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Abstract We study the problem of determining the

optimal low dimensional projection for maximising the

separability of a binary partition of an unlabelled dataset,

as measured by spectral graph theory. This is achieved

by finding projections which minimise the second eigen-

value of the graph Laplacian of the projected data,
which corresponds to a non-convex, non-smooth opti-
misation problem. We show that the optimal univariate
projection based on spectral connectivity converges to

the vector normal to the maximum margin hyperplane

through the data, as the scaling parameter is reduced to

zero. This establishes a connection between connectiv-

ity as measured by spectral graph theory and maximal
Euclidean separation. The computational cost associ-
ated with each eigen-problem is quadratic in the num-

ber of data. To mitigate this issue, we propose an ap-

proximation method using microclusters with provable

approximation error bounds. Combining multiple bi-

nary partitions within a divisive hierarchical model al-

lows us to construct clustering solutions admitting clus-
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ters with varying scales and lying within different sub-

spaces. We evaluate the performance of the proposed

method on a large collection of benchmark datasets and

find that it compares favourably with existing methods

for projection pursuit and dimension reduction for data

clustering. Applying the proposed approach for a de-

creasing sequence of scaling parameters allows us to ob-

tain large margin clustering solutions, which are found
to be competitive with those from dedicated maximum
margin clustering algorithms.

Keywords Spectral clustering · dimension reduction ·
projection pursuit · maximum margin

1 Introduction

Identifying distinct groups, or clusters, in unlabelled

data is a fundamental task in exploratory data analy-
sis, with applications in diverse disciplines ranging from
computer science and biology to sociology and market-

ing. Spectral clustering methods have gained consid-

erable attention because of their simplicity, versatility

and strong performance in numerous applications (Shi

and Malik, 2000; Weiss, 1999; Ning et al., 2010; Chi

et al., 2009). One of the appealing properties of spec-
tral clustering is its ability to identify highly non-convex
clusters, which may lie on or close to highly non-linear

manifolds. It is, however, sensitive to choices of scaling

and to irrelevant or noisy features which may be present

in the data (Bach and Jordan, 2006; Niu et al., 2011).

In spectral clustering, clusters are defined as strongly

connected components of a graph whose vertices corre-

spond to data points, and edge weights represent pair-

wise similarities between them (von Luxburg, 2007).

The minimum-cut problem seeks the partition of the

graph that minimises the sum of edge weights con-

necting different components of the partition. In other

words, the partition which minimises the total simi-

larity between data assigned to different clusters. Al-

though intuitive this formulation frequently produces

partitions in which some components contain very few

vertices (data), which may not constitute complete clus-

ters. To avoid this, normalisations of the minimum-cut

problem that favour balanced partitions are used. Nor-

malisation, however, renders the problem NP-hard (Wag-

ner and Wagner, 1993), and so a continuous relaxation

is solved instead. The solution of the relaxed problem

is given by the eigenvectors of the graph Laplacian ma-
trix. This spectral decomposition of the graph Lapla-

cian gives rise to the term spectral clustering.

The successful application of any clustering method
critically depends on the extent to which the true group
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structure in the data is captured by spatial similarities

between points. However, the presence of irrelevant and

noisy features, which abound in modern applications,

can distort this spatial structure. This has been shown

to have particularly adverse effects on the performance

of spectral clustering, even in problems of moderate di-

mensionality (Bach and Jordan, 2006; Niu et al., 2011).

Dimension reduction techniques attempt to mitigate
the effects of noisy and irrelevant features by identi-
fying low dimensional representations of a dataset that

preserve the maximum amount of relevant information.

Commonly these low dimensional representations are

defined by the projection of the data into a linear sub-

space. Classical techniques, like principal component

analysis (PCA), although widely used in clustering, are

not guaranteed to identify subspaces that preserve clus-

ter structure. More recently a number of dimension re-

duction methods that explicitly aim to reveal cluster

structure have been developed (Krause and Liebscher,

2005; Pavlidis et al., 2016; Hofmeyr and Pavlidis, 2015;

Peña and Prieto, 2001; Niu et al., 2011).

Peña and Prieto (2001) show that under certain

conditions the one-dimensional projection of the data

with minimum kurtosis maximises bimodality. Such a

projection can thus be used to separate high-density

clusters, defined as contiguous regions of high proba-

bility density around modes of the (assumed) under-

lying probability density function. For the same pur-

pose, Krause and Liebscher (2005) propose maximis-

ing the dip statistic (Hartigan and Hartigan, 1985), a
measure of departure from unimodality of a univariate

dataset. More recently Pavlidis et al. (2016) proposed

an approach that aims to identify regions of low proba-

bility density that separate high-density clusters. This

is achieved by identifying the univariate subspace nor-

mal to the hyperplane that has the minimum integrated

density along it, called the minimum density hyper-

plane. Hofmeyr and Pavlidis (2015) proposed a method

to identify projections that maximise the variance-ratio

clusterability measure (Zhang, 2001). This measure is

a normalisation of the K-means objective, which is in-

variant to changes in scale and is thus less susceptible to
projections which exhibit high variance but little clus-

ter structure. The problem of dimensionality reduction
for spectral clustering was first considered by Niu et al.
(2011). A detailed description of this method and its

relation to our work is provided in Section 2 after the

presentation of necessary background material.

The main problem we consider in this paper is the

identification of the optimal projection to bi-partition a

dataset through spectral clustering. This is achieved by

minimising the second smallest eigenvalue of the graph

Laplacian, which measures the spectral connectivity be-

tween the two clusters. We consider the graph Lapla-
cians arising from the two most widely used normal-
isations of the minimum-cut objective, namely Ratio
Cut (Hagen and Kahng, 1992) and Normalised Cut (Shi

and Malik, 2000). Although both formulations can lead

to high quality clustering models, our experience sug-

gests that for our purposes the Normalised Cut for-

mulation yields overall superior performance. Applying

this bi-partitioning approach recursively produces a di-

visive spectral clustering algorithm capable of identify-

ing clusters with varying scales and defined in different

subspaces. The minimisation of the sum of theK small-
est eigenvalues of the normalised graph Laplacian with

respect to a projection of the data was first proposed

by Niu et al. (2011) to perform dimension reduction for

spectral clustering.

In this paper we develop an improved methodology
for finding optimal projections based on the spectral

clustering objective, and provide new theoretical per-

spectives on the problem. We perform a rigorous inves-

tigation into the continuity and differentiability prop-

erties of eigenvalues of graph Laplacians as functions

of the projection, and find that they are Lipschitz con-

tinuous (and hence differentiable almost everywhere),
and everywhere directionally differentiable. We derive
expressions for the derivative of an eigenvalue with re-

spect to the projection when the eigenvalue is simple,

thereby allowing us to minimise the objective directly

using generalised gradient descent methods. This ap-

proach is guaranteed to converge to a local minimum,

whereas existing methodology for this problem does not
directly minimise the overall objective and may fail to
find an optimal projection. In addition, we provide a

formulation of the directional derivative which allows

us to easily derive optimality conditions for the pro-

posed method. Although our focus is on minimising the

second smallest eigenvalue our analysis applies to an ar-

bitrary eigenvalue of the Laplacian, and so the proposed

methodology can easily be extended to minimising sums

of eigenvalues of graph Laplacians.

Each eigenvalue computation requires O(N2) oper-
ations, where N is the size of the dataset. This can

be prohibitive for large datasets. We show how prepro-

cessing the dataset using microclusters provides an ap-

proximation of the optimisation surface which enables

a speed-up of up to two orders of magnitude without

an appreciable degradation in empirical clustering accu-

racy. We also derive theoretical worst case error bounds

for this approximation.

We establish an asymptotic connection between op-

timal univariate projections for spectral bi-partitioning

and maximum margin hyperplanes. Formally, we show
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that as the scaling parameter defining pairwise simi-

larities is reduced to zero, the optimal one-dimensional

projection for spectral bi-partitioning converges to the

vector normal to the largest margin hyperplane through

the data. This establishes a theoretical connection be-

tween connectivity as measured by spectral graph the-

ory and Euclidean separation, which underlies maxi-

mum margin clustering (Xu et al., 2004; Zhang et al.,
2009), an increasingly popular and effective approach
to clustering.

The remainder of the paper is organised as follows.

In Section 2 we provide a brief introduction to spectral
clustering, and existing dimension reduction based on
the spectral clustering objective. Section 3 presents our
methodology for finding optimal projections based on

spectral connectivity. Section 4 describes the theoretical

connection between the optimal one-dimensional pro-

jection for spectral bi-partitioning and maximum mar-

gin hyperplanes. In Section 5 we discuss an approxima-

tion technique which allows for a substantial improve-

ment in computation time of the method, and derive

theoretical worst case error bounds. Experimental re-

sults and sensitivity analyses are presented in Section 6.

2 Background

In this section we provide a brief introduction to spec-

tral clustering, with particular attention to binary par-

titioning, and discuss existing methodology for dimen-

sion reduction based on the spectral clustering objec-

tive. Let X = {x1, . . . , xN} denote a dataset in R
d.

Then define the graph G = (V, E), where vertices cor-

respond to elements in X , and the undirected edges
assume weights equal to the pairwise similarities be-

tween data. The information in G can be represented

by the adjacency, or affinity matrix, A ∈ R
N×N , with

Aij = Eij := similarity(xi, xj). The degree of the i-th

vertex is defined as di =
∑N

j=1Aij , and the degree ma-
trix is defined as D = diag(d1, . . . , dN ). For a subset

C ⊂ X , the size of C can be measured either by its
cardinality, |C|, or by its volume, vol(C) := ∑

i:xi∈C di.

Definition 1 The normalised minimum-cut of a graph

is the solution to the optimisation problem

min
C⊂X

∑

i,j:xi∈C,xj∈X\C

Aij

(

1

size(C) +
1

size(X \ C)

)

. (1)

When size(C) = |C| the above objective is referred to

as Ratio Cut (Hagen and Kahng, 1992), whereas when

size(C) = vol(C) it is known as Normalised Cut (Shi and

Malik, 2000). Hagen and Kahng (1992) and Shi and Ma-

lik (2000) have shown that the normalised minimum-

cut problems arising from these two definitions of size

can be formulated in terms of the graph Laplacian ma-

trices,

(standard) L = D −A, (2)

(normalised) LN = D−1/2LD−1/2, (3)

as follows. For C ⊂ X define uC ∈ R
N to be the vector

with i-th entry,

uCi =

{
√

size (X \ C) /size(C), if xi ∈ C
−
√

size (C) /size(X \ C), if xi ∈ X \ C. (4)

For size(C) = |C|, the optimisation problem in (1) can

be written as,

min
C⊂X

(uC)⊤LuC s.t. uC ⊥ 1, ‖uC‖ =
√
N. (5)

If instead size(C) = vol(C) then (1) is equivalent to,

min
C⊂X

(uC)⊤LuC s.t. DuC ⊥ 1, (uC)⊤DuC = vol(X ). (6)

Both problems in (5) and (6) are NP-hard (Wagner

and Wagner, 1993). However continuous relaxations, in

which the discreteness condition on uC , Eq. (4), is re-

moved, can be solved in quadratic time (Hagen and

Kahng, 1992; Shi and Malik, 2000). The solutions to

the relaxed problems are given by the second eigenvec-

tor of L, and the second eigenvector of the generalised
eigen-equation Lu = λDu respectively. The latter is

thus equivalently solved by D−1/2u, where u is the sec-

ond eigenvector of LN. The above approach readily ex-

tends to the problem of obtaining a K-partition of the

dataset. In this case the solution is obtained from the

eigenvectors corresponding to the K smallest eigenval-

ues of L or LN (von Luxburg, 2007), respectively.

Dimension reduction based on the spectral cluster-

ing objective using the normalised graph Laplacian was

first considered by Niu et al. (2011). The objective con-

sidered by the authors is equivalent to the objective we

consider, and can be formulated as follows,

max
U,V

trace(U⊤D−1/2AD−1/2U) (7a)

s.t. U⊤U = I (7b)

Aij = k(‖V ⊤xi − V ⊤xj‖) (7c)

V ⊤V = I. (7d)

Note that since LN = I−D−1/2AD−1/2, the trace max-

imisation in (7a) is equivalent to minU,V trace(U⊤LNU).

The elements of the affinity matrix, A, are determined

by a function, k(·), of the pairwise distances of the

points projected into the subspace defined by the pro-

jection matrix V ; and D is the corresponding degree
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matrix. It is clear that for a given V the matrix U

that maximises the trace in (7a) has columns given by
the K eigenvectors associated with the K largest eigen-

values of D−1/2AD−1/2 (or equivalently the K smallest

eigenvalues of LN). To solve the problem in (7), Niu

et al. (2011) propose an algorithm that alternates be-
tween two stages: (i) for a fixed V a spectral decompo-

sition of LN determines the optimal U ; and (ii) fixing
U and D a gradient ascent method is used to maximise

trace(U⊤D−1/2AD−1/2U) with respect to V , where the

dependence of this objective on the projection matrix
V is through Eq. (7c). This process is then iterated.

However, this approach does not account for the fact
that the degree matrix D is a function of A and there-

fore it is itself a function of V . An ascent direction for

the objective assuming a fixed D is thus not necessarily

an ascent direction for the overall objective. We have

further observed that in practice this algorithm is not

guaranteed to lead to an increase in the overall objective

across iterations and may thus fail to converge. In the

following section we derive expressions for the gradient

of the overall objective as a function of the projection,

allowing us to optimise it directly.

3 Projection Pursuit for Spectral Connectivity

In this section we study the problem of minimising the

second eigenvalue of the graph Laplacian of the pro-

jected data. If the projected data are bi-partitioned

through spectral clustering, then the projection that
minimises the second eigenvalue of the graph Laplacian
minimises the connectivity between the two clusters, as
measured by spectral graph theory.

Let X = {x1, . . . xN} be a dataset in R
d. We define

the projection matrix V as a d × l matrix, with l <
d, whose columns {v1, . . . , vl}, have unit norm. With

this formulation it is convenient to express V in polar
coordinates. Let Θ = [0, π)(d−1)×l, then for θθθ ∈ Θ, the

projection matrix V (θθθ) is given by,

V (θθθ)ij =

{

cos(θθθij)
∏i−1

k=1 sin(θθθkj), i = 1, ..., d− 1
∏d−1

k=1 sin(θθθkj), i = d.
(8)

The l-dimensional projected data set is denoted by P(θθθ) =

{p(θθθ)1, . . . , p(θθθ)N} = {V (θθθ)⊤x1, . . . , V (θθθ)⊤xN}. We also

define the data matrix, X ∈ R
d×N , and the projected

data matrix P ∈ R
l×N , as matrices whose columns con-

tain the original and projected data, respectively.

We define L(θθθ) (resp. LN(θθθ)) as the Laplacian (resp.

normalised Laplacian) of the graph constructed from
the projected data set P(θθθ). Throughout we use λi(·)
to denote the i-th smallest eigenvalue of its real sym-

metric matrix argument, and we assume that all eigen-
vectors are normalised. Edge weights in the graph of

P(θθθ) are determined by a Lipschitz continuous and con-

tinuously differentiable similarity function s : Rl×N ×
{1 . . . N}2 → R

+, in that the affinity matrix is given

by,

A(θθθ)ij := s(P (θθθ), i, j) = k (d(p(θθθ)i, p(θθθ)j)/σ) , (9)

where k : R+ → R
+ is a smooth decreasing function,

d(·, ·) is a metric and σ > 0 is the scaling parameter. It

is common to use the Euclidean metric, however our ex-

perience has shown that projection pursuit for spectral

clustering can be sensitive to outliers when this met-

ric is used. This is especially the case when using the

standard Laplacian. To mitigate against this we define

a metric which encourages cluster boundaries to inter-

sect a chosen convex set, ∆∆∆(θθθ), which depends on the
projection θθθ. This is achieved by defining d(·, ·) so that

the resulting similarities between points outside ∆∆∆(θθθ),
which may be outliers, and other points, are increased.

A detailed discussion is provided in Appendix A.

A common requirement in linear dimension reduc-

tion methods is that the projection matrix V is or-

thonormal, that is V ⊤V = I. Niu et al. (2011) directly

enforce this constraint by generating the columns of V

sequentially and optimising each column over the null

space of previously determined columns. By restricting

the domain of the optimisation problem to the manifold

of d×l orthonormal matrices, known as the Stiefel man-

ifold, it is possible to optimise over the entire matrix

V (Edelman et al., 1998; Boumal et al., 2014). However,

optimisation algorithms operating over the Stiefel man-

ifold have only been shown to have guaranteed conver-

gence when the objective function is everywhere contin-

uously differentiable. As we discuss in the next section

this requirement is not necessarily met by the eigenval-

ues of graph Laplacians. We instead introduce a penalty

term into the objective function which leads to approx-

imately orthogonal projection matrices. Specifically, we

consider the objective,

min
θθθ∈Θ

λ2(L(θθθ)) + ω
∑

i 6=j

(

V (θθθ)⊤i V (θθθ)j
)2
, (10)

or replacing λ2(L(θθθ)) with λ2(LN(θθθ)) in the normalised
case. As in the case of optimising over the Stiefel man-

ifold, this formulation enables us to update the entire
matrix V at each iteration. This is an important advan-

tage because the expensive computation of the eigen-
value of the graph Laplacian is performed once rather

than l times for each complete update of V .
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3.1 Continuity and Differentiability

In this subsection we investigate the continuity and

differentiability properties of λ2(L(θθθ)) and λ2(LN(θθθ)),

which are required to establish global convergence of

the optimisation algorithm discussed in Section 3.2.

To begin with, simple applications of the inequali-

ties of Weyl (1912) and Schur (1911) give us,

|λi(L(θθθ))− λi(L(θθθ
′))| ≤ N

√

max
ij

|L(θθθ)− L(θθθ′)|ij .

By assumption the similarity function, s, is Lipschitz
continuous in P ∈ R

l×N for fixed i, j. The elements of

L(θθθ) are therefore Lipschitz continuous as compositions

of Lipschitz functions (V (θθθ) is Lipschitz in θθθ as a collec-

tion of finite products of Lipschitz functions). Thus the

objective λ2(L(θθθ)) is Lipschitz continuous in θθθ. An anal-

ogous argument can be used to show that λ2(LN(θθθ)) is

Lipschitz continuous. Rademacher’s theorem therefore

tells us that λ2(L(θθθ)) and λ2(LN(θθθ)) are almost every-

where differentiable (Polak, 1987). Generalised gradient

descent methods therefore provide a natural framework

for finding locally optimal projections for spectral bi-

partitioning (Polak, 1987).

Eigenvalue optimisation is made challenging by the

fact that eigenvalues are only guaranteed to be differen-

tiable when they are simple, i.e., are not repeated. How-

ever, minimising the smallest eigenvalue tends to sepa-

rate it from other eigenvalues, and therefore the issue

of non-differentiability becomes less of a concern (Lewis

and Overton, 1996). A basic property of graph Lapla-
cian matrices is that both λ1(L) and λ1(LN) are al-

ways equal to zero (von Luxburg, 2007). If the similar-

ity function, s, is strictly positive, then λ2(L(θθθ)) and

λ2(LN(θθθ)) are bounded away from zero. Therefore min-

imising λ2(·) tends to separate it from other eigenval-
ues, guiding the search to regions of the domain where

the objective function is differentiable. Nonetheless, we
cannot guarantee that λ2(L(θθθ)) and λ2(LN(θθθ)) are sim-

ple throughout the optimisation procedure. We next

provide expressions for the derivatives of λ2(L(θθθ)) and

λ2(LN(θθθ)) as functions of θθθ, when they are simple. Us-

ing these we then establish that these eigenvalue objec-

tives are in fact continuously differentiable when they
are simple.

A useful formulation of eigenvalue derivatives is found

in (Magnus, 1985, Th. 1); if λ is a simple eigenvalue of

a real symmetric matrix M , then λ is infinitely differ-
entiable on a neighbourhood of M , and the differential

at M is given by,

dλ = u⊤d(M)u, (11)

where u is the corresponding eigenvector. As previously

mentioned s(P, i, j) is assumed to be continuously dif-

ferentiable in P ∈ R
l×N for fixed i, j ∈ {1 . . . N}. The

derivative Dθθθλ2(·) is given by the (d−1)×l matrix with

i-th column Dθθθi
λ2(·), which can be obtained through

the chain rule decomposition,

Dθiθiθiλ2(·) = DPλ2DV P DθiθiθiV,

where D·· is the differential operator. Since only the i-
th column of V depends on θθθi, and only the i-th row of

P depends on Vi, this product can be simplified as

Dθiθiθiλ2(·) = DPi
λ2DVi

PiDθiθiθiVi,

where Pi is used to denote the i-th row of P , while
Vi and θθθi are, as usual, the i-th columns of V and θθθ

respectively. By definition DVi
Pi = X⊤, while Dθθθi

Vi ∈
R

d×(d−1) is obtained by differentiating Eq. (8), and is

given by,

∂V (θθθ)ji
∂θθθki

=



































0, j<k

−sin(θθθki)
k−1
∏

m=1
sin(θθθmi), j=k<d

cos(θθθki)cos(θθθji)
∏

m<j,m 6=k

sin(θθθmi), k<j<d

cos(θθθki)
∏

m 6=k

sin(θθθmi), j=d.

(12)

Finally, in the case of the standard Laplacian, we find,

∂λ2(L)

∂Pij
=

1

2

∑

m,n

(um−un)2
∂s(P,m,n)

∂Pij
, (13)

and for the normalised Laplacian we instead have,

∂λ2(LN)

∂Pij
=
1

2

∑

m,n

(

um√
dm

− un√
dn

)2
∂s(P,m,n)

∂Pij

−λ
∑

m,n

u2m
dm

∂s(P,m,n)

∂Pij
. (14)

Complete derivations of Eqs. (13) and (14) can be
found in Appendix B. The elements of the eigenvec-
tor, u, are continuous since we have assumed the corre-

sponding eigenvalue λ2(·) to be simple (Magnus, 1985).

In addition we have assumed that s is continuously dif-

ferentiable. Therefore, the product DPλ2DV P DθiθiθiV is

continuous in θθθ, as desired.

If λ2(·) is not simple at θθθ the derivative Dθθθλ2(·) may
not be defined. Gradient sampling (Burke et al., 2006)
can be applied to minimising objectives which are not

differentiable everywhere. The method works by sam-

pling points within a shrinking radius, ǫ, of the current

iterate. The convex hull of the gradients at these sam-

pled points acts as an approximation for the Clarke ǫ-

subdifferential, and the minimum norm element of this
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convex hull provides an approximate steepest descent

direction. This approach is appealing for its broad ap-

plicability and almost sure convergence to a local min-

imum on objectives which are locally Lipschitz and al-

most everywhere continuously differentiable. However

to obtain a search direction at each iteration a quadratic

program has to be solved, the formulation of which

requires O(d) gradient computations. This makes the
method computationally expensive for large problems.

We consider a simple modification which exploits the

properties of eigenvalues of graph Laplacians, and uses

directional derivatives to derive optimality conditions.

The eigenvalues of a real symmetric matrix can be
expressed as the difference between two convex matrix

functions (Fan, 1949). Therefore λ2(L(θθθ)) and λ2(LN(θθθ))

are directionally differentiable everywhere. Overton and

Womersley (1993) provide an expression for the direc-

tional derivative of the sum of the K largest eigenvalues

of a matrix whose elements are continuous functions
of a parameter, at a point of non-simplicity of the K-

th largest eigenvalue. We discuss the case of λ2(L(θθθ)),
where λ2(LN(θθθ)) is analogous. Consider the function

FK :RN×N →R which takes as input a square matrix

and returns the sum of its K largest eigenvalues. Then,

λ2(L(θθθ))=F
N−1(L(θθθ))−FN−2(L(θθθ)).

Now consider a θθθ such that,

λN (L(θθθ))> · · ·>λN−r+1(L(θθθ))>

λN−r(L(θθθ))= · · ·=λN−K+1(L(θθθ))=

· · ·=λN−r−t+1(L(θθθ))

>λN−r−t(L(θθθ))> · · ·>λ1(L(θθθ))=0.

That is, the K-th largest eigenvalue has multiplicity

t and K−r of the repeated eigenvalues are included

in the sum FK(L(θθθ)). Overton and Womersley (1993)

have shown that the directional derivative of FK(L(θθθ))

in the direction ψψψ, dFK(L(θθθ);ψψψ), is equal to,

F r





d−1
∑

i=1

l
∑

j=1

ψψψijR
⊤LijR



+FK−r





d−1
∑

i=1

l
∑

j=1

ψψψijQ
⊤LijQ



 ,

where Lij=∂L(θθθ)/∂θθθij , the j-th column of the matrix

R∈R
N×r is equal to the eigenvector associated with the

j-th largest eigenvalue of L(θθθ), and the j-th column of

the matrix Q∈R
N×t is equal to the eigenvector associ-

ated with the (r+j)-th largest eigenvalue of L(θθθ). The
directional derivative of λ2(L(θθθ)) in the direction ψψψ is

thus,

dλ2(L(θθθ);ψψψ)=dF
N−1(L(θθθ);ψψψ)−dFN−2(L(θθθ);ψψψ)

=λ1





d−1
∑

i=1

l
∑

j=1

ψψψijQ
⊤LijQ



 , (15)

where the columns of Q are given by the complete set

of eigenvectors for the eigenvalue λ=λ2(L(θθθ)).

3.2 Minimising λ2(L(θθθ)) and λ2(LN(θθθ)).

Applying standard gradient descent methods to func-

tions which are almost everywhere differentiable can re-

sult in convergence to sub-optimal points (Wolfe, 1972).

This occurs when the method for determining the gra-

dient is applied at a point of non-differentiability and

produces a non-descent direction. In this case the algo-

rithm cannot reduce the objective function value and

terminates at a point that is not necessarily a local

minimum. The second eigenvalues of the graph Lapla-

cian matrices, while not necessarily differentiable ev-

erywhere, benefit from the fact that their minimisation

tends to separate them from other eigenvalues. Thus a

standard gradient descent algorithm performs well on

these objectives, very often converging to locally opti-

mal solutions. Our approach for minimising λ2(L(θθθ))
and λ2(LN(θθθ)), therefore assumes them to be contin-

uously differentiable until there is evidence that this

assumption fails. Only then is it necessary to use the

computationally more expensive gradient sampling al-

gorithm to identify a descent direction.

Our approach is summarised in Algorithm 1. Once
again we discuss only λ2(L(θθθ)) explicitly, noting that

the methodology for minimising λ2(LN(θθθ)) is equiva-
lent, with the only difference being in the computation

of the gradients and directional derivatives.

At each iteration a standard gradient-based algo-

rithm with inexact line-search is used to minimise the

objective function using the formulation for the gradi-

ent presented in Section 3.1. When this algorithm ter-
minates, say with solution θθθ⋆, either the magnitude of

the computed gradient is below a threshold, or a suffi-
cient decrease in the objective function value was not

feasible. We then need to verify whether θθθ⋆ is a local

minimum. If λ2(L(θθθ
⋆)) is simple then λ2(·) is contin-

uously differentiable at θθθ⋆, and therefore θθθ⋆ is close

to a local minimiser. In this case the algorithm ter-

minates. On the other hand, if λ2(L(θθθ
⋆)) is not sim-

ple, then θθθ⋆ may or may not be a local minimiser.

The directional derivative formulation in Eq. (15) pro-

vides a computationally efficient way to determine if
a descent direction from θθθ⋆ exists. In particular, if at

θθθ⋆, Q⊤LijQ≈0 for all pairs, i, j, then the directional

derivative dλ2(L(θθθ
⋆);ψψψ) is approximately zero for all di-

rections ψψψ. In this case the algorithm terminates as θθθ⋆ is

sufficiently close to a local minimiser. If this condition

is not met a descent directions exists, that is ∃ψψψ∈Θ s.t.

λ1

(

∑d−1
i=1

∑l
j=1ψψψijQ

⊤LijQ
)

<0. At this point a single
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step of the gradient sampling algorithm is performed.

As in the standard gradient sampling algorithm (Burke

et al., 2006) the magnitude of the sampling radius ǫ

is progressively reduced until a valid descent direction

is identified, or the radius is reduced beyond a user-

specified threshold ǫf . In the latter case the current
solution is considered sufficiently close to a local min-

imiser and the algorithm terminates. In the former case,
once a valid descent direction is identified θθθ⋆ is updated

using an inexact line-search algorithm.

Termination under any of the above criteria indi-

cates the identification of a local minimiser. Moreover,
the convergence of the method is guaranteed under the

same analyses as for gradient descent on smooth func-
tions (Nocedal and Wright, 2006) and gradient sam-
pling (Burke et al., 2006).

Algorithm 1: Minimising λ2(L(θθθ))

Input: Initial projection θθθ0, optimality tolerance τ ,
initial sampling radius for gradient sampling ǫ0,
minimum sampling radius ǫf , radius reduction
factor η, number of sampled gradients ng

Output: Optimal projection θθθ⋆

θθθ⋆←θθθ0
ǫ←ǫ0
while ǫ>ǫf do

# apply standard gradient descent to convergence

θθθ⋆←GradientDescentSolution(θθθ⋆)
# check for optimality of the solution

if λ2(L(θθθ⋆)) is simple or maxi,j |Q⊤LijQ|<τ then
return θθθ⋆

else
# obtain gradients at points sampled uniformly in a

# ball of radius ǫ around the current solution

for i=1 . . .ng do
θθθi∼U(Bǫ(θθθ⋆))
ΓΓΓ i←Dθθθλ2(L(θθθ))|θθθ=θθθi

end for
# obtain the search direction

ΓΓΓ s←argminΓΓΓ∈conv({ΓΓΓ 1,...,ΓΓΓng})‖ΓΓΓ‖F
# if the magnitude of the search direction is below

# the optimality threshold decrease sampling radius

if ‖ΓΓΓ s‖F <τ then
ǫ←ηǫ

else
# update solution using inexact line-search

ν⋆← ≈argminν>0λ2(L(θθθ⋆−νΓΓΓ s))
θθθ⋆←θθθ⋆−ν⋆ΓΓΓ s

end if
end if

end while
return θθθ⋆

A brief derivation of the computational complex-

ity of each iteration of the method is provided in Ap-

pendix C. Each step in the standard gradient descent al-

gorithm requires O(lN(N+d(d−1))) operations. The

gradient sampling step requires O(d) gradient compu-

tations, therefore having complexity O(dlN(N+d(d−
1))). The complexity of computing the optimality con-

ditions using directional derivatives is similar, requiring

O(t2lN(n+d(d−1))) operations, where t is the multi-

plicity of the eigenvalue λ=λ2(L(θθθ)). Our experience
with this method indicates that the algorithm almost

always terminates with λ2(·) being simple, without the
need for any gradient sampling or directional derivative

computations.

Figure 1 shows two dimensional plots of three of the

datasets used in our experiments in Section 6. The left

plots show projections of the data onto the first two

principal components. The right plots show the opti-
mal projections obtained by minimising the objective
in (10), using the normalised Laplacian. Figure 1(a)
shows an example where the principal components do

not allow a clear identification of any of the clusters,

whereas the optimal projection for spectral clustering

clearly admits a strong separation of one of the clusters

from the remainder. Figures 1(b) and 1(c) show that

when there is moderate separability of clusters within

the PCA projection used for initialisation, optimisation

of the spectral connectivity increases the separabilty

and makes the individual clusters more compact within
the projected space.

4 Connection to Maximum Margin

Hyperplanes

Maximum margin hyperplanes have become a unify-

ing principle in data classification tasks. Starting with
the fully supervised problem using support vector ma-
chines (Vapnik and Kotz, 1982), the methodology has

been extended to semi-supervised classification (Joachims,

1999), and more recently to the problem of maximum

margin clustering (Xu et al., 2004; Zhang et al., 2009).

In this section, we establish a connection between
the optimal univariate projection for spectral cluster-

ing and maximum margin hyperplanes for clustering.

In particular, we show that under suitable conditions,

as the scaling parameter, σ, tends to zero, the optimal

univariate projection for spectral bi-partitioning con-

verges to the vector normal to the largest margin hy-

perplane through the data. This establishes a theoreti-
cal connection between separability measured by spec-
tral graph theory, and standard notions of separation

in terms of the Euclidean metric. Connections between

maximum margin hyperplanes and Bayes optimal hy-

perplanes (Tong and Koller, 2000) as well as minimum

density hyperplanes (Pavlidis et al., 2016) have pre-

viously been established. The result we discuss herein
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(a) Yale Faces B

(b) Isolet

(c) Multiple Feature Digits

Fig. 1 Two dimensional projections of publicly available
datasets. PCA (left) and optimal projection for spectral clus-
tering (right).

therefore connects spectral connectivity to these objec-

tives as well.

In this section we use the notation v(θθθ) instead of
V (θθθ) to stress that the we are concerned with univari-

ate projections. A hyperplane is a translated subspace
of co-dimension 1, and can be parameterised by a vec-
tor v∈R

d \{0} and a scalar b as the set H(v,b)={x∈
R

d
∣

∣v⊤x=b}. No generality is lost if v is assumed to have

unit norm, thus the same parameterisation by θθθ can be

used. For a finite set of points X in R
d, the margin of

hyperplaneH(v(θθθ), b) w.r.t. X is the minimal Euclidean

distance between H(v(θθθ), b) and X ,

margin(v(θθθ), b)=min
x∈X

|v(θθθ)⊤x−b|. (16)

The set ∆∆∆(θθθ) again plays an important role as in

many cases the largest margin hyperplane through a

set of data separates only a few points from the rest,

making it meaningless for the purpose of clustering. For

the theory presented herein we consider an arbitrary

convex and compact set ∆∆∆⊂R
d and define ∆∆∆(θθθ) to be

the projection of ∆∆∆ onto v(θθθ). What we in fact show

in this section is that there exists a set ∆∆∆′⊂∆∆∆ satisfy-

ing ∆∆∆′∩X =∆∆∆∩X , such that, as the scaling parameter

tends to zero, the optimal projections for λ2(L(θθθ)) and

λ2(LN(θθθ)) converge to the vector admitting the largest
margin hyperplane that intersects ∆∆∆′. The distinction

between the largest margin hyperplane intersecting ∆∆∆′

and that intersecting ∆∆∆ is scarcely of practical rele-

vance, but plays an important role theoretically. It ac-

counts for situations when the largest margin hyper-

plane intersecting ∆∆∆ lies close to its boundary and the

distance between the hyperplane and the nearest point
outside ∆∆∆ is larger than to the nearest point inside ∆∆∆.

Aside from this very specific case, the two solutions in
fact coincide.

The following theorem is the main result of this
section. The proof and supporting results are provided

in Appendix D. The result holds for all similarities in
which the function k, in Eq. (9), satisfies the tail condi-

tion limx→∞ k((1+ǫ)x)/k(x)=0 for all ǫ>0. This con-

dition is satisfied by functions with exponentially decay-

ing tails, including the popular Gaussian and Laplace

kernels, but not those with polynomially decaying tails.

The proof of the result relies on obtaining upper

and lower bounds on the magnitude of λ2(L(θθθ)) and

λ2(LN(θθθ)) which depend essentially on k(M/σ), where

M is the largest gap between consecutive points in
P(θθθ). Notice that M is equal to twice the maximum

margin of all hyperplanes orthogonal to v(θθθ). These
bounds show immediately that as σ approaches zero,

if λ2(L(θθθ1))<λ2(L(θθθ2)) (or λ2(LN(θθθ1))<λ2(LN(θθθ2)))

then the maximum margin of all hyperplanes orthog-

onal to v(θθθ1) is greater than the maximum margin of

all hyperplanes orthogonal to v(θθθ2). The convergence
of the optimal projection itself to the vector normal to

the maximum margin hyperplane uses a property of the
maximum margin hyperplane established by Pavlidis
et al. (2016).

Theorem 2 Let X ={x1, ...,xN} be a finite set of points

in R
d and suppose that there is a unique hyperplane,

which can be parameterised by (v(θθθ⋆), b⋆), intersecting

∆∆∆′ and attaining maximal margin on X . Let k :R+→
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R+ be decreasing, positive and satisfy limx→∞ k((1+

ǫ)x)/k(x)=0 for all ǫ>0. For σ>0 define

θθθσ :=argminθθθ∈Θλ2(L(θθθ,σ)),

θθθNσ :=argminθθθ∈Θλ2(LN(θθθ,σ)),

where there is now an explicit dependence on the scaling

parameter, σ. Then,

lim
σ→0+

v(θθθσ) = lim
σ→0+

v(θθθNσ ) = v(θθθ⋆).

We note that the same result holds when using the
Euclidean metric. In this case the optimal projection

based on spectral connectivity converges to the vector

normal to the maximum margin hyperplane through

the data. The importance of constraining the maxi-

mum margin hyperplane to avoid separating only out-

liers was also observed by Xu et al. (2004) and Zhang

et al. (2009).

While the above result is only established for uni-
variate projections, we have observed empirically that if

a decreasing sequence of scaling parameters is employed
for a multivariate projection, then the projected data,
P(θθθ), tend to exhibit large Euclidean separation. This

is illustrated in Figure 2 which shows two dimensional

plots of the 72 dimensional yeast cell cycle analysis

dataset (Bache and Lichman, 2013). The left plots show

the true clusters, while the right plots show the cluster

assignments made by the algorithm. In Figure 2(a) the
horizontal axis corresponds to the optimal projection
obtained by minimising λ2(LN(θθθ)) for a decreasing se-

quence of scaling parameters, while the vertical axis is

the direction of maximum variance orthogonal to this

vector. Figure 2(b) instead shows the result of two di-

mensional projection pursuit for a decreasing sequence

of scaling parameters.

5 Speeding up Computation

Each step in the projection pursuit algorithm involves
the solution of an eigen problem which requires O(N2)

operations. In this section we discuss how preprocess-
ing a dataset using microclusters (Zhang et al., 1996)

can reduce this cost significantly, and derive theoretical
bounds on the approximation error. Microclusters are

small clusters of data which can in turn be clustered

to obtain a complete clustering of a data set. A mi-

crocluster based approach to reduce the computational

cost of the standard spectral clustering algorithm has
been previously proposed by Yan et al. (2009). In this
work we use microclusters to obtain an approximation
of the optimisation surface for projection pursuit which

is significantly less expensive to explore.

(a) One dimensional projection pursuit

(b) Two dimensional projection pursuit

Fig. 2 Large Euclidean separation of yeast cell cycle dataset
by decreasing the scaling parameter during one and two di-
mensional projection pursuit.

In the microcluster approach, the data set is re-

placed by m points, {c1, . . . , cm}, which represent the

centres of a m-way clustering of X . By projecting these

microcluster centres during projection pursuit rather
than the data the computational cost associated with
each eigen problem is reduced to O(m2). If we define

the radius, ρ, of a cluster C to be the largest distance

between any one of its members and its centre,

ρ(C)=max
x∈C

∥

∥

∥

∥

∥

x− 1

|C|
∑

x∈C

x

∥

∥

∥

∥

∥

, (17)

then we expect the approximation error to be small

whenever the microcluster radii are small. This rela-

tionship is shown in the following lemma. The proof of

the lemma, which is given in Appendix D, relies on a
result from matrix perturbation theory for diagonally
dominant matrices (Ye, 2009, Th. 3.3)

Lemma 3 Let C=C1, . . . ,Cm be a m-way clustering of

X with centres c1, . . . , cm, radii ρ1, ...,ρm and counts

n1, ...,nm. For θθθ∈Θ define N(θθθ),B(θθθ)∈R
m×m where
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N(θθθ) is the diagonal matrix with,

N(θθθ)i,i=

m
∑

j=1

njs(P
c(θθθ), i, j),

and

B(θθθ)i,j=
√
ninjs(P

c(θθθ), i, j),

where P c(θθθ)={V (θθθ)⊤c1, ...,V (θθθ)⊤cm} are the projected

microcluster centres and the similarities are given by

s(P c(θθθ), i, j)=k(d(V (θθθ)⊤ci,V (θθθ)⊤cj)/σ), and k(x) is pos-

itive and non-increasing for x≥0. Then,

|λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6max
i 6=j

max

{

1− k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
,

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1

}

,

where Dij=d(V (θθθ)⊤ci,V (θθθ)⊤cj) and (x)+=max{0,x}.

The bound in the above lemma depends on θθθ via

the quantity Dij . Uniform bounds can be derived for

specific functions, k. For example, if using the Gaussian

kernel, k=exp(−x2/2), then we can show that

|λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6max
i 6=j

exp

(

(ρi+ρj)
2+2(ρi+ρj)Diam(X )

2σ2

)

−1.

If k is the Laplace kernel, k(x)=exp(−|x|), then we

instead have

|λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6max
i 6=j

exp

(

ρi+ρj
σ

)

−1.

Clearly if the radii of the microclusters are small rela-

tive to the scale parameter, σ, then these bounds are

close to zero. However the uniform bounds are pes-

simistic, and to obtain a reasonable bound on the ap-

proximation surface, as many as m≈0.6N might be

needed, leading to only a threefold speed up. We have

observed empirically, however, that even for m=0.1N
(and sometimes lower) one still obtains a close approx-

imation of the optimisation surface. This renders the

projection pursuit of the order of 100 times faster. While

bounds of the above type are not verifiable for LN(θθθ)

since this matrix is not diagonally dominant, a similar

degree of agreement between the true and approximate

eigenvalues has been observed.

Once an optimal projection has been determined,

the corresponding bi-partition needs to be established.

We again use the microclusters to determine this par-

tition. Let P(θθθ)′= {V (θθθ)⊤c1, V (θθθ)⊤c1, . . . ,V (θθθ)⊤cm,

V (θθθ)⊤cm}, where each V (θθθ)⊤ci is repeated ni times.

P(θθθ)′ therefore represents an approximation of the pro-
jected data set, where each datum is replaced by the

center of its assigned microcluster. It is straightforward
to verify that if uC ∈R

m is the second eigenvector of

N(θθθ)−B(θθθ), then the vector u∈R
N , with ui=u

C
j /

√
nj

for all i s.t. xi is assigned to microcluster j, is the sec-

ond eigenvector of the Laplacian of P(θθθ)′. The vector

u therefore represents an approximation of the second
eigenvector of L(θθθ). In case of the normalised Laplacian

the m×m matrix is given by the normalised Lapla-

cian of the graph of Pc(θθθ) with similarities given by

ninjs(P
c(θθθ), i, j). This matrix has the same structure

as the original normalised Laplacian, the only difference

being the introduction of the factors ni,nj . The ap-
proximation of the second eigenvector of LN(θθθ) is again

given by u∈R
N satisfying ui=u

C
j /

√
nj whenever xi is

in microcluster j, where uC ∈R
m is the second eigenvec-

tor of the normalised Laplacian of the graph of Pc(θθθ).

This approximate eigenvector is then used to determine

the partition of the data.

6 Practical Implementation and Experimental

Results

We have found that projection pursuit based on both

λ2(L(θθθ)) and λ2(LN(θθθ)) leads to high quality cluster-
ing results. However, we have observed empirically that

the minimisation of λ2(LN(θθθ)) is more robust to vary-

ing parameter settings, and we recommend using this

objective. Our complete clustering algorithm, which we

will refer to as Spectral Clustering Projection Pursuit

(SCPP), is summarised in Algorithm 21. Starting with

all the data in a single cluster, we recursively bi-partition

the data until we have the desired number of clusters.

At each iteration we simply split the largest cluster in

the current partition. To split a cluster, we first obtain

m microclusters from it, for which we use the K-means
algorithm. We then apply Algorithm 1 to obtain the

optimal projection, θθθ⋆, based on Eq. (10). Recall that

the normalised Laplacian based on (weighted) projected

microcluster centers Pc(θθθ)={V (θθθ)⊤c1, ...,V (θθθ)⊤cm} is

given by

LN(θθθ)=D(θθθ)−1/2L(θθθ)D(θθθ)−1/2

=I−D(θθθ)−1/2A(θθθ)D(θθθ)−1/2,

1 An R implementation of the SCPP algorithm is available
at https://github.com/DavidHofmeyr/SCPP



Minimum Spectral Connectivity Projection Pursuit 11

Algorithm 2: SCPP

Input: Dataset X , number of clusters K
Output: Partition Π of X into K clusters
# Initialise Π as the set containing X
Π←{X}
while |Π|<K do

# Select the next cluster to split, C′
C′←argmaxC∈Π |C|
# Obtain centers and counts from microclustering of C′
[{c1...cm},{n1...nm}]←Microcluster(C′)
# Optimise projection for spectral clustering of Pc(θθθ)
θθθ⋆←argminθθθλ2(LN(θθθ))+ω

∑

i 6=j(V (θθθ)⊤i V (θθθ)j)2

# Find the first two eigenvectors of LN(θθθ⋆)
Uc←argminU trace(U⊤LN(θθθ⋆)U) s.t. U⊤U=I
# Get approximate eigenvectors of Laplacian of

V (θθθ⋆)⊤C′
U←Ui=Uc

j /
√
nj ⇐⇒ xi∈microcluster j

# Normalise the rows of U
Ui←Ui/‖Ui‖, ∀ i=1, . . . ,N
# Bi-partition rows of U using k-means

[U1,U2]←K−means(U,2)
# Obtain corresponding split of C′
C1←∪i:Ui∈U1

{xi},C2←∪i:Ui∈U2
{xi}

# Update overall partition Π
Π←(Π \{C′})∪{C1,C2}

end while
return Π

whereA(θθθ)ij=ninjs(P
C(θθθ), i, j) andDii=

∑m
j=1A(θθθ)ij .

To obtain a bi-partition of the cluster we use the method
recommended by Ng et al. (2002). For this we obtain

the first two eigenvectors of LN(θθθ
⋆) as the matrix U c∈

R
m×2. From these we obtain the approximate eigenvec-

tors of the Laplacian of the complete set of projected

points as the matrix U ∈R
N×2, with i-th row equal to

the j-th row of U c divided by
√
nj for each xi in micro-

cluster j. We then normalise the rows of U and apply
K-means for K=2. For the sake of easier interpretabil-

ity we make our algorithm completely deterministic by

initialising all implementations of K-means as follows.

We select the first center to be the point furthest from

the mean of the data. We then iteratively add to the set

of initial centers the furthest point from the current set.

The clustering model obtained by the SCPP algorithm

has a binary tree structure, as illustrated in Figure 3.

The figure shows a divisive hierarchical clustering of

the 256 dimensional phoneme dataset (Hastie et al.,

2009). Each scatter plot shows the data assigned to the

corresponding node in the model projected into the op-

timal subspace based on the minimisation of the sec-

ond eigenvalue of the Laplacian matrix. In Figure 3(a)

the colours indicate the binary partitions made by the

SCPP algorithm, while in Figure 3(b) the colours show

the true cluster labels of the data. The model has ac-

curately partitioned the clusters; indicated by the fact

that the leaf nodes each contain primarily data of a
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(b) With true cluster la-
bels

Fig. 3 Hierarchical clustering model obtained by SCPP on
phoneme dataset

single cluster, and aside from the two clusters arising
in the bottom most level of the hierarchy no cluster is

split among multiple leaves.

6.1 Parameter Settings for SCPP

For the experiments herein, we use the following set-
tings. In all cases the data dependent settings are deter-
mined for each partition using the subset of the data be-
ing split. We set l, the dimension of the projection, to 2

as this is the lowest number of dimensions which admits
non-linear separation of clusters. We initialise the pro-
jection pursuit using the first two principal components.

We have found that this often leads to higher quality
solutions compared to random initialisations. Experi-
ments with higher dimensional projections (l>2) have

not shown substantially improved performance. Simi-

larities between projected points are determined using

the Gaussian kernel, i.e.,

A(θθθ)i,j=ninj exp

(

d(V (θθθ)⊤ci,V (θθθ)⊤cj)
2

2σ2

)

,

where ci and cj are the centers of the i-th and j-th

microclusters respectively, and ni and nj are the sizes

of these microclusters. The scale parameter is set to

σ=
√

λ̄

(

4

3N

)
1

4+d⋆

,

where λ̄ is the average of the largest d⋆ eigenvalues
of the covariance matrix, Σ, and d⋆=min{20, |λ(Σ)∩
[1,∞)|}. Here λ(Σ) is the set of eigenvalues of the co-

variance matrix, and thus |λ(Σ)∩ [1,∞)| is the num-

ber of eigenvalues of Σ greater than or equal to one.

This latter term has been used to estimate the intrinsic
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dimensionality of a dataset whose columns have been

standardised to have unit variance (Kaiser, 1960). We

choose to place an upper bound on this value as for

some very high dimensional datasets the resulting value

of σ was extremely small relative to the actual scale of

the data. The precise value of this upper bound does not
affect performance of the method substantially. Setting

σ in this way captures the scale of the data through the

factor
√
λ̄, while

(

4
3N

)
1

4+d∗ is borrowed from kernel den-

sity bandwidth estimation, where connections between

spectral clustering and kernel density estimation have

been established (Trillos et al., 2016; Hofmeyr, 2017).

Now, recall that we use ∆∆∆(θθθ) to mitigate the influ-
ence of outliers. We define ∆∆∆(θθθ)=∆1×·· ·×∆l, where

∆i=[µi−βσi,µi+βσi]; µi and σi are the mean and

standard deviation of the i-th component of the pro-

jected data respectively; and β>0 controls the size of

∆∆∆(θθθ). Rather than attempting to define a single value
of β which is appropriate for all datasets, we initialise β

to a large value, β=3, and decrease β until the induced
bi-partition is sufficiently balanced. For this we define

a minimum cluster size, the average cluster size in the

complete clustering solution divided by 5. That is, we

decrease β until the smaller of the two clusters contains

at least N
5K points, where N is the number of data in

the complete dataset being clustered. Again the pre-

cise value is not important for performance. We select

a value which is small enough to allow the detected clus-

ters to vary greatly in size, but large enough that the
performance of the method is not compromised when
clustering datasets containing a substantial number of
outliers. Note that in general we do not have to execute

the optimisation of θθθ to convergence for each value of

β, since a few iterations generally suffice to determine
if the optimisation is focusing on outliers. We therefore

terminate the optimisation as soon as the induced par-
tition does not meet the desired balance, reduce β, and

reinitialise.

The setting of the parameter ω, which controls the

penalisation of non-orthogonal projections, does not af-
fect the result substantially provided it is relatively
larger than the eigenvalues being optimised. We sim-
ply set ω=1 since λ2(LN(θθθ)) is bounded above by 1.

Finally, for our experiments we use a small number

of microclusters, m=200. A sensitivity study presented

in Section 6.4.2 using simulated data shows that even
for data sets of up to 10 000 points and in 50 dimen-

sions, 200 microclusters are sufficient to obtain high

quality clustering results.

6.2 Competing Approaches

We compare our approach against existing dimension
reduction methods for clustering, where the final clus-

tering result is determined using spectral clustering. We

use SC to refer to spectral clustering applied to the orig-

inal data, and SCPC and SCIC to refer to spectral clus-

tering applied to Principal and Independent Compo-

nent projections of the data respectively. DRSC refers

to dimensionality reduction for spectral clustering, pro-

posed by Niu et al. (2011). For SCPC, SCIC and DRSC
we considerK−1 dimensional projections, as suggested

by Niu et al. (2011). These approaches all directly seek

aK way partition of the data, which was obtained using

the method of Ng et al. (2002). In addition we compare

with the approach of recursively dividing the data in

the same manner as SCPP but using the first two prin-

cipal component projections. Since SCPP is initialised

using principal components, this allows us to more di-

rectly measure the benefit of optimising the projection

before applying spectral clustering. We will refer to this

method as SCrec
PC.

For all competing approaches except SCrec
PC we com-

pute clustering results for all values of σ in the set

{0.1,0.2,0.5,1,2,5,10,20,50, 100,200}, and select the

solution which gives the lowest cluster distortion mea-

sure. This selection criterion is recommended by Ng

et al. (2002) and Niu et al. (2011). We also compute the

clustering result for the local scaling approach of Zelnik-

Manor and Perona (2004). We report the highest per-
formance of these two in each case. We also provide
DRSC with a warm start via PCA as this improved
performance over a random initialisation, and provides

a fair comparison. For SCrec
PC, in order to assess the ef-

fect of the proposed projection pursuit as directly as
possible, we use the same parameters as in SCPP.

The connection between optimal projections for spec-

tral clustering and maximum margin clustering, estab-

lished in Section 4, also leads us to investigate the effec-

tiveness of the proposed approach for finding large mar-

gin clustering solutions. To obtain large margin solu-

tions we apply Algorithm 1 repeatedly for a decreasing

sequence of scaling parameters until convergence of the

projection matrix. We compare this approach with two

dedicated maximum margin clustering algorithms. The

iterative Support Vector Regression algorithm (Zhang

et al., 2009, iSVR) alternates between applying Sup-

port Vector Regression (SVR) using the assigned clus-

ter labels, and updating the labels based on the predic-
tions of the resulting SVR model. The Cutting Plane
Maximum Margin Clustering algorithm (Wang et al.,
2010, CPMMC) uses a series of convex relaxations of

the non-convex maximum margin clustering objective.
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The relaxed problems use cutting planes to progres-

sively improve the approximation of the original prob-

lem. For the proposed approach we consider both one-

and two-dimensional projections, to correspond with a

linear and non-linear kernel respectively in the context

of support vector methods. For iSVR we use both the

linear and Gaussian kernels, while for CPMMC we use

only the linear kernel, as in Wang et al. (2010).

It is important to note that these dedicated max-
imum margin clustering algorithms use a soft-margin,

which is a relaxation of the hard margin solution to

which SCPP converges. The soft-margin formulation

accommodates noise near otherwise large margin sepa-

rators by penalising points which lie within their mar-

gins rather than constraining the problem to exclude
such solutions. Wang et al. (2010) do not provide prac-
tical recommendations on how to tune the parameter

which controls the penalisation of such points. We used

the default values provided by the authors2. For iSVR

we use the parameter settings suggested by Zhang et al.

(2009).

6.3 Results

6.3.1 Spectral Clustering

We compare the different methods based on two popu-

lar evaluation metrics for clustering, namely Purity (Zhao
and Karypis, 2004), and Normalised Mutual Informa-
tion (NMI) (Strehl and Ghosh, 2002). These metrics
compare the cluster assignments with the true labels

of the data. Both take values in [0,1], with larger val-

ues indicating better performance. The following bench-
mark datasets were used for comparison. Optical recog-

nition of handwritten digits (Opt. Digits)3, Pen based
recognition of handwritten digits (Pen Digits)2, Mul-

tiple feature digits (M.F. Digits)2, Satellite2, Statlog

image segmentation (Image Seg.)2, Breast cancer Wis-

consin (Br. Cancer)2, Synthetic control chart (Chart)2,

Isolet2, Dermatology2, Yeast cell cycle analysis (Yeast)4,
Smartphone based activity recognition (Smartphone)2,

Yale faces dataset B 30 × 40 (Faces)5, Phoneme6. Be-
fore applying the clustering algorithms, data were scaled

so that every column had unit variance.

Clustering results for all methods considered are

given in Table 1. SCPP achieves the highest perfor-

mance in more than half the cases considered. Fur-

2 we used the implementation provided by the authors,
taken from https://sites.google.com/site/binzhao02/
3 https://archive.ics.uci.edu/ml/datasets.html
4 http://genome-www.stanford.edu/cellcycle/
5 https://cervisia.org/machine_learning_data.php/
6 https://web.stanford.edu/~hastie/ElemStatLearn/

thermore, in every case SCPP is competitive with the

method which obtained the highest performance on the

corresponding dataset. All other methods achieve sub-

stantially lower performance than SCPP in multiple ex-

amples.

The vastly different natures of the datasets consid-
ered means that the associated clustering tasks differ

in difficulty. This is evidenced by the range of perfor-

mance values achieved by the clustering algorithms on

different datasets. To combine the results from the dif-

ferent datasets we standardise them as follows. For each

dataset X we compute for each method the relative de-
viation from the average performance of all methods

when applied to X . That is, for each method, Mi, we

compute the relative purity,

Purity(Mi,X )− 1
#Methods

∑#Methods
j=1 Purity(Mj ,X )

1
#Methods

∑#Methods
j=1 Purity(Mj ,X )

,

(18)

and similarly for NMI. We can then compare the distri-
butions of the relative performance measures from all
datasets and for all methods. It is clear from Table 1

that the DRSC method is not competitive with other

methods in the examples considered, due to its substan-

tially inferior performance on multiple datasets. More-

over, the performance of DRSC is sufficiently low to

obscure the comparisons between other methods. We

therefore remove DRSC from this comparison and in

computing the relative performance measures. Figure 4
shows boxplots of the relative performance measures.
These plots show clearly that SCPP achieves substan-
tially higher performance overall than all other methods

considered.

Among competing spectral clustering variants, we
see that while both principal and independent compo-

nent projections are capable of improving the perfor-

mance of spectral clustering, across multiple datasets

the overall performance is not appreciably higher. In

fact, over multiple datasets and considering both eval-

uation metrics none of the four methods besides SCPP
sets itself apart from the others.

The proposed SCPP method is capable of achiev-

ing a substantial improvement over alternative spec-
tral clustering and combined spectral clustering and di-

mension reduction methods. The comparison between

SCPP and SCrec
PC also suggests that a substantial com-

ponent of the improved performance of SCPP is con-

tributed by the proposed projection pursuit method, as

opposed to incidental differences in implementation.
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SCPP DRSC SCPC SCIC SC SCrec
PC

Opt. Digits Purity 0.82 0.10 0.66 0.69 0.66 0.74
(N = 5620, d = 64, K = 10) NMI 0.80 0.03 0.63 0.67 0.63 0.68
Pen Digits Purity 0.84 0.44 0.77 0.77 0.87 0.72
(N = 10992, d = 16, K = 10) NMI 0.82 0.41 0.76 0.75 0.82 0.68
M.F. Digits Purity 0.80 0.66 0.75 0.72 0.77 0.75
(N = 2000, d = 216, K = 10) NMI 0.77 0.67 0.70 0.68 0.72 0.66
Satellite Purity 0.80 0.53 0.73 0.74 0.76 0.80
(N = 6435, d = 36, K = 6) NMI 0.66 0.22 0.61 0.62 0.62 0.66
Image Seg. Purity 0.62 0.38 0.56 0.76 0.50 0.58
(N = 2310, d = 19, K = 7) NMI 0.64 0.40 0.55 0.69 0.48 0.56
Br. Cancer Purity 0.97 0.89 0.97 0.97 0.96 0.97
(N = 699, d = 9, K = 2) NMI 0.78 0.51 0.81 0.82 0.76 0.79
Chart Purity 0.88 0.24 0.67 0.73 0.67 0.81
(N = 600, d = 60, K = 6) NMI 0.87 0.01 0.81 0.76 0.74 0.86
Isolet Purity 0.60 - 0.59 0.60 0.60 0.60
(N = 6238, d = 617, K = 26) NMI 0.74 - 0.69 0.67 0.69 0.70
Dermatology Purity 0.87 0.59 0.92 0.91 0.95 0.86
(N = 366, d = 34, K = 6) NMI 0.88 0.40 0.87 0.83 0.91 0.87
Yeast Purity 0.74 0.42 0.68 0.60 0.78 0.74
(N = 698, d = 72, K = 5) NMI 0.55 0.05 0.51 0.34 0.57 0.56
Smartphone Purity 0.71 - 0.61 0.70 0.67 0.66
(N = 10929, d = 561, K = 12) NMI 0.61 - 0.52 0.58 0.55 0.56
Faces Purity 0.66 - 0.68 0.69 0.73 0.60
(N = 5850, d = 1200, K = 10) NMI 0.70 - 0.77 0.82 0.76 0.62
Phoneme Purity 0.86 0.56 0.83 0.84 0.80 0.82
(N = 4509, d = 256, K = 5) NMI 0.82 0.45 0.84 0.76 0.71 0.70

‘-’ indicates that a clustering solution could not be obtained in a reasonable amount of time.

Table 1 Clustering performance. Highest performance in each case is highlighted in bold. Details of datasets in terms of
number of data (N), number of dimensions (d), and number of clusters (K) are provided.

6.3.2 Large Margin Clustering

Here we present results from applying the proposed ap-

proach for a decreasing sequence of scaling parameters

to obtain large margin cluster separators. We compare

with two popular dedicated maximum margin cluster-

ing algorithms, namely iSVR Zhang et al. (2009) and

CPMMC Wang et al. (2010)2.

Following both Zhang et al. (2009) and Wang et al.

(2010) we consider the two-cluster problems from all
45 pairs of the digits 0–9, where we use all three dig-
its datasets considered above, namely Opt. Digits; Pen

Digits and M.F. Digits. We use only the test set from

the Opt. Digits data, again following Zhang et al. (2009)

and Wang et al. (2010), and only the last 2500 data

from the Pen Digits dataset. The results of these ex-

periments are summarised in Table 2, which shows the
average Purity and NMI from all 45 pairs for each of the
three datasets. The two-dimensional SCPP obtained

the highest performance overall, however the perfor-

mance of iSVR and SCPP are similar in most cases.

The CPMMC algorithm did not converge on 17 digit

pairs from the Opt. Digits dataset, nor on any of the

45 pairs from the Pen Digits dataset. The performance

of CPMMC on the M.F Digits dataset was substantially

below that of SCPP and iSVR.

6.4 Sensitivity of SCPP

6.4.1 The Effect of σ on Performance

Appropriate selection of the scaling parameter is cru-

cial for the success of spectral clustering (von Luxburg,

2007). In many cases the performance of spectral clus-

tering can be severely affected by even slight changes in

the value of this parameter. Here we present a brief sen-

sitivity analysis of the performance of SCPP to changes

in σ. We consider varying σ between 1
2σ0 and 2σ0, where

σ0 is the value used for the corresponding dataset in the

above experiments. It is evident that no straightforward

modification of the approach used to select σ would im-

prove the general performance substantially. Indeed, in
certain examples the performance is improved by in-
creasing σ, while in others decreasing σ would have

positively influenced the performance. We present the
results from a subset of the datasets used previously.
These are illustrated graphically in Figure 5. These ex-

amples were selected to illustrate the variety of effects

that varying σ can have on the performance of SCPP.
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SCPP iSVR CPMMC
dim=1 dim=2 lin. kernel rbf kernel lin. kernel

Opt. Digits Avg. Purity 0.965 0.968 0.945 0.940 -
Avg. NMI 0.858 0.870 0.846 0.789 -

Pen Digits Avg. Purity 0.863 0.876 0.879 0.876 -
Avg. NMI 0.594 0.646 0.641 0.622 -

M.F. Digits Avg. Purity 0.971 0.986 0.979 0.971 0.857
Avg. NMI 0.870 0.913 0.878 0.839 0.612

Table 2 Average clustering accuracy of large margin methods from two-way clustering solutions of all 45 pairs of digits 0–9.
Highest average performance in each case is highlighted in bold, while ‘-’ indicates that the algorithm did not converge in all
cases.
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Fig. 4 Box plots of relative performance measures with ad-
ditional red dots to indicate means.

All other examples showed a relationship similar to one

of these.

Figure 5(a) shows the effect of varying σ on the per-

formance of SCPP for clustering the Satellite dataset.
Here the performance is almost constant for values up

to a threshold at σ≈1.3σ0. On closer inspection it is ev-
ident that the clustering solution itself scarcely varies

for σ<1.3σ0, but for higher values the increased scaling

parameter has the effect of smoothing over the separa-

tion of one of the clusters which is less distinguishable

than the others. As σ increases still further this solu-

tion of lower quality then remains almost unchanged

up to σ=2σ0. On the other hand the clustering solu-

tion of the Image Segmentation dataset, Figure 5(b),

becomes unstable for very large and very small scal-

ing parameters. It is however extremely stable over a

fairly wide range surrounding the value σ0. Finally, in

the case of the Multiple Feature Digits dataset there

is a general increasing trend in the clustering accuracy,

as σ increases (Figure 5(c)). The clustering solution is,
however, not as consistent as in the case of the Satellite

dataset.

Given that the method used to compute σ0 is a sim-
ple data driven rule, it is encouraging to see that SCPP

is, in general, fairly robust to changes in this important

parameter. We believe this is as a result of the pro-

jection pursuit being capable of obtaining a projection

of the data for which the chosen value of the scaling

parameter appropriately captures the clusters present

within that projection. This option is not available to

methods which do not utilise the spectral clustering ob-

jective in their dimension reduction objective. Further-

more, SCPP is protected from very small scaling pa-

rameters leading to a focus on outliers by the modified

metric used to compute similarities.

6.4.2 The Effect of Microclusters on Performance

To investigate the effect of microclusters on cluster-
ing accuracy we simulated datasets from Gaussian mix-

tures containing 5 components (clusters) in 50 dimen-
sions. This allows us to generate datasets of any de-
sired size. For these experiments 30 sets of parameters

for the Gaussian mixtures were generated randomly. In

the first case a single dataset of size 1000 was simu-

lated from each set of parameters, and clustering solu-

tions obtained for a number of microclusters, m, rang-

ing from 100 to 1000, the final value therefore applying
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Fig. 5 Effect of σ on performance. Plots show performance
measures for values of σ between 0.5 and 2 times the value
used for experiments.

no approximation. Figure 6(a) shows the median and

interquartile range of both performance measures for

10 values of m. It is evident that aside from m=100,

performance is similar for all other values, and so us-

ing a small value, say m=200, should be sufficient to
obtain a good approximation of the underlying optimi-

sation surface.

In the second case, we fix the number of microclus-

ters, m=200, and for each set of parameters simulate

datasets with between 1000 and 10 000 observations.

In the most extreme case, therefore, the number of mi-

croclusters is only 2% of the total number of data. Fig-
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Fig. 6 Effect of microclusters on performance. Plots show
median and interquartile ranges of performance measures
from 30 datasets simulated from 50 dimensional Gaussian
mixtures with 5 clusters.

ure 6(b) shows the corresponding performance plots,
again containing the medians and interquartile ranges.

Even for datasets of size 10 000, the coarse approxima-
tion of the dataset through 200 microclusters is suffi-
cient to obtain a high quality projection using the pro-

posed approach.

7 Conclusions

We proposed an approach to identify optimal projec-

tions to bi-partition a dataset through spectral cluster-

ing, based on the minimisation of the second smallest



Minimum Spectral Connectivity Projection Pursuit 17

eigenvalue of the graph Laplacian (which measures the

connectivity of the two clusters) with respect to the

projection. We provided a rigorous analysis of this op-

timisation problem and proposed a globally convergent

algorithm, which directly minimises the overall objec-

tive. Using this approach to perform binary partitioning

recursively gives rise to a divisive clustering algorithm

capable of identifying clusters defined in different sub-
spaces.

The computational cost of the proposed projection

pursuit method per iteration is O(N2), where N is the

number of observations, which can become prohibitive
for large datasets. To mitigate this an approximation
method using microclusters, with provable error bounds

is proposed. This reduces the complexity to O(m2),
where m is the number of microclusters. We found that

in practice using even a small number of microclusters,

m=200, our method is capable of generating high qual-

ity clustering models. This results in a speed up of up

to two orders of magnitude for the examples considered

in this paper.

Finally, we established an asymptotic connection
between optimal univariate projections for spectral bi-

partitioning and maximum margin hyperplanes. In par-

ticular we showed that as the scaling parameter of the

similarity function is reduced towards zero, the optimal

vector to bi-partition the data using spectral clustering

also achieves the maximum Euclidean distance between

the two clusters. In other words, the optimal projection
vector for spectral bi-partitioning converges to the nor-
mal vector to the maximum margin separating hyper-
plane.

Experimental results on a large collection of datasets

indicate that the proposed approach is highly compet-
itive with spectral clustering applied on the full di-

mensional data, and with existing dimension reduction
methods for spectral clustering.

It is interesting to note that while we discuss only

the linear projection of Euclidean embedded data, the

methodology we present can be generalised to apply

to any differentiable transformation of a collection of

data objects admitting a similarity measure. Extensions

to structured data such as time series, graphical and
image data represent interesting future directions for
this work.
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A Avoiding Outliers

It has been documented that spectral clustering can be sen-
sitive to outliers (Rahimi and Recht, 2004). Our experience
has shown that this problem becomes more pronounced when
performing dimension reduction based on the spectral clus-
tering objective, especially in high dimensional applications.
Consider the extreme case where d>N : since the linear system
V ⊤X=P is underdetermined, for any P there exists θθθ∈Θ,c∈
R\{0} s.t. V (θθθ)⊤X=cP . The projected data can therefore
be made to have any distribution (up to a scaling constant).
In other words there will always be projections that contain
outliers. We have found that even in problems of moderate di-
mensionality, there often exist projections which induce large
separation of a small group of points from the remainder of
the data. These projections frequently achieve the minimum
spectral connectivity for both Ratio Cut and Normalised Cut.

We have found that by defining a metric which encour-
ages the induced cluster boundaries to intersect a compact
set, ∆∆∆(θθθ), around the mean of the projected data, the prob-
lem of outliers can be mitigated. This is achieved by reducing
the distance, relative to the usual Euclidean metric, to points
lying outside ∆∆∆(θθθ). Points lying outside ∆∆∆(θθθ), which may
be outliers, therefore have increased similarity to all others.
We define ∆∆∆(θθθ)=∆1×...×∆l, where ∆i=[µi−βσi,µi+βσi];
µi and σi are the mean and standard deviation of the i-th
component of the projected data; and β>0 controls the size
of ∆∆∆(θθθ). The modified distance metric, d(·,·), is defined with
respect to a continuously differentiable transformation, T∆,
of the projected data,

d(pi,pj)=‖T∆(pi)−T∆(pj)‖2, (19)

T∆(y)=(t∆1
(y1),...,t∆l

(yl)), (20)

t∆i
(z):=







c2−βσi−δ(c1−βσi−z)1−δ, z<−βσi

z, z∈∆i

βσi+δ(z−βσi+c1)
1−δ−c2, z>βσi,

(21)

where δ∈(0,0.5] is the distance reducing parameter, and c1
and c2 are equal to (δ(1−δ))1/δ and δc1−δ

1 respectively. By
construction ‖T∆(pi)−T∆(pj)‖2≤‖pi−pj‖2 for any pi,pj∈
R

l, with strict inequality when either or both pi,pj /∈∆∆∆(θθθ).

Figure 7 illustrates the impact of T∆ on pairwise dis-
tances in the univariate case. As shown, distance increases
linearly in the interval ∆, but outside ∆ it increases much
more slowly, with the rate being determined by δ. In the limit
as δ approaches zero, all points outside ∆ are mapped to the
boundary of ∆. As a result distances between points outside
∆ and all other points are much smaller after being trans-
formed through T∆, and points which can be characterised
as outliers in terms of the original projections, P, do not ap-
pear as such in terms of T∆(P).

An illustration of the usefulness of this modified metric is
provided in Figure 8. The figure shows two dimensional pro-
jections of the 64 dimensional optical recognition of handwrit-
ten digits dataset (Bache and Lichman, 2013). The left plots
show the true clusters while the right plots show the clustering
assignments based on spectral clustering using the normalised
Laplacian (Shi and Malik, 2000). Figure 8(a) shows the pro-
jection onto the first two principal components, which are also
used as initialisation for our method. There are clearly a few
points outlying from the remainder of the data, which are
separated by the spectral clustering algorithm. Figure 8(b)
shows the optimal projection from minimising λ2(LN(θθθ)) us-
ing the Euclidean metric. The result is that the outlying
points have been further separated from the remainder of the
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Fig. 7 Pairwise distances of points outside ∆ are decreased
through the transformation T∆

data, thereby exacerbating the outlier problem. Finally, Fig-
ure 8(c) shows the same result but using the modified metric
discussed above, and with β=3. In this case the projection
pursuit is able to find a projection which separates two of the
true clusters clearly from the remainder.

B Derivatives

B.1 Evaluating DPi
λ2(·)

We first consider the standard Laplacian L, and use λ and u
to denote the second eigenvalue and corresponding eigenvec-
tor. By Eq. (11) we have dλ=u⊤d(L)u=u⊤d(D)u−u⊤d(A)u.
Now,

∂Dii

∂Pmn
=

N
∑

j=1

∂Aij

∂Pmn
=

N
∑

j=1

∂s(P,i,j)

∂Pmn
,

∂Aij

∂Pmn
=
∂s(P,i,j)

∂Pmn
,

and so,

∂λ

∂Pmn
=u⊤ ∂L

∂Pmn
u=

1

2

∑

i,j

(ui−uj)
2 ∂s(P,i,j)

∂Pmn
.

For the normalised Laplacian, LN, consider first

d(LN)=d(D−1/2LD−1/2)

=d(D−1/2)LD−1/2+D−1/2d(D)D−1/2

−D−1/2d(A)D−1/2+D−1/2Ld(D−1/2).

(a) PCA projection used for initialisation

(b) Optimal projection from minimising λ2(LN(θθθ))
with the Euclidean metric

(c) Optimal projection from minimising λ2(LN(θθθ))
with the modified metric (β=3)

Fig. 8 Two dimensional projections of optical recognition
of handwritten digits dataset. The left plots show the true
clusters while the right plots show the partitions made by
spectral clustering.

We again use λ and u to denote the second eigenvalue and
corresponding eigenvector. Using LD−1/2u=λD1/2u,

dλ=u⊤d(D−1/2)LD−1/2u+u⊤D−1/2d(D)D−1/2u

−u⊤D−1/2d(A)D−1/2u+u⊤D−1/2Ld(D−1/2)u

=λu⊤d(D−1/2)D1/2u+u⊤D−1/2d(D)D−1/2u

−u⊤D−1/2d(A)D−1/2u+λu⊤D1/2d(D−1/2)u

=(1−λ)u⊤D−1/2d(D)D−1/2u−u⊤D−1/2d(A)D−1/2u.

=u⊤D−1/2d(L)D−1/2u−λu⊤D−1/2d(D)D−1/2u.
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Where in the third step we made use of the fact that
d(D−1/2)DD−1/2+D−1/2d(D)D−1/2+D−1/2Dd(D−1/2)=
d(D−1/2DD−1/2)=d(I)=0. Therefore,

∂λ

∂Pmn
=
1

2

∑

i,j

(

ui√
di
− uj
√

dj

)2
∂s(P,i,j)

∂Pmn
−λ
∑

i,j

u2
i

di

∂s(P,i,j)

∂Pmn
.

B.2 Derivatives of the Approximate Eigenvalue
Functions based on Microclusters

In the general case we may consider a set of m microclusters
with centers c1,...,cm and counts n1,...,nm. The derivations
we provide are valid for ni=1 ∀i∈{1,...,m}, and so apply to
the exact formulation of the problem as well. Let θθθ∈Θ. We
find it practically convenient to associate the transformation
in Eq. (20), which incorporates the set ∆∆∆(θθθ), with the projec-
tion of the microclusters rather than with the computation
of similarities. Specifically, we now let T be the transformed
projected microcluster centers, i.e.,

T ={t1,t1,...,tm,tm}
={T∆∆∆(θθθ)(V (θθθ)⊤c1),T∆∆∆(θθθ)(V (θθθ)⊤c1),

...,T∆∆∆(θθθ)(V (θθθ)⊤cm),T∆∆∆(θθθ)(V (θθθ)⊤cm)},

where each ti is repeated ni times. The reason for this is that
with this formulation the majority of terms in the above sums
corresponding to ∂λ (which are now partial derivatives w.r.t.
the elements of T , and not P as before) are zero. Specifically,
with this expression for T , and letting T be the matrix with
columns corresponding to elements in T , we have

∂λ

∂Tmn
=
1

2

∑

i,j

(ui−uj)
2 ∂k(‖ti−tj‖/σ)

∂Tmn

=
∑

i 6=n

(ui−un)
2 ∂k(‖ti−tn‖/σ)

∂Tmn
, (22)

and similarly for the normalised Laplacian.

In Section 3 we expressed Dθθθλ via the chain rule decom-
position DPλDvPDθθθv, which we can now simply restruc-
ture as DTλDvTDθθθv. The compression of T to the size m
non-repeated set, T C={t1,...,tm}, requires a slight restruc-
turing, as described in Section 5. We begin with the stan-
dard Laplacian, letting TC be the matrix corresponding to
T C , and define N(θθθ) and B(θθθ) as in Lemma 3. That is,
N(θθθ) is the diagonal matrix with i-th diagonal element equal
to
∑m

j=1njk(‖ti−tj‖/σ) and B(θθθ)i,j=
√
ninjk(‖ti−tj‖/σ).

The derivative of the second eigenvalue of the Laplacian re-
lies on the corresponding eigenvector, u. However, this vector
is not explicitly available as we only solve the m×m eigen-
problem of N(θθθ)−B(θθθ). Let uC be the second eigenvector of
N(θθθ)−B(θθθ). As in the proof of Lemma 3 if i,j are such that
the i-th element of T corresponds to the j-th microcluster,
then uC

j =
√
njui. The derivative of λ2(N(θθθ)−B(θθθ)) with re-

spect to the i-th column of θθθ, and thus equivalently of the
second eigenvalue of the Laplacian, is therefore the vector
with j-th entry given by

∑

k 6=j

(

uC
k√
nk

−
uC
j√
nj

)2

nknj

∂k
(

‖tk−tj‖
σ

)

∂TC
kj

DVi
TC
i Dθθθi

Vi,

where Dθθθi
Vi is given in Eq. (12) and DVi

TC
i is expressed

below. We provide expressions for the case where

∆(θθθ)=

l
∏

i=1

[−βσθθθi
,βσθθθi

],

as in our implementation, where we have again assumed that
the data have been centered, i.e., have zero mean. ThenDVi

TC
i

is the m×d matrix with j-th row equal to,

δ(1−δ)
(−βσθθθi

−V ⊤
i cj+(δ(1−δ))1/δ)δ

(

β

σθθθi

ΣVi+cj

)

,

if V ⊤
i cj<−βσθθθi

,
cj ,

if −βσθθθi
≤V ⊤

i cj≤βσθθθi
, and

δ(1−δ)
(V ⊤

i cj−βσθθθi
+(δ(1−δ))1/δ)δ

(

cj−
β

σθθθi

ΣVi

)

+2
β

σθθθi

ΣVi,

if V ⊤
i cj>βσθθθi

. Here Σ is the covariance matrix of the data.
For the normalised Laplacian, the reduced m×m eigen-

problem has precisely the same form as the original N×N
problem, with the only difference being the introduction of
the factors njnk. Specifically, with the derivation in Section 3
we can see that the corresponding derivative is as for the stan-
dard Laplacian above, except that the coefficients (uC

j /
√
nj−

uC
k /
√
nk)2njnk in Eq. (23) are replaced with (uC

j /
√

dj−
uC
k /
√
dk)2−λ((uC

j )2/dj+(uC
k )2/dk), where λ is the second

eigenvalue of the normalised Laplacian, uC is the correspond-
ing eigenvector and dj is the degree of the j-th element of T C .

C Computational Complexity

Here we give a very brief discussion of the computational com-
plexity of the proposed method. At each iteration in the gra-
dient descent, computing the projected data matrix, P (θθθ), re-
quires O(Nld) operations. Computing all pairwise similarities
from elements of the l-dimensional P(θθθ) has computational
complexity O(lN2), and determining both Laplacian matri-
ces, and their associated eigenvalue/vector pairs adds a fur-
ther computational cost O(N2). Each evaluation of the objec-
tives λ2(L(θθθ)) or λ2(LN(θθθ)) therefore requires O(lN(N+d))
operations. In order to compute the gradients of these objec-
tives, the partial derivatives with respect to each element of
the projected data matrix need to be calculated. As we dis-
cussed in relation to the derivatives above, the majority of the
terms in the sums in Eqs. (13) and (14) are zero, and in fact
each partial derivative can be computed in O(N) time, and so
all such partial derivatives can be computed in O(lN2) time.
The matrix derivatives Dθθθi

Vi,i=1,...,l, in (12) can each be
computed with O(d(d−1)) operations. Finally, determining
the gradients with respect to each column of θθθ involves com-
puting the matrix product Dθθθi

λ=DPi
λDVi

PiDθθθi
Vi, where

DPi
λ∈R1×N ,DVi

Pi∈RN×d and Dθθθi
Vi∈Rd×(d−1). This has

complexity O(Nd(d−1)). The complete gradient calculation
therefore requires O(lN(N+d(d−1))) operations. We have
found that the optimality conditions based on directional
derivatives and gradient sampling steps are seldom, if ever re-
quired, and moreover that these do not constitute the bottle-
neck in the running time of the method in practice. The com-
plexity of the optimality condition check may be computed
along similar lines, and be found to be O(t2lN(N+d(d−1))),
where t is the multiplicity of the eigenvalue λ=λ2(L(θθθ)). The



20 David P. Hofmeyr et al.

SCPP DRSC

Opt. Digits 450 173120⋆

Pen Digits 787 83386⋆

Breast Cancer 19 51
Chart 17 32178⋆

Dermatology 19 4843⋆

Yeast 35 48588⋆

Table 3 Running time (in seconds) of SCPP and DRSC on
six datasets. ⋆ indicates that the algorithm had not converged
when terminated after the amount of time given above.

gradient sampling is simply O(d) times the cost of comput-
ing a single gradient. The total complexity of the projection
pursuit optimisation depends on the number of iterations in
the gradient descent method, where in general this number
is bounded for a given accuracy level. For our experiments
we use the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm as this has been found to perform well on non-smooth
functions (Lewis and Overton, 2013).

Table 3 shows the observed running times for SCPP and
DRSC when applied to six datasets which were used in the ex-
periments. To render the comparison relevant, we did not use
the microcluster approach to speed up the SCPP algorithm.
We considered only subsets of the Opt. Digits and Pen Dig-
its datasets so that run times for DRSC could be obtained
in a reasonable amount of time. We used the same subsets
as in the experiments for maximum margin clustering. The
SCPP algorithm converged in a reasonable amount of time
in all cases, despite the absence of the microcluster speed up.
DRSC on the other hand took as many as three orders of
magnitude longer to run on some datasets. Moreover it failed
to converge in half of the cases considered.

D Proofs

D.1 Proof of Theorem 2

Before proving Theorem 2, we require some supporting the-
ory which we present below. We will use the notation v⊤X=
{v⊤x1,...,v⊤xN}, and for a set P⊂R and y∈R we write, for
example, P>y for P∩(y,∞). Recall that for scaling parame-
ter σ>0 we define θθθσ :=argminθθθ∈Θλ2(L(θθθ,σ)), where L(θθθ,σ)
is as L(θθθ) from before, but with an explicit dependence on the
scaling parameter. That is, θθθσ defines the projection generat-
ing the minimal spectral connectivity of X for a given value
of σ. We define θθθNσ similarly for the normalised Laplacian.

Recall that we are interested in those hyperplanes which
intersect an arbitrary convex set∆∆∆. This is because very often
the maximum marging hyperplane will separate only a few
points from the remainder, as data tend to be more sparse
in the tails of the underlying distribution. To account for the
potential for hyperplanes with very large margins lying in the
tails of the distribution, we make the additional assumption
that the distance reducing parameter, δ, tends to zero along
with σ.

Lemmas 4 and 5 provide lower bounds on the second
eigenvalue of the graph Laplacians of a one dimensional data
set in terms of the largest Euclidean separation of adjacent
points which lie within the interval ∆, used to represent∆∆∆(θθθ)
in the context of a projection of X . These lemmas also show
how we construct the set ∆∆∆′. Lemmas 6 and 7 use these

results to show that a projection angle θθθ∈Θ leads to lower
spectral connectivity than all projections admitting smaller
maximal margin hyperplanes intersecting ∆∆∆′ for all pairs σ,δ
sufficiently close to zero.

Lemma 4 Let k:R+→R+ be a non-increasing, positive func-

tion and let σ>0,δ∈(0,0.5]. Let P={p1,...,pN} be a univari-

ate data set and let ∆=[a,b] for a<b∈R. Suppose that |P∩
∆|≥2 and a≥min{P},b≤max{P}. Define ∆′=[a′,b′], where

a′=(a+min{P∩∆})/2, and b′=(b+max{P∩∆})/2. Let M=
maxx∈∆′{mini=1...N |x−pi|}. Define L(P) to be the Lapla-

cian of the graph with vertices P and similarities accord-

ing to s(P,i,j)=k(|T∆(pi)−T∆(pj)|/σ), where P∈R1×N is

the matrix with i-th column equal to pi. Then λ2(L(P))≥
1

|P|3 k((2M+δC)/σ), where C=max{D,D1−δ}, D=max{a−
min{P},max{P}−b}.

Proof We can assume that P is sorted in increasing order,
i.e. pi≤pi+1, since this does not affect the eigenvalues of
L(P). We first show that s(P,i,i+1)≥k((2M+δC)/σ) for all

i=1,...,N−1. To this end observe that δ
(

x+
(

δ(1−δ)
1

δ

))1−δ
−

δ(δ(1−δ))
1−δ

δ ≤δmax{x,x1−δ} for x≥0.
– If pi,pi+1≤a then s(P,i,i+1)=k((T∆(pi+1)−T∆(pi))/σ)≥

k((T∆(a)−T∆(pi))/σ)≥k((2M+δC)/σ) by the definition
of C and using the above inequality, since k is non-increasing.
The case pi,pi+1≥b is similar.

– If pi,pi+1∈∆ then pi,pi+1∈∆′⇒|pi−pi+1|≤2M⇒s(P,i,i+
1)≥k(2M/σ)≥k((2M+δC)/σ) sinceM is the largest mar-
gin in ∆′.

– If none of the above hold, then we lose no generality in as-
suming pi<a, a<pi+1<b since the case a<pi<b, pi+1>b
is analogous. We must have pi+1=min{P∩∆} and so a′=
(a+pi+1)/2. If pi+1−a>2M then minj=1...N |a′−pj |>
M , a contradiction since a′∈∆′ and M is the largest mar-
gin in ∆′. Therefore pi+1−a≤2M . In all

T∆(pi+1)−T∆(pi)=(pi+1−a)+δ(a−pi+(δ(1−δ))
1

δ )1−δ

−δ(δ(1−δ))
1−δ

δ

≤2M+δC

⇒s(P,i,i+1)≥k((2M+δC)/σ).

Now, let u be the second eigenvector of L(P). Then ‖u‖=1
and u⊥1 and therefore ∃i,j s.t. ui−uj≥ 1√

N
. We thus know

that there exists m s.t. |um−um+1|≥ 1
N3/2 . By von Luxburg

(2007, Proposition 1), we know that

u⊤L(P)u=1

2

∑

i,j

s(P,i,j)(ui−uj)
2

≥s(P,m,m+1)(um−um+1)
2

≥ 1

N3
k((2M+δC)/σ),

since all consecutive pairs pm, pm+1 have similarity at least
k((2M+δC)/σ), by above. Therefore λ2(L(P))≥ 1

N3 k((2M+
δC)/σ) as required.

Lemma 5 Let the conditions of Lemma 4 hold and let LN(P)
be the normalised Laplacian of the graph with vertices P and

similarities s(P,i,j)=k(|T∆(pi)−T∆(pj)|/σ). Then

λ2(LN(P))≥ 1

|P|4 k((2M+δC)/σ).
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Proof The proof is similar to that of Lemma
refthm:maxdistbound, but requires a few simple modifica-
tions. Let u be the second eigenvector of LN(P). Since ‖u‖=
1,∃i∈{1,...,N} s.t. |ui|≥ 1√

N
. Suppose w/o loss of general-

ity that ui≤− 1√
N
. Now consider that for all j,k∈{1,...,N}

we have 0<s(P,j,k)≤1 and s(P,j,j)=1 and so 1<
√

dj≤
√
N

for all j∈{1,...,N}. Therefore we have ui/
√
di≤− 1

N
. Further-

more, since uD1/2⊥1 we have uj>0 for some j∈{1,...,N}⇒
uj/

√

dj>0. Therefore, uj/
√

dj−ui/
√
di>

1
N
. We thus know

that ∃m∈{1,...,N} s.t.
∣

∣

∣
um/
√
dm−um+1/

√

dm+1

∣

∣

∣
> 1

N2 . By von

Luxburg (2007, Proposition 3), we know that

u⊤LN(P)u=1

2

∑

i 6=j

s(P,i,j)(ui/
√

di−uj/
√

dj)
2

≥S(P,m,m+1)(um/
√

dm−um+1/
√

dm+1)
2

>
1

N4
k((2M+δC)/σ),

where the bound on s(P,m,m+1) is taken from the proof of
Lemma 5. Therefore λ2(LN(P))≥ 1

N4 k((2M+δC)/σ) as re-
quired.

In the above we have assumed that ∆ is contained within
the convex hull of the points P, however the results of this
section can easily be modified to allow for cases where this
does not hold. In particular, if an unconstrained large margin
hyperplane is sought, then setting ∆∆∆ to be arbitrarily large
allows for this. We have merely stated the results in the most
convenient context for our practical implementation.

The set ∆′ in the above is defined in terms of the one
dimensional interval [a,b]. We define the full dimensional set
∆∆∆′ along the same lines by,

∆∆∆′={x∈Rd|v(θθθ)⊤x∈∆(θθθ)′ ∀θθθ∈Θ},

∆(θθθ)′:=

[

min∆(θθθ)+min{v(θθθ)⊤X∩∆(θθθ)}
2

, (23)

max∆(θθθ)+max{v(θθθ)⊤X∩∆(θθθ)}
2

]

. (24)

Here we assume that ∆∆∆ is contained within the convex hull of
the d-dimensional data set X. Notice that since ∆∆∆ is convex,
we have v(θθθ)⊤∆∆∆′=∆(θθθ)′. In what follows we show that as σ is
reduced to zero the optimal projection for spectral partition-
ing converges to the projection admitting the largest margin
hyperplane intersecting ∆∆∆′. If it is the case that the largest
margin hyperplane intersecting ∆∆∆ also intersects ∆∆∆′, as is of-
ten the case, although this fact will not be known, then it is
actually not necessary that δ tend towards zero. In such cases
it only needs to satisfy δ≤2M/C for the corresponding values
of M and C over all possible projections. In particular, choos-
ing max{Diam(X ),Diam(X )1−δ} instead of C is appropriate
for all projections.

Lemma 6 Let θθθ∈Θ and let k:R+→R+ be non-increasing,

positive, and satisfy

lim
x→∞

k(x(1+ǫ))/k(x)=0

for all ǫ>0. Then for any 0<m< max
b∈∆(θθθ)′

margin(v(θθθ),b) there

exists σ′>0 s.t. if 0<σ<σ′ and

max
c∈∆(θθθ′)′

margin(v(θθθ′),c)< max
b∈∆(θθθ)′

margin(v(θθθ),b)−m

then λ2(L(θθθ,σ))<λ2(L(θθθ′,σ)).

Proof Let B=argmaxb∈∆(θθθ)′margin(v(θθθ),b) and let M be the

corresponding margin, i.e., M=margin(v(θθθ),B). We assume
that M 6=0, since otherwise there is nothing to show. Now,
since spectral clustering solves a relaxation of the minimum
normalised cut problem we have,

λ2(L(θθθ,σ))≤
1

|X | min
C⊂X

∑

i,j:xi∈C
xj 6∈C

s(P (θθθ),i,j)

(

1

|C|+
1

|X\C|

)

≤ 1

|X |
∑

i,j:v(θθθ)⊤xi<B

v(θθθ)⊤xj>B

s(P (θθθ),i,j)

(

1

|(v(θθθ)⊤X )<B |

+
1

|(v(θθθ)⊤X )>B |

)

=
1

|X |
∑

i,j:v(θθθ)⊤xi<B

v(θθθ)⊤xj>B

k

(

T∆(θθθ)(v(θθθ)
⊤xj)−T∆(θθθ)(v(θθθ)

⊤xi)

σ

)

×
( |X |
|(v(θθθ)⊤X )<B ||(v(θθθ)⊤X )>B |

)

≤
∣

∣(v(θθθ)⊤X )<B

∣

∣

∣

∣(v(θθθ)⊤X )>B

∣

∣k

(

2M

σ

)

×
(

1

|(v(θθθ)⊤X )<B ||(v(θθθ)⊤X )>B |

)

=k(2M/σ).

The final inequality holds since for any i,j s.t. v(θθθ)⊤xi<B and
v(θθθ)⊤xj>B we must have T∆(θθθ)(v(θθθ)

⊤xj)−T∆(θθθ)(v(θθθ)
⊤xi)≥

2M . Now, for any θθθ′∈Θ, letMθθθ′=maxc∈∆(θθθ′)′margin(v(θθθ′),c).

By Lemma 4 we know that λ2(L(θθθ′,σ))≥ 1
|X|3 k((2Mθθθ′+δC/σ),

where C=max{Diam(X), Diam(X)1−δ}. Therefore,

lim
σ→0+

λ2(L(θθθ,σ))

infθθθ′∈Θ{λ2(L(θθθ′,σ))
∣

∣Mθθθ′<M−m}

≤ lim
σ→0+

|X |3k(2M/σ)

k((2(M−m)+δC)/σ)

=0.

Since δ→0 as σ→0, this gives the result.

Lemma 7 Let the conditions of Lemma 6 hold. For any 0<
m<maxb∈∆(θθθ)′margin(v(θθθ),b) there exists σ′>0 s.t. if 0<σ<
σ′ and

max
c∈∆(θθθ′)′

margin(v(θθθ′),c)< max
b∈∆(θθθ)′

margin(v(θθθ),b)−m

then λ2(LN(θθθ,σ))<λ2(LN(θθθ′,σ)).

Proof Using a similar approach to that in the proof of Lemma 6,
we can arrive at the following.

λ2(LN(θθθ,σ))≤

∑

i,j:v(θθθ)⊤xi<B

v(θθθ)⊤xj>B

k
(

T∆(θθθ)(v(θθθ)⊤xj)−T∆(θθθ)(v(θθθ)⊤xi)

σ

)

vol((v(θθθ)⊤X )<B)vol((v(θθθ)⊤X )>B)

≤k
(

2M

σ

)

∣

∣(v(θθθ)⊤X )<B

∣

∣

∣

∣(v(θθθ)⊤X )>B

∣

∣

vol((v(θθθ)⊤X )<B)vol((v(θθθ)⊤X )>B)

≤k(2M/σ)

where the final inequality comes from the fact that 1<di for
all i∈{1,...,N}, and hence vol((v(θθθ)⊤X )>B)≥|(v(θθθ)⊤X )>B |,
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and similarly for (v(θθθ)⊤X )<B . The final step in the proof is
equivalent to that of Lemma 6, except that |X |3 is replaced
with |X |4.

Lemmas 6 and 7 show almost immediately that the margin
admitted by the optimal projection for spectral bi-partitioning
converges to the largest margin through ∆∆∆′ as σ goes to zero.
Theorem 2, which we are now in a position to prove, shows
the stronger result that the optimal projection itself converges
to the projection admitting the largest margin.

Proof of Theorem 2: Take any ǫ>0. Pavlidis et al. (2016)
have shown that ∃mǫ>0 s.t. for w∈Rd,c∈R, ‖(w,c)/‖w‖−
(v(θθθ⋆),b⋆)‖>ǫ⇒margin(w/‖w‖,c/‖w‖)<margin(v(θθθ⋆),b⋆)−mǫ.
By Lemma 6 we know ∃σ′>0, δ′>0 s.t. if 0<σ<σ′ then
∃c∈∆(θθθ) s.t. margin(v(θθθσ),c) ≥ margin(v(θθθ⋆),b⋆)−mǫ, since
θθθσ is optimal for σ. Thus, by above, ‖(v(θθθσ),c)−(v(θθθ⋆),b⋆)‖≤
ǫ. But ‖(v(θθθσ),c)−(v(θθθ⋆),b⋆)‖≥‖v(θθθσ)−v(θθθ⋆)‖ for any c∈R.
Since ǫ>0 was arbitrary, we therefore have v(θθθσ)→v(θθθ⋆) as
σ→0+. The proof for θθθNσ is analogous. ���

D.2 Proof of Lemma 3

The proof of Lemma 3 uses the following result from matrix
perturbation theory.

Theorem 8 (Ye (2009)) Let A=[aij ] and Ã=[ãij ] be two

symmetric positive semidefinite diagonally dominant matri-

ces, and let λ1≤λ2≤...≤λn and λ̃1≤λ̃2≤...≤λ̃n be their re-

spective eigenvalues. If, for some 0≤ǫ<1, |aij−ãij |≤ǫ|aij | ∀i 6=
j, and |vi−ṽi|≤ǫvi ∀i, where vi=aii−

∑

j 6=i|aij |, and simi-

larly for ṽi, then
|λi−λ̃i|≤ǫλi ∀i.

An inspection of the proof of Theorem 8 reveals that ǫ<1 is
necessary only to ensure that the signs of aij are the same
as those of ãij . In the case of Laplacian matrices this equiv-
alence of signs holds by design, and so in this context the
requirement that ǫ<1 can be relaxed.

Now, for brevity we drop the notational dependence on θθθ.
Let Pc′={V ⊤c1,V ⊤c1,...,V ⊤cm,V ⊤cm}, where each V ⊤ci
is repeated ni times, and let P c′ be the corresponding matrix
of repeated projected centroids. Let Lc′ be the Laplacian of
the graph with vertices Pc′ and edges given by s(P c′,i,j).
We begin by showing that λ2(Lc′)=λ2(N−B). Take v∈Rm,
then,

v⊤(N−B)v=
∑

i,j

s(P c,i,j)(v2i nj−vivj
√
ninj)

=
1

2

∑

i,j

s(P c,i,j)(v2i nj+v2jni−2vivj
√
ninj)

≥0,

and soN−B is positive semi-definite. In addition, it is straight-
forward to verify that (N−B)(

√
n1 ...

√
nK)=0, and hence 0

is the smallest eigenvalue of N−B with corresponding eigen-
vector (

√
n1 ...

√
nm). Now, let u be the second eigenvector

of Lc′. Then uj=uk for pairs of indices j,k aligned with the
same V ⊤ci in P c′. Define uc∈Rm s.t. uc

i=
√
niuj where index

j is aligned with V ⊤ci in P c′
j . Then (uc)⊤(

√
n1 ...

√
nm)=

∑m
i=1u

c
i

√
ni=

∑m
i=1niuji

where index ji is aligned with V ⊤ci
in P c′

ji
for each i. Therefore niuji

=
∑

j:P c′=V ⊤ci
uj and hence

(uc)⊤(
√
n1 ...

√
nm)=

∑m
i=1

∑

j:P c′
j

=V ⊤ci
uj=

∑N
i=1ui=0 since

1 is the smallest eigenvector of Lc′ and so u⊥1. Similarly
‖uc‖2=∑m

i=1niu2
ji
=
∑N

i=1u
2
i=1. Thus uc⊥(√n1 ...

√
nm) and

‖uc‖=1 and so is a candidate for the second eigenvector of
N−B. In addition it is straightforward to show that (uc)⊤(N−
B)uc=u·Lc′u. Now, suppose by way of contradiction that
∃w⊥(√n1 ...

√
nm) with ‖w‖=1 s.t. w⊤(N−B)w<(uc)⊤(N−

B)uc. Then let w′=(w1/
√
n1 w1/

√
n1 ... wm/

√
nm) where

each wi/
√
ni is repeated ni times. Then ‖w′‖=1, (w′)⊤1=

w⊤(
√
n1 ...

√
nm)=0 and w⊤Lc′w<u⊤Lc′u, a contradiction

since u is the second eigenvector of Lc′.
Now, let i,j,q,r be such that xq∈Ci and xr∈Cj . We tem-

porarily drop the notational dependence on ∆. Then,

‖T (V ⊤xq)−T (V ⊤xr)‖=‖T (V ⊤xq)−T (V ⊤ci)+T (V ⊤ci)

−T (V ⊤cj)+T (V ⊤cj)−T (V ⊤xr)‖
≤‖T (V ⊤xq)−T (V ⊤ci)‖
+‖T (V ⊤ci)−T (V ⊤cj)‖
+‖T (V ⊤cj)−T (V ⊤xr)‖
≤ρi+ρj+Dij ,

since T contracts distances and ρi and ρj are the radii of Ci

and Cj . Since k is non-increasing we therefore have,

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
≤ k(Dij/σ)

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)

≤ k(Dij/σ)

k((Dij+ρi+ρj)/σ)

⇒1− k(Dij/σ)

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)
≤1− k(Dij/σ)

k((Dij−ρi−ρj)+/σ)

and

k(Dij/σ)

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)
−1≤ k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1.

Therefore
∣

∣

∣

∣

k(Dij/σ)

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)
−1
∣

∣

∣

∣

≤

max

{

1− k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
,

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1
}

.

Now, we lose no generality by assume that X is ordered such
that for each i the elements of cluster Ci are aligned with
V ⊤ci in P c′, since this does not affect the eigenvalues of the
Laplacian of V ⊤X , L. By the design of the Laplacian matrix
the “vi” of Theorem 8 are exactly zero. For off diagonal terms
q,r with corresponding i,j as above, consider

|Lqr−Lc′
qr|

|Lqr|
=
|k(Dij/σ)−k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)|

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)

=

∣

∣

∣

∣

k(Dij/σ)

k(‖T (V ⊤xq)−T (V ⊤xr)‖/σ)
−1
∣

∣

∣

∣

.

Theorem 8 thus gives the result. ���
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