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Abstract—This paper proposes a method for minimum-time
velocity planning with velocity, acceleration and jerk constraints
and generic initial and final boundary conditions for the velocity
and the acceleration. This minimum-time planning problem
is relevant in the context of robotic autonomous navigation,
where the iterative steering supervisor periodically replans the
future mobile robot motion starting from current position,
velocity and acceleration conditions. The problem is faced
through discretization and its solution is based on a sequence
of linear programming feasibility checks, depending on motion
constraints and boundary conditions.

I. INTRODUCTION

The problem of motion planning for autonomous guided

vehicles is a well known and studied issue in robotics, see for

example the recent books [1] and [2]. This paper proposes

a technique for minimum-time velocity planning, consider-

ing given jerk, acceleration and velocity constraints. This

minimum-time planning problem is cast in the context of the

so-called path-velocity decomposition [3] using the iterative

steering navigation technique [4], [5]. In this scenery, it is

important to plan a smooth velocity profile with arbitrary

velocity and acceleration boundary conditions. The relevant

velocity planning problem is the synthesis of a velocity

C1-function that permits in minimum-time, with bounded

velocity, acceleration and jerk, to interpolate given initial and

final conditions.

The minimum-time transition is obtained by discretizing

the continuous-time model and formulating an equivalent

discrete-time optimization problem solved by means of

linear programming techniques. More precisely, boundary

conditions and problem constraints are expressed by linear

inequalities on a column vector u, representing the input

signal (i.e the jerk) at sampling times. Hence, the minimum-

time planning problem is reformulated as a feasibility test for

a linear programming problem, and the minimum number of

steps required to complete the given transiction can be found

through a simple bisection algorithm.

The use of linear programming techniques for solving

minimum-time problems for linear discrete-time systems

subject to bounded inputs dates back to Zadeh [6]. Sub-

sequently, many contributions have appeared focusing on
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various improvements. For example a faster algorithm is

proposed in [7]. For what concerns time-optimal control

for continuous-time systems, a related result, under different

hypotheses, is presented in [8]. The paper is organized as

follows. Section II states the minimum-time constrained

planning problem and introduces a sufficient condition for

the existence of a time-optimal solution. The system dis-

cretization and the linear programming problem are pre-

sented in Section III. Section IV describes with details the

bisection algorithm. Section V and VI report a few velocity

planning examples and final remarks respectively.

II. THE PROBLEM AND A SUFFICIENT CONDITION

The problem faced in this paper is the minimum-time

planning of a smooth velocity profile v(t) ∈ PC2([0, tf ]),
where tf represents the travelling minimum-time along a

given path whose length is equal to sf , respecting given

velocity, acceleration, and jerk constraints. The following

definition will be used along this paper.

Definition 1: A function f : R → R, t → f(t) has a

PC2 continuity, or piecewise C2-continuity, and we write

f(t) ∈ PC2 if

1) f(t) ∈ C1(R) ,
2) f(t) ∈ C2(R− {t1, t2, . . . }) ,
3) ∃ limt→t

−

i
f̈(t) , ∃ limt→t

+

i
f̈(t) , i = 1, 2, . . .

where {t1, t2, . . . } is a set of discontinuity instants.

The posed problem can be summarized as follows

min
v∈PC2

tf (1)

such that
∫ tf

0

v(ξ)dξ = sf (2)

v(0) = v0 , v(tf ) = vf (3)

v̇(0) = a0 , v̇(tf ) = af (4)

|v(t)| ≤ vM ∀t ∈ [0, tf ] , (5)

|v̇(t)| ≤ aM ∀t ∈ [0, tf ] , (6)

|v̈(t)| ≤ jM ∀t ∈ [0, tf ] , (7)

where sf > 0, vM , aM , jM > 0 and v0, vf , a0, af ∈
R are given boundary conditions. For the special case of
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zero boundary conditions (v0 = vf = 0, a0 = af = 0) a

closed form solution has been provided by [9]. Remark that

in our context of iterative autonomous navigation, it is crucial

to consider generic boundary conditions on initial and final

velocities and accelerations.

The minimum-time constrained planning problem can be

easily recast into a minimum-time control problem with

respect to a suitable state-space system. Indeed consider the

jerk v̈(t) as the control input u(t) of the cascade of three

integrators as depicted in Figure 1.

1

s
1

s
1

s

u(t) v̇(t) v(t) s(t)

Fig. 1. The system model for velocity planning

Introduce the state x(t) as the following column vector

x(t) :=





x1(t)
x2(t)
x3(t)



 :=





s(t)
v(t)
v̇(t)



 . (8)

Then, the system equations are given by

ẋ(t) = A x(t) + B u(t) , (9)

where

A =





0 1 0
0 0 1
0 0 0



 and B =





0
0
1



 . (10)

Constraints (5), (6) and (7) will be considered as two

state constraints and an input bound respectively. Hence,

problem (1)-(5) is equivalent to finding a time-optimal

control u∗(t) that brings system (9) from the initial state

x(0) = [0 v0 a0]
T to the final state x(t∗f ) = [sf vf af ]T in

minimum time t∗f , while satisfying the following constraints

|x2(t)| ≤ vM ∀t ∈ [0, t∗f ] , (11)

|x3(t)| ≤ aM ∀t ∈ [0, t∗f ] , (12)

and

|u∗(t)| ≤ jM ∀t ∈ [0, t∗f ] . (13)

The existence of the solution u∗(t) of the problem (1)-(7)

depends on the values of the initial state x0, the final state

xf , and it also depends on the values of the constraints (11)-

(13). To guarantee the existence of the optimal control u∗(t),
these values must respect four sufficient conditions as stated

in the following result.

Proposition 1: The minimum-time optimal control u∗(t),
solution of the problem (1)-(7), from initial state x(0) =
[0 v0 a0]

T to final state x(t∗f ) = [sf vf af ]T exists if the

following sufficient conditions are satisfied:

• |v0| ≤ vM and |a0| ≤ aM ;

• if a0 > 0:

v0 +
1

2

a2
0

jM

≤ vM ; (14)

• if a0 < 0:

v0 −
1

2

a2
0

jM

≥ −vM ; (15)

• if af < 0:

vf +
1

2

a2
f

jM

≤ vM ; (16)

• if af > 0:

vf −
1

2

a2
f

jM

≥ −vM . (17)

Proof: Consider the case a0 > 0; if condition (14) on initial

state x0 is true, it is possible to apply a control function

u(t) = −jM which brings the acceleration x3(t) to zero

before the velocity x2(t) exceeds its boundary value vM , as

depicted in Figure 2. In fact, if u(t) = −jM with t ∈ [0, tc1]

x2(t)

x1(t)

u(t)

tc1

tc1

tc1

tc2

tc2

tc2

tf

tf

tf

t

t

t

vM

aM

−aM

vc1 vc2v0

a0

−jM

vf

af

Fig. 2. Sufficient conditions on velocity/acceleration initial and final values

(where tc1 is the critical time where the acceleration became

null) the following result is true

x3(t) = a0 +

∫ tc1

0

u(ξ)dξ (18)

= a0 +

∫ tc1

0

(−jM )dξ

= a0 − jM tc1 .

But in t = tc1 we have x3(tc1) = 0 so it is possible to obtain

the critical time value as follows

tc1 =
a0

jM

. (19)

Integrating equation (18) in tc1, the value of vc1 = x2(tc1)
is obtained

vc1 = v0 +

∫ tc1

0

x3(ξ)dξ

= v0 +

∫ tc1

0

(a0 − jM ξ)dξ

= v0 + a0 tc1 −
1

2
jM t2c1 . (20)
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Hence, by substituting relation (18) in (20) we have

vc1 = v0 +
1

2

a2
0

jM

, (21)

then, by virtue of condition (14) we know that vc1 ≤ vM

and the constraint (5) is satisfied. The same results are true

for the final state value. Consider the case of af < 0; if

condition (16) is verified the velocity value x2(tc2) = vc2

does not exceed the boundary value vM . Hence, the final

state x(tf ) can be achieved by applying the control function

u(t) = −jM with t ∈ [tc2, tf ] as depicted in Figure 2. Now

consider the time-interval [tc1, tc2]. It is always possible to

determine a polynomial jerk function j(t) = a0 + a1 t +
a2 t2, with t ∈ [tc1, tc2], such that the following boundary

conditions are verified:

x3(tc2) = 0 x2(tc2) = vc2 x1(tc2) = sf − s2 , (22)

where s2 =
∫ tf

tc2
x2(ξ)dξ, while satisfying the con-

straints (11)- (13). This is true because the transition time-

interval [tc1, tc2] can be chosen arbitrary large. The sufficient

conditions (15) and (17) can be easily proved in the same

way. n

The conditions introduced in Proposition 1 are sufficient

but not necessary. In fact, for a minimum time t∗f sufficiently

small, the conditions (14)-(17) can be violated, while still

satisfying the constraints (11)-(13).

III. AN APPROXIMATED SOLUTION USING

DISCRETIZATION

This section shows how to find a numerically approxi-

mated solution of problem (1)-(7) by discretization of sys-

tem (9). The technique that will be introduced, exploits the

results presented by Consolini and Piazzi in [10], which

shows that, given a continuous-time system, an approximated

optimal control can be found through the following proce-

dure:

1) find the discretized system with sampling period Ts;

2) find the optimal input sequence u∗(k);
3) use for the continuous-time system the input function

u(t) obtained from the discrete-time sequence with a

zero-order hold

u(t) = u∗

Ts

(

⌊
t

Ts

⌋

)

, (23)

where Ts ∈ R is the sampling period and ∀x ∈ R

⌊x⌋ = max {z ∈ Z : z ≤ x} denotes the integer part

of x.

As shown in [10], when Ts → 0 the approximated solution

converges to the optimal continuous-time solution.

The optimal discrete-time control sequence u∗(t) can be

found by means of linear programming. In fact, in the

discrete-time case, the constraints (11)-(13) can be rep-

resented as linear inequalities and the minimum number

of steps needed for the requested transition can be found

through a sequence of feasibility tests of a linear program-

ming problem.

The matrices of the equivalent discrete-time system are

the following ones:

Ad = eA Ts =





1 Ts
1

2
T 2

s

0 1 Ts

0 0 1



 , (24)

and

Bd = f(A, Ts) B =

(

∫ Ts

0

eA τdτ

)

B =





1

6
T 3

s
1

2
T 2

s

Ts



 ,

(25)

where Ts is the sampling period. Then, the discrete-time

system is

x(k + 1) = Ad x(k) + Bd u(k) , (26)

whose solution is given by

x(k) = A
k
d x0 +

k−1
∑

j=0

A
k−1−j
d Bd u(j) , (27)

where

x(k) =





x1(k)
x2(k)
x3(k)



 . (28)

Define the control vector u ∈ R
kf as follows

u =











u(0)
u(1)

...

u(kf − 1)











(29)

from (13) it follows that it must be

−uM ·1kf
≤ u ≤ uM ·1kf

(30)

where 1kf
denotes the kf -dimensional vector whose compo-

nents are all equal to 1. The velocity constraint for discrete-

time system is given by

−vM ≤ x2(k) ≤ vM , with k = 0, . . . , kf − 1 . (31)

From equation (27), velocity sequence x2(k) can be written

as follows

x2(k) = C1 x(k)

= C1



A
k
d x0 +

k−1
∑

j=0

A
k−1−j
d Bd u(j)





= C1 A
k
d x0 +

k−1
∑

j=0

C1A
k−1−j
d Bd u(j) , (32)

where

C1 =
[

0 1 0
]

. (33)

By substituting (32) in (31), the following relation is obtained

−vM−C1A
k
dx0 ≤

k−1
∑

j=0

C1A
k−1−j
d Bdu(j) ≤ vM−C1A

k
dx0 ,

(34)
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with k = 0, . . . , kf −1. Set vc = vM ·1f , then the inequality

on velocity constraint (31) can be written as follows

−vc −G1 ≤H1 u ≤ vc −G1 , (35)

where G1 ∈ R
kf and H1 ∈ R

kf×kf are given by

G1 =















C1 x0

C1 Ad x0

C1 A
2
d x0

...

C1 A
kf−1

d x0















, (36)

and

H1 =



















C1 Bd O · · · O

C1 Ad Bd

. . .
. . . O

C1 A
2
d Bd

. . .
. . . O

...
. . .

. . .
...

C1 A
kf−1

d Bd · · · · · · C1 Bd



















. (37)

The acceleration constraint for discrete-time system (26) is

given by

−aM ≤ x3(k) ≤ aM , with k = 0, . . . , kf − 1 . (38)

Set ac = aM ·1f and

C2 =
[

0 0 1
]

, (39)

then constraint (38) is written as

−ac −G2 ≤H2 u ≤ ac −G2 , (40)

where G2 ∈ R
kf and H2 ∈ R

kf×kf are given by

G2 =















C2 x0

C2 Ad x0

C2 A
2
d x0

...

C2 A
kf−1

d x0















, (41)

and

H2 =



















C2 Bd O · · · O

C2 Ad Bd

. . .
. . . O

C2 A
2
d Bd

. . .
. . . O

...
. . .

. . .
...

C2 A
kf−1

d Bd · · · · · · C2 Bd



















. (42)

The interpolation condition on final state can be written as

follows

xf = x(kf ) =





x1(kf )
x2(kf )
x3(kf )



 =





sf

vf

af



 . (43)

From equation (27) we have

xf = A
kf

d x0 +

kf−1
∑

j=0

A
kf−1−j

d Bd u(j) , (44)

then, by substituting equation (44) in (43) we obtain the final

state interpolation condition as follows

Heq u = xf −A
kf

d x0 , (45)

where Heq ∈ R
3×kf is given by

Heq =
[

A
kf−1

d Bd A
kf−2

d Bd · · · Bd

]

. (46)

In conclusion given a number of steps kf , there exists

an input vector u for which the constraints on velocity,

acceleration and jerk, and the final interpolation condition

are satisfied if and only if the following linear programming

problem is feasible














−uM ·1kf
≤ u ≤ uM ·1kf

−vc −G1 ≤ H1 u ≤ vc −G1

−ac −G2 ≤ H2 u ≤ ac −G2

Heq u = xf −A
kf

d x0 .

(47)

IV. THE BISECTION ALGORITHM

The minimum number of steps k∗

f and the associated

optimal discrete-time control sequence u∗(k), with

k = 0, . . . , k∗

f − 1, can be determinated by means of a

sequence of linear programming feasibility tests, defined

by (47), through a simple bisection algorithm. The

Minimum-Time Control algorithm (MTC) is summarized

as follows:

begin

kf ← 1;

l← 0;

while ∽ LPP do

l← kf

kf ← 2 kf

end

h← kf ;

while h− l > 1 do

kf ← ⌊
h+l
2
⌋;

if ∽ LPP then

l ← kf ;

else

h← kf ;

end

k∗

f ← h;

u∗(k)← u;

end

In MTC algorithm LPP denotes a linear programming

procedure that solves problem (47), which, if a feasible

solution exists, returns the solution sequence u and the

number of steps k; if the problem is feasible it also returns

a Boolean true value.

The algorithm performances strongly depend on the used

sampling time: by reducing Ts, which means sampling the

continuous-time system with an higher frequency, the dimen-

sion of the resulting linear programming problem increases,

thus causing an increment of the total computational time.
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Considering the computational complexity, Karmarkar has

shown in [11] that a linear programming problem can be

solved by means of an interior-point algorithm with running

time proportional to n3.5, where n is the number of inequal-

ities. In our case this would means that each feasibility test

would require a time proportional to n3.5
s , where ns is the

total number of samples. The complexity of the bisection

search, with respect to the minimum number of samples,

is given by O(log ns), therefore the total complexity of the

proposed algorithm is given by O(n3.5
s log ns). For more

details on the algorithm complexity see [12].

V. EXAMPLES

Example 1: consider the following interpolation conditions

and constraints:

• initial state

x0 :=





s0

v0

a0



 :=





0
0
0





• final state

xf :=





sf

vf

af



 :=





2
0
0





• problem constraints

vM = 0, 65 [m/s] aM = 0.5 [m/s2] jM = 0.5 [m/s3]

The jerk, acceleration, velocity and space profiles, obtained

by means of the MTC algorithm, are depicted in Figure 3.

Example 2: consider the following problem:

• initial state

x0 :=





s0

v0

a0



 :=





0
0
0





• final state

xf :=





sf

vf

af



 :=





2
1

0, 25





• problem constraints

vM = 1, 5 [m/s] aM = 0.6 [m/s2] jM = 0.5 [m/s3]

The jerk, acceleration, velocity and space profiles, obtained

in this case, are depicted in Figure 4.

Example 3: the problem data are given by:

• initial state

x0 :=





s0

v0

a0



 :=





0
1
−0.5





• final state

xf :=





sf

vf

af



 :=





2, 167
0, 5
0, 5





0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time[s]

 

 

a(t)

u
*
(t)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Time[s]

 

 

v(t)

s(t)

Fig. 3. Optimal solutions for Example 1

• problem constraints

vM = 1 [m/s] aM = 0.5 [m/s2] jM = 0.5 [m/s3]

Figure 5 shows optimal solution obtained by means of the

MTC algorithm.

VI. CONCLUSION

This paper has proposed a method for velocity planning

considering velocity, acceleration and jerk constraints. A

sufficient condition on initial and final states was intro-

duced. The minimum-time planning problem is solved by

discretization of the continuous-time system, formulating

an equivalent discrete-time optimization problem solved by

linear programming techniques. The MTC algorithm, which

determines an approximation of the minimum-time solution,

is well suited to be adopted into a supervisory architecture

for iterative steering navigation.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer, 2008.

[3] K. Kant and S. Zucker, “Toward efficient trajectory planning: the path-
velocity decomposition,” Int. J. of Robotics Research, vol. 5, no. 3,
pp. 72–89, 1986.

752

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on November 2, 2009 at 08:16 from IEEE Xplore.  Restrictions apply. 



0 0.5 1 1.5 2 2.5 3 3.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time[s]

 

 

a(t)

u
*
(t)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

Time[s]

 

 

v(t)

s(t)

Fig. 4. Optimal solutions for Example 2

[4] P. Lucibello and G. Oriolo, “Robust stabilization via iterative state
steering with an application to chained-form systems,” Automatica,
vol. 37, no. 1, pp. 71–79, January 2001.

[5] C. Guarino Lo Bianco, A. Piazzi, and M. Romano, “Smooth motion
generation for unicycle mobile robots via dynamic path inversion,”
IEEE Trans. on Robotics, vol. 20, no. 5, pp. 884–891, Oct. 2004.

[6] L. A. Zadeh, “On optimal control and linear programming,” IRE

Transactions on Automatic Control, vol. 7, no. 4, pp. 45–46, 1962.
[7] G. Bashein, “A simplex algorithm for on-line computation of optimal

controls,” IEEE Transactions on Automatic Control, vol. 16, no. 5, pp.
479–482, 1971.

[8] S.-J. Kim, D.-S. Choi, and I.-J. Ha, “A comparison principle for state-
constrained differential inequalities and its application to time-optimal
control,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
967–983, July 2005.

[9] R. D. Peters, “Ideal lift kinematics: Complete equations for plotting
optimum motion,” Proceedings of ELEVCON95 (The International

Association of Elevator Engineers), 1995, republished by Elevator
World, April 1996 and by Elevatori, May/June 1996.

[10] L. Consolini and A. Piazzi, “Generalized bang-bang control for
feedforward constrained regulation,” Proceedings of the 45th IEEE

Conference on Decision and Control, pp. 893–898, 2006.
[11] N. Karmakar, “A new polynomial-time algorithm for linear program-

ming,” Report. AT&T Bell Laboratories, 1984.
[12] L. Consolini, O. Gerelli, C. Guarino Lo Bianco, and A. Piazzi,

“Flexible joints control: A minimum-time feed-forward technique,”
Mechatronics, Elsevier, vol. 19, pp. 348–356, Oct. 2008.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time[s]

 

 

a(t)

u
*
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Time[s]

 

 

v(t)

s(t)

Fig. 5. Optimal solutions for Example 3

753

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on November 2, 2009 at 08:16 from IEEE Xplore.  Restrictions apply. 


