge for a pair of components is picked up by the 

algorithm during each iteration. A tie is broken arbitrarily, 

as it does not affect the weight of the minimum spanning 

tree. 

 

4. Pseudo Code 

 

The algorithm is as follows: 

1 Start 

2 For a component u in the graph add the minimum edge e 

incident on it to it's minimum spanning tree, S. 

3 If the number of components in the graph is greater than 1, 

repeat step 1. Otherwise, if there is only one component, it 

is required minimum spanning tree, S, of the graph G. 

4 End 

 

Pseudo Code 

main() 

1 Start 

2 Input the number of vertices 

3 Initialize variables 

int i,j=0,min,u=0,v=0, components=n; 

4 Find the edges incident on each vertex that are of minimum 

weight 

  for(i=0;i<n;i++) 

   findMin(G,i); 

5 Build an array of all the vertices connected to vertex 1. 

  buildVisited(0); 

6 If the number of components is greater than 1, it means 

that the minimum spanning tree has not been formed, and 

the least edge between each component must be added to 

the tree. If the number of components is 1, go to step 

while (components>1) 

 { 

   min = 99; 

  for(i=0;i<n;i++) 

              { 

    if (visited[i] == 1) 

    { 

   

 for(j=0;j<n;j++) 

     { 

     if 

(visited[j]==0 && min>G[i][j]) 

      { 

      

 min = G[i][j]; 

      

 u = i; 

      

 v = j;     

  

      } 

    } 

    } 

   } 

   connect[v][u] = 1; 

   buildVisited(u); 

  } 

  System.out.println(weight); 

 } 

 

7 End 

   

 

findMin()  

1 Start 

2 Initialize the variables 

int j,min=99,pos=0; 

3 Find the minimum edge incident on each vertex and add 

those edges to the tree 

for(j=0;j<n;j++) 

{ 

  if(min>X[i][j]) 

  { 

  min = X[i][j]; 

   pos = j; 

  } 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T



 } 

 connect[i][pos] = 1; 

 }  

4 End 

 

buildVisited(u) 

1 Start 

2 Declare local variables 

int i; 

3 Set the source vertex u as visited  

visited[u] = 1 

4 For each unvisited vertex connected to the source vertex, 

connect the least edge, and recursively find the least edge 

connected to this vertex as the source 

 for(i=0;i<n;i++) 

 { 

 if (connect[i][u] == 1 && visited[i] == 

0) 

  { 

  components--; 

   System.out.println(i+" - "+u); 

   weight += G[i][u]; 

   buildVisited(i); 

  } 

 } 

 

5 End 

 

 

5. Illustration 

 

 

 

6. Conclusion 

 

The Minimum spanning tree algorithm has been designed 

and tested to have a complexity of O(n
2
), which is 

comparable to Prim’s algorithm in its adjacency matrix 
implementation. The applications of MSTs vary over 

numerous fields; from circuit design-to minimize the 

number of wires used to connect pins; to biotech-reducing 

data storage in sequencing amino acids in a protein; to 

image registration with Renyi entropy or to connect islands 

with a minimum number of bridges or group of locations 

with a minimum number of roads. 

 

7.  References 

[1] http://en.wikibooks.org/wiki/Graph_Theory/Definitions 

[2] (http://mjwilcox.net/index/wp-

content/uploads/2011/04/undirected_graph_example1.gif) 

[3] (http://en.wikipedia.org/wiki/Tree_(graph_theory)) 

[4]  (parallel.ru/info/reference/hpccgloss.html) 

[5](http://en.wikipedia.org/wiki/File:Msp1.jpg) 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T


