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Minimum Sparsity of Unobservable

Power Network Attacks
Yue Zhao, Andrea Goldsmith, and H. Vincent Poor

Abstract—Physical security of power networks under power
injection attacks that alter generation and loads is studied. The
system operator employs Phasor Measurement Units (PMUs)
for detecting such attacks, while attackers devise attacks that
are unobservable by such PMU networks. It is shown that,
given the PMU locations, the solution to finding the sparsest
unobservable attacks has a simple form with probability one,
namely, κ(GM) + 1, where κ(GM) is defined as the vulnerable
vertex connectivity of an augmented graph. The constructive
proof allows one to find the entire set of the sparsest unobservable
attacks in polynomial time. Furthermore, a notion of the potential
impact of unobservable attacks is introduced. With optimized
PMU deployment, the sparsest unobservable attacks and their
potential impact as functions of the number of PMUs are
evaluated numerically for the IEEE 30, 57, 118 and 300-bus
systems and the Polish 2383, 2737 and 3012-bus systems. It is
observed that, as more PMUs are added, the maximum potential
impact among all the sparsest unobservable attacks drops quickly
until it reaches the minimum sparsity.

I. INTRODUCTION

Modern power networks are increasingly dependent on

information technology in order to achieve higher efficiency,

flexibility and adaptability [1]. The development of more

advanced sensing, communications and control capabilities

for power grids enables better situational awareness and

smarter control. However, security issues also arise as more

complex information systems become prominent targets of

cyber-physical attacks: not only can there be data attacks on

measurements that disrupt situation awareness [2], but also

control signals of power grid components including generation

and loads can be hijacked, leading to immediate physical

misbehavior of power systems [3]. Furthermore, in addition

to hacking control messages, a powerful attacker can also

implement physical attacks by directly intruding upon power

grid components. Therefore, to achieve reliable and secure

operation of a smart power grid, it is essential for the system

operator to minimize (if not eliminate) the feasibility and

impact of physical attacks.

There are many closely related techniques that can help

achieve secure power systems. Firstly, coding and encryption

can better secure control messages and communication links
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[4], and hence raise the level of difficulty of cyber attacks.

To prevent physical attacks, grid hardening is another design

choice [5]. However, grid hardening can be very costly, and

hence may only apply to a small fraction of the components in

large power systems. Secondly, power systems are subject to

many kinds of faults and outages [6], [7], [8], which are in a

sense unintentional physical attacks. As such outages are not

inflicted by attackers, they are typically modeled as random

events, and detecting outages is often modeled as a hypothesis

testing problem [9]. However, this event and detection model

is not necessarily accurate for intentional physical attacks,

which are the focus of this paper. Indeed, an intelligent attacker

would often like to strategically optimize its attack, such that

it is not only hard to detect, but also the most viable to

implement (e.g., with low execution complexity as well as

high impact).

Recently, there has been considerable research concerning

data injection attacks on sensor measurements from super-

visory control and data acquisition (SCADA) systems. A

common and important goal among these works is to pursue

the integrity of network state estimation, that is, to successfully

detect the injected data attack and recover the correct system

states. The feasibility of constructing data injection attacks to

pass bad data detection schemes and alter estimated system

states was first shown in [2]. There, a natural question arises

as to how to find the sparsest unobservable data injection

attack, as sparsity is used to model the complexity of an

attack, as well as the resources needed for an attacker to

implement it. However, finding such an optimal attack requires

solving an NP-hard l0 minimization problem. While efficiently

finding the sparsest unobservable attacks in general remains

an open problem, interesting and exact solutions under some

special problem settings have been developed in [10] [11] [12].

Another important aspect of a data injection attack is its impact

on the power system. As state estimates are used to guide

system and market operation of the grid, several interesting

studies have investigated the impact of data attacks on opti-

mal power flow recommendation [13] and location marginal

prices in a deregulated power market [14] [15]. Furthermore,

as Phasor Measurement Units (PMUs) become increasingly

deployed in power systems, network situational awareness for

grid operators is significantly improved compared to using

legacy SCADA systems only. However, while PMUs provide

accurate and secure sampling of the system states, their high

installation costs prohibit ubiquitous deployment. Thus, the

problem of how to economically deploy PMUs such that the

state estimator can best detect data injection attacks is an

interesting problem that many studies have addressed (see, e.g.

[16], [17], [18] among others.)
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Compared to data attacks that target state estimators, phys-

ical attacks that directly disrupt power network physical pro-

cesses can have a much faster impact on power grids. In

addition to physical attacks by hacking control signals or

directly intruding upon grid components, several types of load

altering attacks have been shown to be practically imple-

mentable via Internet-based message attacks [3]. Topological

attacks are another type of physical attack which have been

considered in [19]. Dynamic power injection attacks have

also been analyzed in several studies. For example, in [20],

conditions for the existence of undetectable and unidentifiable

attacks were provided, and the sizes of the sets of such attacks

were shown to be bounded by graph-theoretic quantities.

Alternatively, in [21] and [22], state estimation is considered in

the presence of both power injection attacks and data attacks.

Specifically, in these works, the maximum number of attacked

nodes that still results in correct estimation was characterized,

and effective heuristics for state recovery under sparse attacks

were provided.

In this paper, we investigate a specific type of physical

attack in power systems called power injection attacks, that

alter generation and loads in the network. A linearized power

network model - the DC power flow model - is employed

for simplifying the analysis of the problem and obtaining a

simple solution that yields considerable insight. We consider

a grid operator that employs PMUs to (partially) monitor the

network for detecting power injection attacks. Since power

injection attacks disrupt the power system states immediately,

the timeliness of PMU measurement feedback is essential.

Furthermore, our model allows for the power injections at

some buses to be “unalterable”. This captures the cases of

“zero injection buses” with no generation and load, and buses

that are protected by the system operator. Under this model

we study the open l0 minimization problem of finding the

sparsest unobservable attacks given any set of PMU locations.

We start with a feasibility problem for unobservable attacks.

We prove that the existence of an unobservable power injection

attack restricted to any given set of buses can be determined

with probability one by computing a quantity called the

structural rank. Next, we prove that the NP-hard problem of

finding the sparsest unobservable attacks has a simple solution

with probability one. Specifically, the sparsity of the optimal

solution is κ(GM)+1, where κ(GM) is the “vulnerable vertex

connectivity” that we define for an augmented graph of the

original power network. Meanwhile, the entire set of globally

optimal solutions (there can be many of them) is found in

polynomial time. We further introduce a notion of potential

impacts of unobservable attacks. Accordingly, among all the

sparsest unobservable attacks, an attacker can easily find the

one with the greatest potential impact. Finally, given optimized

PMU placement, we evaluate the sparsest unobservable attacks

in terms of their sparsity and potential impact in the IEEE 30,

57, 118 and 300-bus, and the Polish 2383, 2737 and 3012-bus

systems.

The remainder of the paper is organized as follows. In

Section II, models of the power network, power injection

attacks, PMUs and unalterable buses are established. In addi-

tion, the minimum sparsity problem of unobservable attacks is

formulated. In Section III we provide the feasibility condition

for unobservable attacks restricted to any subset of the buses.

In Section IV we prove that the minimum sparsity of unobserv-

able attacks can be found in polynomial time with probability

one. In Section V, a PMU placement algorithm for countering

power injection attacks is developed, and numerical evaluation

of the sparsest unobservable attacks in IEEE benchmark test

cases and large-scale Polish power systems are provided.

Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

A. Power network model

We consider a power network with N buses, and denote

the set of buses and the set of transmission lines by N =
{1, 2, . . . , N} and L = {1, 2, . . . , L} respectively. For a line

l ∈ L that connects buses n and m, denote its reactance by xl

as well as xnm, and define its incidence vector ml as follows:

ml(i) =







1, if i = n,

−1, if i = m,

0, otherwise.

Based on the power network topology and line reactances, we

construct a weighted graph G = {N ,L,w} where the edge

weight wl ,
1
xl

, ∀l = 1, . . . , L. The power system is generally

modeled by nonlinear AC power flow equations [23]. In this

paper, a linearized model - the DC power flow model - is

employed as an approximation of the AC model, which allows

us to find a simple closed-form solution to the problem from

which we glean significant insights. Under the DC model, the

real power injections P ∈ R
N and the voltage phase angles

θ ∈ R
N satisfy P = Bθ, where B =

∑L

l=1
1
xl

mlm
T
l ∈

R
N×N is the Laplacian of the weighted graph G. We assume

that xl is positive which is typically true for transmission lines

(cf. Chapter 4 of [23]). Furthermore, the power flow on line l

from bus n to bus m equals Pnm = 1
xnm

(θn − θm).
We consider attackers inflicting power injection attacks that

alter the generation and loads in the power network. We denote

the power injections in normal conditions by P , and denote

a power injection attack by ∆P ∈ R
N . Thus the post-attack

power injections are P +∆P .

B. Sensor model and unobservable attacks

We consider the use of PMUs by the system operator for

monitoring the power network in order to detect power injec-

tion attacks. With PMUs installed at the buses, we consider

the following two different sensor models:

1) A PMU securely measures the voltage phasor of the bus

at which it is installed.1

2) A PMU securely measures the voltage phasor of the bus

at which it is installed, as well as the current phasors on

all the lines connected to this bus2.

1The voltage phase angles at all the buses are defined to be relative to
a common reference — the phase angle at the angle reference bus in the
network.

2In practice, the second PMU measurement model is achieved by installing
PMUs on all the lines connected to a bus.
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We denote the set of buses with PMUs by M (⊆ N ), and let

M , |M| be the total number of PMUs, where | · | denotes

the cardinality of a set. Without loss of generality (WLOG),

we choose one of the buses in M to be the angle reference

bus. We say that a power injection attack ∆P is unobservable

if it leads to zero changes in all the quantities measured by the

PMUs. With the first PMU model described above, we have

the following definition:

Definition 1 (Unobservability condition). An attack ∆P 6= 0
is unobservable if and only if

∃∆θ, such that ∆P = B∆θ and ∆θM = 0, (1)

where ∆θM denotes the M × 1 sub-vector of ∆θ obtained

by keeping its M entries whose indices are in M.3

With the second PMU model described above, for any bus

n ∈ N , it is immediate to verify that the following three

conditions are equivalent:

1) There are no changes of the voltage phasor at n and of

the current phasors on all the lines connected to n.

2) There are no changes of the voltage phasor at n and of

the power flows on all the lines connected to n.

3) ∀n′ ∈ N [n], there is no change of the voltage phasor at

n′, where N [n] is the closed neighborhood of n which

includes n and its neighboring buses N(n).

Thus, for forming unobservable attacks, the following two

situations are equivalent to the attacker:

• The system operator monitors the set of buses M with

the second PMU model;

• The system operator monitors the set of buses N [M] with

the first PMU model,

where N [M] is the closed neighborhood of M which includes

all the buses in M and their neighboring buses N(M). Thus,

the unobservability condition with the second PMU model

is obtained by replacing M with N [M] in (1). WLOG, we

employ the first PMU model in the following analysis, and

based on the discussion above all the results can be directly

translated to the second PMU model.

C. Sparsest unobservable attacks

In forming an unobservable attack, an attacker generally has

two objectives: minimize execution complexity and maximize

its impact on the grid. Note that these two objectives can be

competing interests that are not simultaneously achievable. We

will first focus on finding the minimum execution complexity

for an attack to be unobservable, which constitutes the main

part of this work. Among attacks with the minimum complex-

ity, we then find the one with the maximum impact.

For an attack vector ∆P , we use its zero norm ‖∆P ‖0 to

model its execution complexity. This is because attackers are

typically resource-constrained, and can choose only a limited

number of buses to implement attacks. For minimizing attack

complexity, an attacker is interested in finding the sparsest

3Since B is a weighted Laplacian matrix, the elements of ∆P sum to 0.

attacks that satisfy the unobservability condition (1):

min
∆θ

‖∆P ‖0 (2)

s.t. ∆P = B∆θ, ∆θM = 0, ∆θ 6= 0.

Since ∆θM = 0, ∆θ 6= 0 ⇒ B∆θ =
BNMc∆θMc ,∆θMc 6= 0, a more compact form of (2) is

as follows:

(2) ⇔ min
∆θMc 6=0

‖BNMc∆θMc‖0, (3)

where Mc = N\M denotes the complement of M , and

BNMc is the submatrix of B formed by choosing all its rows

and a set of columns Mc.

We now note that problem (3) is NP-hard: Specifically, as a

special case of the cospark problem of a matrix [24] problem

(3) resembles a security index problem discussed in [12],

which has been proven to be NP-hard. Under some special

problem settings for data injection attacks, problems of this

type have been shown to be solvable exactly in polynomial

time [10] [11] [12]. In general, low complexity heuristics have

been developed for solving l0 minimization problems (e.g., l1
relaxation).

We now generalize our model to allow a subset of buses

to be “unalterable buses”, meaning that their nodal power

injection cannot be changed by attackers. This allows us to

model the following scenarios:

• A “zero injection” bus that simply connects multiple lines

without nodal generation or load, and hence its power

injection is always zero and cannot be changed.

• A “protected” bus by the system operator, and its power

injection is not accessible by the attacker.

We denote the set of unalterable buses by U . The other buses

Uc are termed “alterable” buses. Generalizing (2), the sparsest

unobservable attack problem is established as follows:

min
∆θ

‖∆P ‖0 (4)

s.t. ∆P = B∆θ, ∆θM = 0, ∆PU = 0, ∆θ 6= 0.

When U = ∅, (4) reduces to (2). Generalizing (3), Eq. (4) has

the following equivalent form:

(4) ⇔ min
∆θMc 6=0,

(BNMc∆θMc )
U
=0

‖BNMc∆θMc‖0. (5)

D. Graph augmentation

Given the locations of the sensors M, we now introduce a

variation of the graph G that will prove key to developing the

main results later.

Definition 2. Given a set of buses M ⊆ N , GM is defined

to be the following augmented graph based on G:

1) GM includes all the buses in G, and has one additional

unalterable dummy bus.

2) Define an augmented set M̄ that contains M and the

unalterable dummy bus.

3) GM includes all the edges of G, and an edge is added

between every pair of buses in M̄, and its weight can

be chosen arbitrarily as any positive number.
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We note that the dummy bus is only connected to the set

of sensors M. We observe the following key facts. First,

an unobservable attack in the original graph G leads to zero

changes in all the voltage phase angles in M. Thus, any line

between a pair of buses in M would see a zero change of the

power flow on it. It is then clear that the added dummy bus

and lines in GM do not lead to any power flow changes in

the network under any unobservable attack. We thus have the

following lemma:

Lemma 1. An attack is unobservable by M in G if and only

if it is unobservable by M in GM.

This allows us to work with the augmented graph GM

instead of G. It is clear that the weights of the added edges in

GM do not matter for Lemma 1 to hold.

III. FEASIBILITY CONDITION OF UNOBSERVABLE ATTACKS

In this section, we address the following question whose

solutions will be useful in solving the minimum sparsity

problem (5): Assuming that the attacker can only alter the

power injections at a subset of the buses, denoted by A ⊆ Uc,

does there exist an attack that is unobservable by a set of PMUs

M? For any given A, a feasible non-zero attack ∆P ( 6= 0)
must satisfy ∆PAc = 0. In other words, it must not alter the

power injections at the buses in Ac.

From (1), there exists an unobservable non-zero attack if

and only if

∃∆P ,∆θ 6= 0, s.t.

∆P = B∆θ, ∆PAc = 0, ∆θM = 0. (6)

Since

{

∆θM = 0

∆θ 6= 0
⇒ ∆θMc 6= 0,∆P 6= 0, we have that

(6) is equivalent to

∃∆θMc 6= 0, s.t. (∆PAc =) BAcMc∆θMc = 0, (7)

where BAcMc is the submatrix of B formed by its rows

Ac and columns Mc. An illustration of (7) is depicted in

Figure 1, where the submatrix formed by the shaded blocks

represents BAcMc . From (7), we have the following lemma

on the feasibility condition of unobservable attacks.

Lemma 2. Given A and M, there exists an unobservable non-

zero attack if and only if BAcMc is column rank deficient.

To analyze when this column rank deficiency condition,

rank (BAcMc) < |Mc|, is satisfied, we start with the fol-

lowing observations based on the fact that B is the Laplacian

of the weighted graph G.

1) The signs (+1, −1, or 0) of the entries of B are fully

determined by the network topology:

Bij > 0, if i = j,

Bij < 0, if node (bus) i and node j (i 6= j)

are connected by an edge (transmission line),

Bij = 0, if node (bus) i and node j (i 6= j) are

not connected.

c

0

0

0

0

P

0 0 0 0 0
Tθ

B

Fig. 1. An illustration of (7) where the submatrix formed by the shaded
blocks represents BAcMc .

2) The values of the non-zero entries of B are determined

by the line reactances {xij}:

Bii =
∑

j 6=i

wij =
∑

j 6=i

1

xij

,

Bij = −wij = −
1

xij

, if i 6= j and Bij 6= 0.

When all the line reactances in the power network are known,

so are the entries of the submatrix BAcMc , and it is immediate

to compute whether rank (BAcMc) < |Mc|. Without knowing

the exact values of any line reactances, we will show that

whether rank (BAcMc) < |Mc| can be determined almost

surely by computing the structural rank of BAcMc , defined

as follows [25].

Definition 3 (Set of independent entries). A set of independent

entries of a matrix H is a set of nonzero entries, no two of

which lie on the same line (row or column).

Definition 4 (Structural rank). The structural rank of a

matrix H , denoted by sprank(H), is the maximum number of

elements contained in at least one set of independent entries.

A basic relation between the structural rank and the rank of

a matrix is the following [25],

sprank(BAcMc) ≥ rank(BAcMc). (8)

In the literature, structural rank is also termed “generic rank”

[26].

Specifically, we consider generic power grid parameters,

i.e., we assume that the line reactances xl (l = 1, 2, . . . , L)
are independent, but not necessarily identical random variables

drawn from continuous probability distributions. We assume

that the reactances are bounded away from zero from below

(as lines do not have zero reactances in practice). As such, the

analysis in this work is along the line of structural properties

as in [25] and [26], and we will develop results that hold with

probability one. We believe the independence (but not identi-

cally distributed) assumption is sufficiently general in practice.

In particular, there are uncertainties in factors that influence

the reactance of a line (e.g. the distance that a line travels,

the degradation of a line over time). These uncertainties can
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be modeled as independent (but not identically distributed)

random variables, leading to the model employed in this paper.

Clearly, BAcMc is always column rank deficient when

|Ac| < |Mc|. Next, we discuss the case of |Ac| ≥ |Mc|.
We begin with the special case A = M, for which we have

the following lemma whose proof is relegated to Appendix A:

Lemma 3. Let B ∈ R
N×N be the Laplacian of a connected

graph G with strictly positive edge weights. For any set of node

indices I ⊂ {1, 2, . . . , N}, denote by BII the submatrix of B

formed by its rows I and columns I. Then ∀I, |I| ≤ N − 1,

BII is of full rank.

Note that Lemma 3 holds deterministically without as-

suming generic edge weights of the graph. For the case of

A = M, we let I = Ac = Mc, and Lemma 3 proves that

rank (BAcMc) = |Mc|. This implies the intuitive fact that

there exists no attack restricted to A that is unobservable by

a set of PMUs M = A.

Now, we address the general case of arbitrary A and

M. We have the following theorem demonstrating that hav-

ing sprank(BAcMc) = |Mc| almost surely guarantees

rank(BAcMc) = |Mc|. The proof is relegated to Appendix

B.

Theorem 1. For a connected weighted graph G = {N ,L,w},

assume that the edge weights are independent continuous

random variables strictly bounded away from zero from below,

and denote the Laplacian of G by B ∈ R
N×N . Then, any

N ′ ×N ′′ submatrix of B, with min(N ′, N ′′) ≤ N − 1, has a

rank of min(N ′, N ′′) with probability one if it has a structural

rank of min(N ′, N ′′).

From Theorem 1, with |Ac| ≥ |Mc|, if sprank(BAcMc) =
|Mc| ≤ N − 1, we have with probability one that

rank(BAcMc) = |Mc|, and there exists no attack restricted

to A that is unobservable by a set of PMUs M.

Remark 1. It has been known in the literature that (see

e.g., [25]), a full structural rank of a matrix leads to a full

rank matrix with probability one, as long as the nonzero

entries in the matrix are drawn independently from continuous

probability distributions. However, it is worth noting that this

is not sufficient for proving Theorem 1. This is because, as in

Theorem 1, we are interested in matrices that are submatrices

of a graph Laplacian: even with the edge weights of the graph

drawn independently, the entries in these submatrices are

correlated due to the special structure of a graph Laplacian.

Such correlation leads to technical difficulties for the proof,

which can be overcome as shown in Appendix B.

We note that the structural rank of a matrix can be computed

in polynomial time by finding the maximum bipartite matching

in a graph [25]. Since whether an entry of B is non-zero is

solely determined by the topology of the network, we have

the following corollary.

Corollary 1. Given A and M, whether a non-zero unob-

servable attack exists can be determined with probability one

based solely on the knowledge of the grid topology.

IV. SOLVING THE SPARSEST UNOBSERVABLE ATTACKS

In this section, we study the problem of finding the sparsest

unobservable attacks given any set of PMUs M (cf. (5)). As

remarked in Section II-C, l0 minimization such as (5) is NP-

hard. We will show that the sparsest unobservable attack can

in fact be found in polynomial time with probability one. We

first introduce a key concept — a vulnerable vertex cut. We

then state our main theorem that yields an explicit solution for

the sparsest unobservable attack problem (5). We prove that

this solution both upper and lower bounds the optimum of (5),

hence proving the theorem.

A. Vulnerable vertex cut and vulnerable vertex connectivity

We start with the following basic definitions:

Definition 5 (Vertex cut). A vertex cut of a connected graph

G is a set of vertices whose removal renders G disconnected.

Definition 6 (Vertex connectivity). The vertex connectivity of

a graph G, denoted by κ(G), is the size of the minimum vertex

cut of G, i.e., it is the minimum number of vertices that need

to be removed to make the remaining graph disconnected.

From the definition of the augmented graph GM in Section

II-D, since all the buses in M̄ (containing M and the dummy

bus) are pair-wise connected, we have the following lemma:

Lemma 4. For any vertex cut of the augmented graph GM,

there is no pair of the buses in M̄ that are disconnected by

this cut.

Accordingly, we introduce the following notations which

will be used later on:

Notation 1. Given a vertex cut of GM, we denote the set of

buses disconnected from M̄ after removing the cut set by S .

The cut set itself is denoted by N(S).

With the vertex cut N(S), GM is partitioned into three

subgraphs:

1) S , which does not contain any bus in M̄, i.e., S ⊆ M̄c.

2) N(S), which is the vertex cut set itself, and may contain

buses in M̄.

3) N\N [S], which contains (not necessarily exclusively)

all the remaining buses in M̄ after removing the cut

set.

An illustrative example with a cut N(S) of size 2 is depicted

in Figure 2(b) in Section IV-C. We note that there is a slight

abuse of notation in N(S): In general, a cut set does not

necessarily consist of exactly all the neighboring nodes of S.

Nonetheless, as will be shown in the remainder of the paper,

we need only care about the minimum cut set, which indeed

consists of exactly all the neighboring nodes of S, namely,

N(S). Leveraging the above notation, we now introduce a

key type of vertex cut on GM.

Definition 7 (Vulnerable vertex cut). A vulnerable vertex cut

of a connected augmented graph GM is a vertex cut N(S)
for which |Uc ∩N [S]| ≥ |N(S)|+ 1.

In other words, the number of alterable buses in N [S] is

no less than the cut size plus one. The reason for calling
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such a vertex cut “vulnerable” will be made exact later in

Section IV-C. The basic intuition is the following. In order

to have ∆θM = 0 (unobservability), the key is to have the

phase angle changes on the cut N(S) be zero, with power

injection changes (which can only happen on the alterable

buses) restricted in N [S]. As will be shown later, this can be

achieved if a cut N(S) is “vulnerable” as defined above. We

note that it is possible that no vulnerable vertex cut exists (e.g.,

in the extreme case that all buses are unalterable).

Accordingly, we define the following variation on the vertex

connectivity.

Definition 8 (Vulnerable vertex connectivity). The vulnerable

vertex connectivity of an augmented graph GM, denoted by

κ̄(GM), is the size of the minimum vulnerable vertex cut of

GM. If no vulnerable vertex cut exists, κ̄(GM) is defined to

be ∞.

We note that the concepts of vulnerable vertex cut and

vulnerable vertex connectivity do not apply to the original

graph G. We immediately have the following lemma:

Lemma 5. If a vulnerable vertex cut exists, then κ̄(GM) ≤
M = |M|.

Proof: Suppose a vulnerable vertex cut exists, and

κ̄(GM) ≥ M + 1. Denote the minimum vulnerable vertex

cut by N(S) (cf. Notation 1). Now consider the set M: it is

a vertex cut of GM that separates the dummy bus and M̄c.

Because there are at least κ̄(GM)+1 ≥ M+2 alterable buses

in N [S] ⊆ N [M̄ c], M is also a vulnerable vertex cut. This

contradicts the minimum vulnerable vertex cut having size at

least M + 1.

B. Main result

We now state the following theorem that gives an explicit

solution of the sparsest unobservable attack problem in terms

of the vulnerable vertex connectivity κ̄(GM).

Theorem 2. For a connected grid G = {N ,L,w}, assume

that the line reactances xl (l ∈ L) are independent continuous

random variables strictly bounded away from zero from below.

Given any M and U , the minimum sparsity of unobservable

attacks, i.e., the global optimum of (5), equals κ̄(GM) + 1
with probability one.

We note that finding the minimum vulnerable vertex connec-

tivity of a graph is computationally efficient. For polynomial

time algorithms we refer the readers to [27] and [28]. In

particular, vertex cuts are enumerated [28] starting from the

minimum and with increasing sizes, until a minimum vulnera-

ble vertex cut is identified. We now prove Theorem 2 by upper

and lower bounding the minimum sparsity of unobservable

attacks in the following two subsections.

C. Upper bounding the minimum sparsity of unobservable

attacks

We show that any vulnerable vertex cut N(S) provides an

upper bound on the optimum of (5) as follows.

Theorem 3. For a connected grid G and a set of PMUs M,

for any vulnerable vertex cut of GM denoted by N(S) (cf.

Notation 1), there exists an unobservable attack of sparsity no

higher than |N(S)|+ 1.

Proof: A vulnerable vertex cut N(S) partitions GM into

S , N(S) and N\N [S], with S ⊆ Mc. Similarly to the range

space interpretation of the sparsest unobservable attack (5), it

is sufficient to show that there exists a non-zero vector in the

range space of BNS such that i) it has a sparsity no higher

than |N(S)|+1, and ii) non-zero power injections occur only

at the alterable buses.

By re-indexing the buses, WLOG, i) let S = {1, 2, . . . , |S|},

and ii) let BNS have the following partition as depicted in

Figure 2(a):

1) The top submatrix BSS is an |S| × |S| matrix.

2) The middle submatrix (which will be shown to be

BN(S)S ) consists of all the remaining rows, each of

which has at least one non-zero entry.

3) The bottom submatrix is an all-zero matrix.

In particular, from the definition of the Laplacian, the middle

submatrix of BNS , as described above, is exactly BN(S)S

because its row indices correspond to those buses not in S but

connected to at least one bus in S .

From the definition of the vulnerable vertex cut, |Uc ∩
N [S]| ≥ |N(S)|+1. Now, pick any set of |N(S)|+1 alterable

buses in Uc ∩ N [S], denote this set by A, and denote the

other buses in N [S] by Ũ , N [S]\A. Clearly, |Ũ | = |S| − 1.

Therefore, BŨS (which is a submatrix of BN [S]S ) has |S|
columns but only |S| − 1 rows, and is hence column rank

deficient.

Now, we let ∆θS be a non-zero vector in the null space of

BŨS :

BŨS∆θS = 0. (9)

Then, we construct an attack vector ∆P = BNS∆θS : it has

some possibly non-zero values at the indices that correspond

to A, and has zero values at all other indices. Thus,

‖∆P ‖0 ≤ |A| = |N(S)|+ 1. (10)

Theorem 3 explains our terminology of a “vulnerable vertex

cut”, since if a vertex cut is vulnerable, it leads to an unobserv-

able attack. If a vulnerable vertex cut of GM exists, applying

Theorem 3 to the minimum one, we have that the optimum of

(5) is upper bounded by κ̄(GM) + 1. If no vulnerable vertex

cut exists, κ̄(GM) + 1 = ∞ is a trivial upper bound.

We now provide a graph-theoretic interpretation of Theorem

3. As shown in Figure 2(a) and 2(b), all the buses can be parti-

tioned into three subsets S, N(S) and N\N [S], corresponding

to the row indices of the top, middle and bottom submatrices

of BNS , respectively. N(S) is a vulnerable vertex cut of GM

that separates S from N\N [S]. The sparse attack ∆P (cf.

(10)) is formed by injecting/extracting power at |N(S)| + 1
alterable buses in N [S], such that the phase angle changes at

N\S are all zero. Note that (N\S) ⊇ M. The example with

|N(S)| = 2 in Figure 2(b) illustrates a 3-sparse attack with

power injection/extractions at (assumed alterable) buses 1, 3
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(a) Block representation of BNS .
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(b) A 3-sparse unobservable power injection attack.

Fig. 2. Sparse attacks with voltage phase angle changes restricted to buses
1, 2, . . . |S|.

and |S|+1, such that the phase angle changes at N\S are all

zero.

We end this subsection by introducing a notion of “potential

impact” of unobservable attacks. We make the following

observation: As long as an attacker takes control of all the

power injections in a vulnerable vertex cut N(S) (assuming

they are alterable), it can always cancel out the effects of

anything that happens within N [S] on the measurements taken

in M (⊆ N\S). Thus, by taking control of all the buses

in N(S), an attacker can successfully hide from the system

operator a power injection attack with a zero norm as large as

|N [S]| = |N(S)|+ |S| (≫ |N(S)|+ 1). (11)

Accordingly, we introduce the following definition.

Definition 9. The potential impact of unobservable attacks

associated with a vulnerable vertex cut N(S) is defined as

|N [S]|.

Remark 2. Definition 9 is one characterization of attack

impact based solely on graph theoretic properties. In practice,

there are many different notions of attack impact depending

on, e.g., the interpretation of the attacks and the operating

objective of the system.

Employing Definition 9, we can differentiate the potential

impacts of multiple sparsest unobservable attacks with the

same sparsity. An illustration is depicted in Figure 3. In

M
……

… …
……

……
…

…

V1A

V1B

V2A

V2B

V2c

1[ ]N S

2[ ]N S

1( )N S

2( )N S

Fig. 3. An illustration of two vulnerable vertex cuts with the same size but
different potential impacts.

this example, two vulnerable vertex cuts both of size two,

N(S1) = {V1A, V1B} and N(S2) = {V2A, V2B}, are en-

closed by solid ovals. Accordingly, both cuts enable 3-sparse

unobservable attacks. However, their potential impacts are

significantly different. Cut N(S2) only disconnects one other

bus, namely S2 = {V2C} from the set of PMUs M, and

hence its potential impact equals |N [S2]| = 3. In comparison,

cut N(S1) disconnects all the vertices above N(S1) from M,

and hence its potential impact equals |N [S1]| ≫ 3. With this

definition of potential impact, it is then natural for an attacker

to seek the sparsest unobservable attack with the greatest

potential impact.

As an immediate byproduct of the analysis of potential

impact, by letting S = Mc, we obtain the maximum potential

impact of all unobservable attacks in a power network:

Corollary 2. For a connected power grid G = {N ,L,w},

given any M denoting the PMU locations, the maximum

potential impact among all the unobservable attacks equals

|N [Mc]|.

D. Lower bounding the sparsity of unobservable attacks

We first define the following property of a matrix H ∈
R

N×N , which will be shown to be equivalent to having

sprank(H) = N .

Property 1 (An equivalent condition for having a full struc-

tural rank).

∀n = 1, 2, . . . , N, and for any n×N submatrix of H,

the submatrix has at least n columns each with at least

one non-zero entry.

We have the following lemma whose proof is relegated to

Appendix C:

Lemma 6. Property 1 is equivalent to having sprank(H) =
N .
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We now prove the lower bounding part of Theorem 2,

namely, with probability one, all unobservable power injection

attacks ∆P must have ‖∆P ‖0 ≥ κ̄(GM)+1. The key idea is

in showing that the equivalence between Property 1 and a full

structural rank (cf. Lemma 6) implies a connection between

the vulnerable vertex connectivity and the feasibility condition

of unobservable attacks (cf. Lemma 2).

Proof of ‖∆P ‖0 ≥ κ̄(GM) + 1 for unobservable ∆P ,

w.p.1: We focus on GM and consider its corresponding

Laplacian B. Suppose there exists a power injection attack

∆P 6= 0 such that

∆θM = 0 and ‖∆P ‖0 ≤ κ̄(GM). (12)

Denote the buses with non-zero power injection changes

by A ⊆ Uc, and hence ∆PAc = 0. From (12), |A| ≤
κ̄(GM),∆θMc 6= 0, and 0=∆PAc =BAcMc∆θMc , imply-

ing that BAcMc is column rank deficient. We first consider

the case that a vulnerable vertex cut exists, i.e., κ̄(GM) < ∞.

The proof for the case of κ̄(GM) = ∞ follows similarly. For

notational simplicity, we will use κ̄ instead of κ̄(GM) in the

remainder of the proof.

a) If a vulnerable vertex cut exists, i.e., κ̄ < ∞:

We will prove that, for all A ⊆ Uc with |A| ≤ κ̄, BAcMc

is of full column rank with probability one, i.e., (12) can only

happen with probability zero. From Lemma 5, κ̄ ≤ M . It is

then sufficient to prove for the “worst cases” with |A| = κ̄ =
M , i.e., |Ac| = |Mc| = N−κ̄ and BAcMc is a square matrix.

From Theorem 1 and Lemma 6, it is sufficient to show that

BAcMc satisfies Property 1, and hence is of full rank with

probability one. Recall from the definition of the Laplacian

B that, for any column (or row) of B, bi, (i = 1, . . . , N),
its non-zero entries correspond to bus i and those buses that

are connected to bus i. With this, we now prove that BAcMc

satisfies Property 1.

Consider any set of n (≤ N − κ̄) buses in Ac, denoted by

Ñ .

i) If Ñ ⊆ Mc: Based on the definition of the Laplacian

B, the n columns of BÑMc that correspond to the buses Ñ
themselves each has at least one non-zero entry.

ii) If Ñ ∩ M 6= ∅: We prove that N(Ñ ) must contain at

least κ̄ buses. This is because, otherwise, |N(Ñ )| ≤ κ̄ − 1,

contradicting that κ̄ is the minimum size of vulnerable vertex

cuts for the following reasons:

1) A ⊆ Ñ c, and thus Ñ c has at least |A| = κ̄ alterable

buses.

2) |N(Ñ )| ≤ κ̄− 1 implies that Ñ c\N(Ñ ) 6= ∅, and thus

N(Ñ ) is a vertex cut that separates Ñ and Ñ c\N(Ñ ).
3) Because Ñ ∩M 6= ∅ and M are pairwise connected in

GM, M ⊆ N [Ñ ]. Thus, Ñ c\N(Ñ ) and M are disjoint.

From 1), 3), and the fact that |N(Ñ )| ≤ κ̄−1, we observe that

N(Ñ ) is a vulnerable vertex cut of size κ̄− 1, contradicting

κ̄ being the vulnerable vertex connectivity.

Now, based on the definition of the Laplacian B, the n ×
N submatrix BÑN must have at least n + κ̄ columns each

of which has at least one non-zero entry for the following

reasons:

• The n columns of BÑN that correspond to the buses Ñ
themselves each has at least one non-zero entry.

• As Ñ are connected to at least κ̄ other buses, each one

of these κ̄ neighbors of Ñ corresponds to one column of

BÑN that has at least one non-zero entry.

Accordingly, the n × (N − κ̄) submatrix BÑMc has at least

n columns each of which has at least one non-zero entry.

Summarizing i) and ii), BAcMc satisfies Property 1, and is

thus of full column rank with probability one. Therefore, (12)

can only happen with probability zero.

b) If no vulnerable vertex cut exists, i.e., κ̄ = ∞: If M =
N , i.e., all buses have PMUs, then clearly no unobservable

attack exists. We now focus on M ≤ N − 1. Suppose |A| ≥
M + 1. Consider the set M̄ containing M and the dummy

bus. ∆θM = 0 (cf. (12)) implies that A ⊆ N [M̄c], and

thus N [M̄c] has at least |A| ≥ M + 1 alterable buses. Since

M (= N(M̄c)) separates the dummy node and N\M, M is

a vulnerable vertex cut. This contradicts the nonexistence of

a vulnerable vertex cut. Therefore, |A| ≤ M . In this case, the

same proof as in the above case i) when a vulnerable vertex

cut exists applies, and (12) can only happen with probability

zero.

With the proofs of upper and lower bounds, we have now

proved Theorem 2. In addition, from the proof of Theorem 3,

we have a constructive solution of the sparsest unobservable

attack in polynomial time. We conclude this section by noting

the following fact similar to that in Section III: the minimum

sparsity of unobservable attacks is fully determined with

probability one by the network topology, the locations of the

alterable buses, and the locations of the PMUs.

V. NUMERICAL EVALUATION

In this section, we evaluate the sparsest unobservable attacks

and their potential impacts when the system operator deploys

PMUs at optimized locations. We first provide an efficient

algorithm for optimizing PMU placement by the system opera-

tor. Next, we provide comprehensive evaluation of our analysis

and algorithms in multiple IEEE power system test cases as

well as large-scale Polish power systems. Our MATLAB codes

are openly available for download4.

A. Optimization of PMU placement for attack detection

We have seen in Section IV that the minimum sparsity and

potential impacts of unobservable attacks are determined fully

by the network topology, the locations of the alterable buses,

and the PMU placement. Note that, unlike network states and

parameters which can vary over short and medium time scales,

the transmission network topology and the alterable buses

typically stay the same over relatively long time scales. This

motivates the system operator to optimize the PMU placement

according to this information.

For the best performance in countering power injection

attacks, the system operator wants to raise the minimum

sparsity of unobservable attacks, as well as mitigate the

maximum potential impact of unobservable attacks. Algorithm

4The codes can be found at http://www.princeton.edu/∼yuez/pubs.html

http://www.princeton.edu/~yuez/pubs.html
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TABLE I
ALGORITHM 1

Greedy algorithm for PMU placement for countering power injection attacks

Place the 1st PMU at bus 1.

Repeat

If no unobservable attack exists given the current set of PMUs M, stop.

Step 1: Find all the minimum vulnerable vertex cuts of GN [M];

among them, find the cut with the greatest potential impact,

denoted by C(GN [M]).
Step 2: Among all the buses disconnected from N [M] by C(GN [M])

as well as those in the cut set C(GN [M]), place the next PMU

at the one such that the resulting maximum potential impact

among all the remaining unobservable attacks is minimized.

1 (cf. Table I) is developed for the system operator to greedily

place PMUs to pursue both objectives. In this algorithm, we

have assumed that the second PMU model in Section II-B is

employed, and the algorithm can be adapted to the first PMU

model by replacing N [M] with M.

Algorithm 1 is essentially a successive cut/attack elimi-

nation procedure. The purpose of Step 1 is to identify the

sparsest unobservable attack with the greatest potential impact.

Specifically, Step 1 can be performed as follows:

1) Assign arbitrarily one of the buses in M as the source

node;

2) For each of the buses in N\N [M], assign it as the des-

tination node, and compute all the minimum vulnerable

vertex cuts that separate such a source-destination pair.

3) Among all the computed source-destination vertex cuts

that have the same minimum size, compute their cor-

responding potential impacts, and select the minimum

vertex cut with the greatest potential impact, denoted by

C(GN [M]).

We note that all the minimum vulnerable vertex cuts can be

enumerated in polynomial time (c.f. [28]). In our numerical

evaluation using MATLAB on a laptop with Intel Core i7 3.1-

GHz CPU and 8 GB of RAM, it takes less than 0.2 seconds on

average for every PMU placed for the IEEE 300 bus systems.

This per-PMU time increases to about 50 seconds for the

Polish 3012 bus system. In Step 2, our primary goal is to

ensure that the cut set C(GN [M]) found in Step 1 does not

remain a legitimate vertex cut after placing the next PMU. This

can be achieved by placing the next PMU among the buses

disconnected from N [M] by C(GN [M]) as well as those in

C(GN [M]). Among such candidate buses, we choose the one

that renders the minimum maximum potential impact among

all the remaining unobservable attacks (cf. Corollary 2) had

the next PMU been placed at it.

B. Numerical evaluation of unobservable attacks vs. number

of PMUs

We evaluate our results in the IEEE 30-bus, IEEE 57-

bus, IEEE 118-bus, IEEE 300-bus, Polish 2383-bus, Polish

2737-bus, and Polish 3012-bus systems. The evaluation is

performed based on the software toolbox MATPOWER [29].

In each of these systems, we apply Algorithm 1 to generate
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Fig. 4. Minimum sparsity of unobservable attacks and maximum potential
impacts of 2, 3, 4, 5-sparse attacks as functions of M , IEEE 30-bus system.

a set of PMU locations greedily, with the number of PMUs

M increasing from one until all attacks become observable.

Moreover, from Algorithm 1, for all M , the minimum sparsity

of unobservable attacks as well as the maximum potential

impact among the sparsest unobservable attacks are found (cf.

Step 1 in Algorithm 1). We assume that all buses are alterable

in the test cases.

In general, for a given set of PMUs, one can also search

for the maximum potential impact among all s-sparse un-

observable attacks for any given sparsity s, (as opposed to

evaluate that among the sparsest attacks only as in Algorithm

1). However, this problem is NP-hard in s. In light of this, we

selectively focused on some level of sparsity of unobservable

attacks that is not minimally sparse, and evaluated their

maximum potential impacts.

Specifically, the minimum sparsity of unobservable attacks

and the maximum potential impact among these sparsest

attacks both as functions of the number of PMUs M are

plotted for the IEEE 30 and 118-bus power systems and the

Polish 3012-bus system, in Figures 4, 5 and 6 respectively. In

addition,

• For the IEEE 30-bus system, the maximum potential

impact among all 2-sparse, 3-sparse, 4-sparse and 5-

sparse unobservable attacks for the entire range of M are

plotted. (Note that the minimum sparsity of unobservable
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Fig. 6. Minimum sparsity of unobservable attacks and the maximum potential
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attacks does not exceed 3 for all M ).

• For the IEEE 118-bus system, the maximum potential

impact among all 3-sparse attacks when M ≥ 7 is

plotted. (Note that for M = 7 the minimum sparsity of

unobservable attacks is 2).

We make the following observations which appear in all

seven of the evaluated systems:

• In all seven systems, all the attacks become observable

with less than a third of the buses installed with PMUs

(assuming the second PMU model). The average percent-

age of the number of PMUs needed to have full network

observability equals 31.1%. While this number resembles

a well-known estimate of such percentage to be one third

[30], it also demonstrates the efficacy of Algorithm 1 in

PMU placement.

• The topologies of the tested power systems tend to

allow sparse power injection attacks. In other words,

the vertex connectivity of these power networks is often

small. Furthermore, there are often many unobservable

attacks with the same minimum sparsity: this is why even

after adding a lot more PMUs into the network, with

each addition eliminating the previous sparsest attack,

the minimum sparsity of an unobservable attack can still

remain the same.

• While there are many unobservable attacks with the

same sparsity, the potential impacts among them can

vary significantly. Moreover, as more PMUs are added,

the maximum potential impact among all the sparsest

unobservable attacks drops quickly until it reaches the

minimum sparsity. Similar behavior is demonstrated for

all the s-sparse unobservable attacks (s = 2, 3, 4, 5) for

the IEEE 30-bus system as shown in Figure 4.

VI. CONCLUSION

We have studied physical attacks that alter power generation

and loads in power networks while remaining unobservable

under the surveillance of system operators using PMUs. Given

a set of PMUs, we have first shown that the existence of

an unobservable attack that is restricted to any given subset

of the buses can be determined with probability one by

computing the structural rank of a submatrix of the network

Laplacian B. Next, we have provided an explicit solution to

the open problem of finding the sparsest unobservable attacks:

the minimum sparsity among all unobservable attacks equals

κ(GM) + 1 with probability one. The constructive solution

allows us to find all the sparsest unobservable attacks in

polynomial time. As a result, κ(GM) + 1 is a fundamental

limit of this minimum sparsity that is not only explicitly

attainable, but also unbeatable by all possible unobservable

attacks. We have then introduced a notion of potential impacts

of unobservable attacks. For the system operator to raise

the minimum sparsity while simultaneously mitigating the

maximum potential impact of all unobservable attacks, we

have devised an efficient algorithm of greedily placing the

PMUs. With optimized PMU deployment, we have evaluated

the sparsest unobservable attacks and their potential impacts

in the IEEE 30, 57, 118, 300-bus systems and the Polish 2383,

2737, 3012-bus systems. Finally, while this work has studied a

static system model and power injection attacks, extension to

dynamic systems, measurements and power injection attacks

remains an interesting future direction, for which we expect

that similar insights will apply.

APPENDIX A

PROOF OF LEMMA 3

Proof of Lemma 3: First, we denote the Laplacian of the induced
subgraph G[I] by LI . Denote the number of connected components
of the induced subgraph G[I] by c. By properly re-indexing the nodes,
we have

BII = LI +DI , (13)

where LI is a block-diagonal matrix whose each block L
j

I (1 ≤
j ≤ c) is positive semidefinite and corresponds to one connected
component of G[I],

LI =







L
1
I

L
2
I

· · ·
L

c
I






, (14)
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and DI is diagonal, which we write in a block diagonal form whose
each block D

j

I (1 ≤ j ≤ c) is itself a diagonal matrix with non-
negative entries,

DI =







D
1
I

D
2
I

· · ·
D

c
I






. (15)

Since the original graph G is connected, each connected component
of the induced subgraph G[I] must be connected to at least one node
in N\I. This implies the following fact:

Fact 1. Each diagonal submatrix D
j

I (1 ≤ j ≤ c) has at least one
strictly positive diagonal entry.

Now, for any non-zero vector xI ∈ R
I , we write it as a

concatenation of c sub-vectors:

xI = [[x1
I ]

T [x2
I ]

T . . . [xc
I ]

T ]T , (16)

where the length of each sub-vector x
j

I (1 ≤ j ≤ c) follows the size

of the sub-matrix L
j

I .

As LI is positive semidefinite, xT
ILIxI ≥ 0:

1) If xT
ILIxI > 0, then immediately x

T
IBIIxI > 0.

2) If xT
ILIxI = 0, then LIxI = 0, which implies

L
j

Ix
j

I = 0, ∀j = 1, 2, . . . , c. (17)

Namely, x
j

I is in the null space of L
j

I . Note that as L
j

I
corresponds to a single connected component of G[I], the

dimension of the null space of L
j

I is one, and is spanned by the

all one vector 1 = [1, 1, . . . , 1]T with the appropriate length.

Thus, x
j

I must be in the form of αj ·1, for some αj > 0. From

Fact 1, D
j

I has non-negative diagonal entries with at least one

of them strictly positive, and we have [xj

I ]
T
D

j

Ix
j

I > 0, and

hence x
T
I (BII)xI = x

T
I (LI +DI)xI > 0.

Therefore, BII is positive definite, and hence of full rank.

APPENDIX B

PROOF OF THEOREM 1

First, for a matrix H ∈ R
N1×N2 with a full structural rank, we

define an equivalent term, “a non-zero permuted diagonal”, for a set
of min(N1, N2) independent entries (cf. Definition 3). This term is
based on the following intuition: For example, for H ∈ R

N×N , a
non-zero permuted diagonal (i.e., a set of N independent entries)
corresponds to a permutation function π(i), i = 1, 2, . . . , N , such
that Hi,π(i) 6= 0, ∀i = 1, 2, . . . , N .

Proof of Theorem 1: It is sufficient to prove for the case of
N ′ = N ′′ ≤ N − 1. We use induction as follows.

i) Clearly, any non-zero 1× 1 submatrix of B is of full rank.
ii) Assume that all t × t (t ≤ N − 2) submatrices of B with a

non-zero permuted diagonal are of full rank with probability one.
For a (t+1)× (t+1) submatrix of B with a non-zero permuted

diagonal, we denote it by B
′. We denote the set of row indices of

B that are selected in forming B
′ by R = {r(1), r(2), . . . , r(t +

1)}, and similarly the set of selected column indices by C =
{c(1), c(2), . . . , c(t + 1)}: B

′
i,j = Br(i),c(j), ∀1 ≤ i, j ≤ t + 1.

Clearly, if R = C, B′ is of full rank from Lemma 3.
Now, consider the case that R = I ∪ J , C = I ∪ K, where

I ∩ J = I ∩ K = ∅, J ∩ K = ∅, J ,K 6= ∅. In other words, I
denotes the common indices that appear in both the row indices R
and the column indices C, J denotes the indices that appear in R
but not in C, and K denotes the indices that appear in C but not in
R. WLOG, B′ has the form as in Figure 7(a), in which the common
row and column indices I are located in the upper left part of B

′,
and B

′ consists of four blocks BII ,BJI ,BIK,BJK.
Since B

′ has a non-zero permuted diagonal, there exists a per-
mutation function π(i), i = 1, 2, . . . , t + 1, such that B

′
i,π(i) >

0, ∀i = 1, . . . , t+1. In other words, the mapping r(i) → c(π(i)), i =

B

BB

B

(a) Partition of the matrix B
′.

'

1, 1t t
B

'

[1: ], [1: ]t t
B

'

1, [1: ]t t
B

'

[1: ], 1t t
B

(b) Case 1, B′
t+1,t+1 ∈ BJK is on a non-zero permuted diagonal

of B′.

Fig. 7. Proof of Theorem 1.

1, 2, . . . , t + 1 forms a bijection between I ∪ J and I ∪ K, such
that Br(i),c(π(i)) > 0, ∀i = 1, 2, . . . , t + 1. We now consider the
following two cases:

Case 1: ∃r(i) ∈ J , s.t. c(π(i)) ∈ K. In other words, one of the
entries in BJK is on a non-zero permuted diagonal of B′.

WLOG, assume that the entry B
′
t+1,t+1 in BJK is on a non-zero

permuted diagonal of B
′, i.e., π(t+ 1) = t+ 1. As in Figure 7(b),

we partition B
′ into B

′
[1:t],[1:t],B

′
t+1,[1:t],B

′
[1:t],t+1 and B

′
t+1,t+1.

Because B
′
t+1,t+1 is on a non-zero permuted diagonal of B

′, the
t× t submatrix B

′
[1:t],[1:t] has a non-zero permuted diagonal.

From the induction assumption, B
′
[1:t],[1:t] is of full rank with

probability one. When B
′
[1:t],[1:t] is of full rank, let

α = B
′−1
[1:t],[1:t]B

′
[1:t],t+1. (18)

Thus, B
′
[1:t],t+1 = B

′
[1:t],[1:t]α. Then, B

′ is rank-deficient if and
only if

B
′
t+1,t+1 = B

′
t+1,[1:t]α (19)

Note that, except for Br(t+1),c(t+1) = B
′
t+1,t+1 itself, there are

only three other entries in the Laplacian B that are correlated with
B

′
t+1,t+1:

Bc(t+1),r(t+1) = Br(t+1),c(t+1) = B
′
t+1,t+1, (20)

Br(t+1),r(t+1) = −
∑

j 6=r(t+1)

Br(t+1),j , (21)

Bc(t+1),c(t+1) = −
∑

i 6=c(t+1)

Bi,c(t+1). (22)
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'
1, 1tB

'
[2: 1], [1: ]t tB '

[2: 1], 1t t B

'
1, [1: ]t

B

(a) Case 2, B
′
1,t+1 ∈ BIK is on a non-zero permuted

diagonal of B′.

'
,1i

B

'
[2: 1], [2: ]t tB

'
, 1i tB

'
,1j

B
'

, 1j tB

'
,i i

B

(b) Case 2, B′
i,i depends on B

′
i,1,B

′
i,t+1 only

via the sum B
′
i,1 +B

′
i,t+1.

Fig. 8. Proof of Theorem 1.

However, as r(t + 1) ∈ J ⇒ r(t + 1) /∈ I ∪ K, c(t + 1) ∈ K ⇒
c(t+1) /∈ I ∪J , none of the above three entries is selected into the
submatrix B

′. Therefore, B′
t+1,t+1 is independent to all other entries

in B
′, and is hence independent to B

′
t+1,[1:t]α. Because B

′
t+1,t+1

is drawn from a continuous distribution, the probability that (19) is
satisfied is zero. As a result, B′ is of full rank with probability one.

Case 2: ∀r(i) ∈ J , c(π(i)) /∈ K. Thus, ∃r(i) ∈ I, s.t. c(π(i)) ∈
K. In other words, one of the entries in BIK is on a non-zero
permuted diagonal of B′.

WLOG, assume that the entry B
′
1,t+1 in BIK is on a non-zero

permuted diagonal of B
′, i.e., π(1) = t + 1. As in Figure 8(a),

we partition B
′ into B

′
1,[1:t],B

′
[2:t+1],[1:t],B

′
1,t+1 and B

′
[2:t+1],t+1.

Because B
′
1,t+1 is on a non-zero permuted diagonal of B′, the t× t

submatrix B
′
[2:t+1],[1:t] has a non-zero permuted diagonal.

From the induction assumption, B′
[2:t+1],[1:t] is of full rank with

probability one. When B
′
[2:t+1],[1:t] is of full rank, let

α = B
′−1
[2:t+1],[1:t]B

′
[2:t+1],t+1. (23)

Thus, B′
[2:t+1],t+1 = B

′
[2:t+1],[1:t]α. Then, B′ is rank-deficient if

and only if

B
′
1,t+1 = B

′
1,[1:t]α (24)

Note that r(1) = c(1) ∈ I. We have

B
′
1,1 = Br(1),c(1) = Br(1),r(1) = −

∑

j 6=r(1)

Br(1),j

= −B
′
1,t+1 − C1, (25)

where B
′
1,t+1 = Br(1),c(t+1), and C1 =

∑

j 6=r(1),j 6=c(t+1) Br(1),j

is independent to B
′
1,t+1. Substitute (25) for B′

1,1 in (24), we have

B
′
1,t+1 = α1B

′
1,1 +

t
∑

j=2

αjB
′
1,j

= −α1B
′
1,t+1 +

(

−α1C1 +
t
∑

j=2

αjB
′
1,j

)

.

⇔ (1 + α1)B
′
1,t+1 = −α1C1 +

t
∑

j=2

αjB
′
1,j . (26)

Note that B′
1,t+1 is independent to α1, and independent to the right

hand side of (26). Because B
′
1,t+1 is drawn from a continuous

distribution, if α1 6= −1, the probability (conditioned on α1 6= −1)
that (26) is satisfied is zero.

Next, we prove that the probability of α1 = −1 is zero. From
(23), if α1 = −1,

B
′
[2:t+1],t+1 =

t
∑

j=1

αjB
′
[2:t+1],j

⇔ B
′
[2:t+1],1 +B

′
[2:t+1],t+1 =

t
∑

j=2

αjB
′
[2:t+1],j . (27)

Thus, α1 = −1 implies that B′
[2:t+1],1+B

′
[2:t+1],t+1 is in the range

space of B
′
[2:t+1],[2:t]. Note that, all the entries in the two vectors

B
′
[2:t+1],1 and B

′
[2:t+1],t+1 are mutually independent non-diagonal

entries of B.

Now, consider that we make the following change of distributions
of certain entries in B

′ (and also B correspondingly):

1) ∀i = 2, . . . , t + 1, let B′
i,1(= Br(i),c(1)) be drawn from the

distribution of the sum B
′
i,1 +B

′
i,t+1.

2) Let every entry of B′
[2:t+1],t+1 to be a deterministic zero, i.e.,

∀i = 2, . . . , t+ 1, B
′
i,t+1(= Br(i),c(t+1)) = 0.

Observe that,

• As in Figure 8(b), ∀i, s.t. r(i) ∈ I, the only entry in
B

′
[2:t+1],[2:t] that is correlated with B

′
i,1 and B

′
i,t+1 is

B
′
i,i = −(B′

i,1 +B
′
i,t+1)− C2, (28)

where C2 =
∑

j 6=c(1),j 6=c(t+1) Br(i),j . Note that B′
i,i depends

on B
′
i,1,B

′
i,t+1 only via the sum B

′
i,1 +B

′
i,t+1.

• ∀i, s.t. r(i) ∈ J , B′
i,1 and B

′
i,t+1 are independent to all the

entries in B
′
[2:t+1],[2:t].

This implies the following fact:

Fact 2. The joint distribution of B′
[2:t+1],1 and B

′
[2:t+1],[2:t] after the

change of distributions is equal to the joint distribution of B′
[2:t+1],1+

B
′
[2:t+1],t+1 and B

′
[2:t+1],[2:t] before the change.

We now note that, after the change of distributions, the t×t matrix
B

′
[2:t+1],[1:t] = [B′

[2:t+1],1 B
′
[2:t+1],[2:t]] still satisfies the induction

assumption, and is hence of full rank with probability one. Thus,
before the change of distributions, B

′
[2:t+1],1 + B

′
[2:t+1],t+1 falls

in the range space of B
′
[2:t+1],[2:t] with probability zero. Therefore,

α1 = −1 with probability zero, hence the probability that (24) is
satisfied is zero. As a result, B′ is of full rank with probability one.
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APPENDIX C

PROOF OF LEMMA 6

We first prove the following lemma in preparation for proving
Lemma 6:

Lemma 7. For a matrix H ∈ R
N×N , if the following conditions

are satisfied,

H1,1 6= 0, (29)

∀i = 2, . . . , N,Hi,i−1 6= 0, (30)

∀i = 2, . . . , N, the sub-column H[1,i],i has at least one

non-zero entry, (31)

then H satisfies Property 1.

A depiction of a matrix satisfying (29), (30) and (31) is given in
Figure 9, in which the entries with an “x” are known to be non-zero,
and the shaded sub-columns each has at least one non-zero entry.

x

x

x

x

x

x

… 

… 

[1,2],2H

[1, ],N N
H

[1, 1], 1N N H[1, * 1], * 1r r H

 row r*

Fig. 9. A matrix that satisfies (29), (30) and (31) as in Lemma 7.

Proof: We use induction as follows.

i) The lemma is true for N = 1.

ii) Assume that the lemma is true for all N = 1, . . . , t. For N =
t+ 1:

First, because the upper left (N − 1) × (N − 1) submatrix of
H satisfies the induction assumption, each of H’s first left N − 1
columns must contain at least one non-zero entry. From (31), the
last column of H has at least one non-zero entry. Thus, the case of
n = N in Property 1 holds for H .

Next, ∀1 ≤ n ≤ N − 1, for any n×N submatrix of H , denote it
by H

′, and its corresponding row indices in H by r(1) < r(2) <
. . . < r(n).

• If the last n rows of H are selected to form H
′, (i.e.

r(i) = i + N − n, i = 1, . . . , n), from (30), the columns
N − n, . . . , N − 1 each has one non-zero entry, namely,
HN−n+1,N−n, . . . ,HN,N−1.

• Otherwise, there exists a row r∗, r∗ ≥ N −n+1, which is not
selected in H

′ (cf. Figure 9). In this case, the row indices of H ′

can be partitioned into two subsets: ∃i(∈ {1, 2, . . . , n}), r(1) <
. . . < r(i) ≤ r∗ − 1 and r∗ + 1 ≤ r(i + 1) < . . . ≤ r(n).
On the one hand, note that the upper left (r∗ − 1) × (r∗ −
1) submatrix of H satisfies the induction assumption. Thus,
among the first r∗−1 columns of the rows r(1), . . . , r(i), there
exists i columns each of which has one non-zero entry. On the
other hand, from (30), Hr(i+1),r(i+1)−1, . . . ,Hr(n),r(n)−1 are
all non-zero, and none of these non-zero entries appears in the
first r∗ − 1 columns. Therefore, there exist n columns of H

′

such that each of them has at least one non-zero entry.

We now prove Lemma 6.

Proof of Lemma 6: Clearly, Property 1 is implied by the non-
zero diagonal property.

To prove that the non-zero diagonal property is also implied by
Property 1, we use induction on N as follows.

i) For N = 1, the non-zero diagonal property is implied by
Property 1.

ii) Assume that ∀N ≤ t, (t ≥ 1, ) the non-zero diagonal property
is implied by Property 1.

For N = t+ 1, we use another induction on the number of rows
n of submatrices of H in proving a non-zero permuted diagonal
property.

a) For n = 1, directly from Property 1, any n ×N submatrix of
H (i.e., any row of H) has at least one non-zero entry.

b) Assume that ∀n ≤ t < N , ∀n ×N submatrix of H , denoted
by H

′, it has the following property:

∃π(i) (i = 1, . . . , n) that satisfies π(i) 6= π(j), ∀i 6= j,

s.t. H ′
i,π(i) 6= 0. (32)

x

x

x

0 0… 

0 0… 

N columns 








n rows

… 

… 
xThe r

th
 row 0 0… 

… … … 

… … … 

… 
… 

Fig. 10. The matrix H
′ in the proof of Lemma 6.

For n = t+1, from the induction assumption b), there exists a non-
zero permutated diagonal for the (n−1)×N submatrix H

′
[2:n],[1:N ]:

WLOG, assume that it corresponds to ∀i = 2, . . . , n,H ′
i,i−1 6= 0 (cf.

Figure 10.)
Now, we use proof by contradiction, and assume that H ′ does not

have a non-zero permuted diagonal. Then, the sub-row H
′
1,[n,N ] must

be all zero, because otherwise any non-zero entry within H
′
1,[n,N ]

will form a non-zero permuted diagonal of H
′ with H

′
i,i−1(i =

2, . . . , n). From Property 1, the 1st row of H
′ must have at least

one non-zero entry. WLOG, assume that H ′
1,1 is non-zero. Then, the

sub-row H
′
2,[n,N ] must be all-zero, because otherwise any non-zero

entry within H
′
2,[n,N ] will form a non-zero permuted diagonal of H ′

with H
′
1,1 and H

′
i,i−1(i = 3, . . . , n). From Property 1, the first two

rows of H
′ must have at least two columns each of which has at

least one non-zero entry. Since H
′
2,1 6= 0, there is at least one more

column of H
′
[1,2],[1,N ] that has at least one non-zero entry. WLOG,

assume that the sub-column H
′
[1,2],2 has at least one non-zero entry,

(cf. the shaded area in Figure 10).
Similarly, consider the rth row of H

′. Note that the subma-
trix H

′
[1:r−1],[1:r−1] satisfies (29), (30) and (31), and hence satis-

fies Property 1 by Lemma 7. From the induction assumption ii),
H

′
[1:r−1],[1:r−1] has a non-zero permuted diagonal. Then, the sub-

row H
′
r,[n,N ] must be all-zero, because otherwise any non-zero

entry within H
′
r,[n,N ] will form a non-zero permuted diagonal of

H
′ with the non-zero permuted diagonal of H

′
[1:r−1],[1:r−1] and

H
′
i,i−1(i = r + 1, . . . , n).
Therefore, the submatrix H

′
[1,N ],[n,N ] must be all-zero. This

implies that there are only n − 1 (instead of n) columns of H
′

each of which has at least one non-zero entry, and hence contradicts
with Property 1.
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