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Minimum-Time Control of Boolean Networks

Dmitriy Laschov and Michael Margaliot

Abstract

Boolean networks (BNs) are discrete-time dynamical systems with Boolean state-variables. BNs are

recently attracting considerable interest as computational models for biological systems and, in particular,

as models of gene regulating networks. Boolean control networks (BCNs) are Boolean networks with

Boolean inputs. We consider the problem of steering a BCN from a given state to a desired state

in minimal time. Using the algebraic state-space representation (ASSR) of BCNs we derive several

necessary conditions, stated in the form of maximum principles (MPs), for a control to be time-optimal.

In the ASSR every state and input vector is a canonical vector. Using this special structure yields an

explicit state-feedback formula for all time-optimal controls. To demonstrate the theoretical results, we

develop a BCN model for the genetic switch controlling the lambda phage development upon infection

of a bacteria. Our results suggest that this biological switch is designed in a way that guarantees minimal

time response to important environmental signals.

Index Terms

Logical systems, variational analysis, necessary condition for optimality, time-optimal control,

systems biology, gene regulation networks, lambda switch.

I. INTRODUCTION

A Boolean network (BN) is a discrete-time dynamical system with Boolean state-variables.

For example, cellular automata, with two possible states per cell, are a particular case of BNs.

Here the state of every variable at time k + 1 is determined by the state of its spatial neighbors

at time k [70]. BNs have a long history [23], [24] and they have been used as models for

different systems including: simple artificial neural networks [36], social interactions between
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simple agents, the emergence of social consensus, the influence of mass media on public opinion,

and the role of peer influence in maintaining law and order [33].

More recently, BNs have gained renewed interest as models for biological systems. The

underlying assumption is that certain biological variables can be approximated as having just

two possible levels of operation (i.e., ON and OFF). S. A. Kauffman [42] modeled a gene as

a binary device, and studied the behavior of large, randomly constructed nets of these binary

genes. Kauffman’s simulations suggest that if each network node has two or three inputs, then the

dynamical behavior of the network demonstrates order and stability. Kauffman also related the

behavior of the random nets to various cellular control processes including cell differentiation.

The key idea being to view each stable attractor of the BN as representing one possible cell

type.

Kauffman’s pioneering ideas stimulated research in several directions including: (1) theoretical

analysis of the dynamics of BNs, especially using tools from the fields of complex systems

and statistical physics (see, e.g. [4], [6], [27], [28], [43], [56], [68]); and (2) modeling various

biological processes using BNs. This is a vast area of research and we review below only a few

examples.

BNs seem especially suitable for modeling genetic regulation networks where the ON (OFF)

state corresponds to the transcribed (quiescent) state of the gene. There are several other moti-

vations [39] for using BNs in this context, including the fact that many metabolic and genetic

networks demonstrate some form of bi-stability. An important example are epigenetic switches

(see, e.g. [66]). Specific examples of genetic regulation networks modeled using BNs include: the

cell-cycle regulatory network of the budding yeast [51]; the yeast transcriptional network [41];

the network controlling the segment polarity genes in the fly Drosophila melanogaster [5], [14];

and the ABC network determining floral organ cell fate in Arabidopsis [29] (see also [13]).

BNs were also used for modeling other cellular processes. In this context, the two possible logic

states may represent the open/closed state of an ion channel, basal/high activity of an enzyme, two

possible conformational states of a protein, etc. Specific examples include: a detailed model for

the complex cellular signaling network controlling stomatal closure in plants [52], and a model

of the molecular pathway between two neurotransmitter systems, the dopamine and glutamate

receptors [34]. Szallasi and Liang [75] discuss the use of BNs in modeling carcinogenesis and

for analyzing the effect of therapeutic intervention (see also [40]).
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BNs have also been used to address more general problems that may have important implica-

tions to biological and cellular systems. For example, the trade-off between functional complexity

and robustness (see [55], [60] and the references therein).

Despite their simplicity, BNs provide an efficient tool for modeling large-scale biological

networks [12], [37]. These models are able to reproduce the main characteristics of the biological

system dynamics: attractors of the BN correspond to stationary biological states; large attraction

basins indicate robustness of the biological state; and so on.

Modeling using BNs requires only coarse-grained qualitative information (e.g., an interaction

between two genes is either activating or inhibiting). Many other models, for example, those

based on differential equations, require knowledge of numerous parameter values (e.g., rate con-

stants). For a general exposition on various approaches for modeling gene regulation networks,

see [10].

Modeling a biological system involves considerable uncertainty. This is due to the noise and

perturbations that affect the biological system, and inaccuracies of the measuring equipment. One

approach for tackling this uncertainty is by using Probabilistic Boolean Networks (PBNs) [72],

[73]. These may be viewed as a collection of (deterministic) BNs combined with a probabilistic

switching rule determining which network is active at each time instant.

BNs with (binary) inputs are referred to as Boolean Control Networks (BCNs). For example,

the value of the input at time k can represent whether a certain medicine is administered or not, or

whether a ceratin environmental condition is hazardous or not at time k. PBNs with inputs have

been used to design and analyze therapeutic intervention strategies. Several methods have been

proposed including flipping the state of a single gene [74]; changing the Boolean interaction

functions [67]; and finding a control sequence that steers the network from an undesirable

location (e.g., corresponding to a diseased state) to a desirable one (e.g., corresponding to a

healthy state). The latter type of problems can be cast as stochastic optimal control problems,

and solved numerically using dynamic programming [26], [54] and Markov chains methods both

in the finite and infinite-horizon case [25], [65].

Daizhan Cheng and his colleagues developed an algebraic state-space representation (ASSR)

of BCNs using the semi-tensor product of matrices. This representation proved useful for ad-

dressing control-theoretic problems for BCNs. Examples include the analysis of disturbance de-

coupling [16], controllability and observability [19], [48], realization theory [18], and more [20],
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[21], [15]. See the recent monograph [22] for a detailed presentation.

Here we make use of the ASSR to study minimum-time controls for BCNs. Time-optimal

controls are important in the context of BCNs that model biological systems. For example, a

natural problem is to determine a control that steers the BCN from an initial condition (that

corresponds to a diseased state) to a desired condition (that corresponds to a healthy state) in

minimal time.

In continuous-time control systems, a time-optimal control typically steers the state to the

boundary of the reachable set, and can thus be characterized using the celebrated Pontryagin

maximum principle (PMP) (see, e.g. [2], [11], [69], [53]). The analysis of time-optimal controls

in discrete-time systems is more difficult, as the idea of an infinitesimal control perturbation,

that is used in deriving the PMP, cannot be applied. The analysis of time-optimal controls

for discrete-time systems is thus usually based on successively computing the reachable set at

time k = 0, 1, 2, . . . (see, e.g. [44]).

In this paper we derive several necessary conditions for a control to be time-optimal. These

conditions are stated in the form of maximum principles (MPs). Let Ij denote the j × j identity

matrix. In the ASSR, the state vector x(k) of a BCN with n state variables is a column of I2n for

any time k. Similarly, the input vector u(k) is a column of I2m , where m is the number of input

variables. In other words, both x(k) and u(k) are canonical vectors. Using this special structure

leads to MPs that are more explicit than their analogues for general discrete-time systems. In fact,

one of these MPs can be used to iteratively compute all the time-optimal controls. Surprisingly,

perhaps, it also provides a state-feedback expression for the time-optimal controls.

BCNs are in fact discrete-time positive linear switched systems, and our approach is motivated

by the simple proof of a special case of the PMP used in the variational analysis of continuous-

time switched systems [57] (see also [58], [71], [59]). This variational approach was also extended

to analyze discrete-time switched systems (see [9], [62], [63] and the references therein).

Some related work includes the following. Ref. [47] considers a Mayer-type optimal control

problem for single-input BCNs, and describes a necessary condition for optimality in the form

of an MP. This was extended to multi-input BCNs in [49]. BNs and BCNs have a natural

graph-theoretic representation (see, e.g. [80]). Zhao [79] used this representation and the Floyd-

Warshall algorithm to address an infinite-horizon Mayer-type optimal control problem. Akutsu

et al. [3] showed that control problems for BCNs are in general NP-hard. Determining whether
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a BN with a (binary) output is observable is also NP-hard [50].

It is important to note that the ASSR of a BCN with n state variables and m control variables

includes a binary matrix with dimensions 2n × 2n+m. Thus, an inherent drawback of the ASSR

is that any algorithm based on it has exponential time complexity. However, the computational

complexity results referred to above suggest that, unless P = NP , most control problems for

general BCNs cannot be solved in polynomial time.

The theoretical results are demonstrated using a biological system known as the λ switch [66].

The λ phage is a virus that grows on a bacterium. Upon infection of the bacterium, the phage

injects its chromosome into the bacterium cell. The virus can then follow one of two different

pathways: lysogeny or lysis. In the lysogenic state, the phage integrates its genome into the

bacterium’s DNA and passively replicates as a part of the host bacterium. In the lytic state, the

phage’s DNA is extensively replicated, new phages are formed within the bacterium, and after

about 45 minutes the bacterium lyses and releases about 100 new phages.

The two possible pathways are the result of expressing different sets of genes. The molec-

ular mechanism responsible for the lysogeny/lysis decision is known as the λ switch. Various

computational models for the λ switch have been suggested based on different tools including a

stochastic kinetic model [8], differential equations [46], the logical method of R. Thomas [76],

and also BNs [38]. As noted in [78], the lambda switch is of special interest as it allows to

investigate how a biological system controls gene expression, DNA replication, and other crucial

processes in response to environmental signals. This suggests that a computational model of the

switch should treat the environmental signals as inputs.

We derive a simple BCN model for the λ switch. The Boolean input represents whether the

total environmental conditions are “favorable” or not. Analysis of the time-optimal controls in

this BCN suggests that the transition from the initial state right after infection to either the

lysogenic state or the lytic state takes place in a time-optimal manner.

The remainder of this paper is organized as follows. Section II reviews BCNs and their ASSR.

Section III defines the minimum-time optimal control problem and details our main results. In

section IV, some of theoretical results are demonstrated using a BCN model of the λ switch.
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II. BOOLEAN CONTROL NETWORKS

Let S = {True, False}. A BCN is a discrete-time logical dynamical control system in the form

x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k)), (1)

...

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k)),

where xi, ui ∈ S, and each fi is a Boolean function, i.e. fi : Sn+m → S.

A BCN with m inputs is a Boolean switched system switching between 2m possible subsystems,

where each subsystem is a BN, and with the value of the control determining which subsystem

is active at every time step. To demonstrate this, consider the two-state, two-input BCN

x1(k + 1) = x1(k) ∨ [x2(k) ∧ u1(k)], (2)

x2(k + 1) = x2(k) ∧ u2(k).

The control u =
[
u1 u2

]T

may attain one of four values: {TT, TF, FT, FF}, where T [F ] is

shorthand for True [False]. With each of these possible values we can associate a corresponding

dynamics, i.e. a subsystem. For example, when u1(k) = u2(k) = T the corresponding subsystem

is

x1(k + 1) = x1(k) ∨ x2(k),

x2(k + 1) = x2(k).

In the ASSR, each subsystem becomes a positive linear system, so the BCN becomes a

discrete-time positive linear switched system (PLSS). For more on PLSSs, see e.g. [35], [31],

[61], [32], [30] and the references therein.

Control-theoretic problems for BCNs are best addressed in the algebraic state-space represen-

tation (ASSR) derived by Daizhan Cheng and his colleagues [22]. This representation uses the

semi-tensor product of matrices.
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A. Semi-tensor product

Given two positive integers a, b, let lcm(a, b) denote the least common multiple of a and b.

For example, lcm(6, 8) = 24. Let Ij denote the j × j identity matrix.

Definition 1. The semi-tensor product of A ∈ Rm×n and B ∈ Rp×q is

A n B = (A ⊗ Iα/n)(B ⊗ Iα/p),

where α = lcm(n, p), and ⊗ denotes the Kronecker product.

Note that (A ⊗ Iα/n) ∈ R(mα/n)×α and (B ⊗ Iα/p) ∈ Rα×(qα/p), so (A n B) ∈ R(mα/n)×(qα/p).

Remark 1. If n = p, then AnB = (A⊗ I1)(B⊗ I1) = AB. Thus, the semi-tensor product is a

generalization of the standard matrix product that provides a way to multiply two matrices with

arbitrary dimensions. Intuitively, this is based on first modifying A, B to two matrices (A⊗Iα/n),

(B ⊗ Iα/p) of compatible dimensions, and then calculating their standard matrix product.

Example 1. If a, b ∈ R2, then

a n b = (a ⊗ I2)(b ⊗ I1)

=


a1 0

0 a1

a2 0

0 a2

 b

=
[
a1b1 a1b2 a2b1 a2b2

]T

.

Various properties of the semi-tensor product are analyzed in [17]. For our purposes, it is

sufficient to note that this product is associative

A n (B n C) = (A n B) n C,

and distributive

(A + B) n C = (A n C) + (B n C).
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B. Algebraic representation of Boolean functions

Let ei
n denote the ith column of the identity matrix In. Represent the Boolean values True and

False by e1
2 =

1

0

 and e2
2 =

0

1

, respectively. Then any Boolean function of n variables f :

Sn → S can be equivalently represented as a mapping f̄ : {e1
2, e

2
2}n → {e1

2, e
2
2}. With some

abuse of notation, we identify f̄ with f . In other words, from here on a Boolean variable xi is

always a vector in {e1
2, e

2
2}.

Theorem 1. [20] Let f : {e1
2, e

2
2}n → {e1

2, e
2
2} be a Boolean function. There exists a unique

binary matrix Mf ∈ {0, 1}2×2n
such that

f(x1, . . . , xn) = Mf n x1 n · · · n xn.

Mf is called the structure matrix of f .

Remark 2. To provide some intuition on this representation, consider the case n = 2, i.e. f =

f(x1, x2). Recall that xi ∈ {e1
2, e

2
2}, so x1 =

[
v v̄

]T

and x2 =
[
w w̄

]T

, with v, w ∈ {0, 1}.

Hence,

x1 n x2 =
[
vw vw̄ v̄w v̄w̄

]T

, (3)

i.e. x1 n x2 contains all the possible minterms of v and w. Recall that any Boolean function

may be represented as a sum of some minterms of its variables (see, e.g. [45]). This is known

as the sum of products (SOP) representation. The multiplication Mf n x1 n x2 provides such a

representation. Note that (3) implies that (x1 n x2) ∈ {e1
4, . . . , e

4
4}. Indeed, one and only one

minterm is 1 and all the others must be 0.

Example 2. Consider the function g(x1, x2) = x1 ∧ x2. It is straightforward to verify that
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g(x1, x2) = Mg n x1 n x2, with Mg =

1 0 0 0

0 1 1 1

. For example,

Mg n e1
2 n e2

2 = Mg n
[
0 1 0 0

]T

= Mg

[
0 1 0 0

]T

=
[
0 1

]T

,

= e2
2,

corresponding to (True ∧ False) = False.

C. Algebraic representation of BCNs

Since the dynamics of BCNs is described by a set of Boolean functions, the semi-tensor

product can be used to provide an ASSR of BCNs.

Theorem 2. [21] Consider a BCN with state variables x1, . . . , xn and inputs u1, . . . , um, with xi, ui ∈

{e1
2, e

2
2}. Denote x(k) = x1(k) n · · · n xn(k) and u(k) = u1(k) n · · · n um(k). There exists a

unique matrix L ∈ {0, 1}2n×2n+m
such that

x(k + 1) = L n u(k) n x(k). (4)

The matrix L is called the transition matrix of the BCN.

Algorithms for converting a BCN in the form (1) to its ASSR (4), and vice versa, may be found

in [20], [19].

Remark 3. The intuition behind this representation is very similar to the algebraic representa-

tion of a single Boolean function using the semi-tensor product. The vector u(k)nx(k) includes

all the possible minterms of the input and state variables, and (4) amounts to a description of

(every minterm of) the next state in terms of the current state and inputs.

Note that since u(k) = u1(k) n · · · n um(k), with ui(k) ∈ {e1
2, e

2
2}, u(k) ∈ {e1

2m , . . . , e2m

2m}.

For example, if m = 3, u1(k) = e1
2, u2(k) = e2

2, and u3(k) = e2
2, then u(k) = e4

8.
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III. MAIN RESULTS

A fundamental problem for all dynamical control systems is to determine a control that is

optimal in some sense. For a final time N > 0, let UN denote the set of admissible controls

of (4), i.e. the set of all sequences {u(0), . . . , u(N − 1)}, with u(i) ∈ {e1
2m , . . . , e2m

2m}. For an

admissible control u, let x(k; u, x0) denote the solution of (4) with x(0) = x0 at time k.

Problem 1. Consider a BCN in the ASSR (4). Fix an arbitrary initial condition x(0) = x0 ∈

{e1
2n , . . . , e2n

2n} and a desired state z ∈ {e1
2n , . . . , e2n

2n}. Suppose that there exists a time N > 0

and a control u ∈ UN that steers the BCN from x(0) = x0 to x(N ; u, x0) = z. Let N∗ be

the minimal time for which there exists a control u∗ ∈ UN∗
steering the BCN from x(0) = x0

to x(N∗; u∗, x0) = z. Find N∗ and a time-optimal control.

A. Time-optimality implies Mayer-type optimality

Our first result is based on a simple observation, namely, that a time-optimal control is also a

solution of a suitable Mayer-type optimal control problem. Indeed, suppose that u∗ ∈ UN∗ is a

time-optimal control. Define a cost functional J : N × UN∗ → {0, 1} by J(N ; u) = zT x(N ; u).

Note that since both z and x(N ; u) are columns of I2n , J can attain only the values zero or one.

Since

J(N∗; u∗) = zT x(N∗; u∗)

= zT z

= 1,

u∗ maximizes J(N∗; u). Hence, u∗ must satisfy the MP for a Mayer-type optimal control problem

stated in [49, Thms. 3 and 4]. This yields the following result.

Corollary 1. Suppose that u∗ ∈ UN∗
is a minimum-time control for Problem 1, and let x∗ denote

the corresponding trajectory of (4). Let the adjoint λ : {0, 1, . . . , N ∗} → R2n
be the solution of

λ(k) = (L n u∗(k))T λ(k + 1),

λ(N∗) = z. (5)
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Define 2m switching functions αi : {0, 1, . . . , N ∗} → R, i = 1, . . . , 2m, by

αi(k) = λT (k + 1) n L n ei
2m n x∗(k).

Fix an arbitrary s ∈ {0, 1, . . . , N ∗ − 1}. If there exists an index i such that αi(s) > αj(s) for

all j 6= i, then

u∗(s) = ei
2m . (6)

Furthermore, if there exists a subset of indexes I = {i1, . . . , il} such that αi1(s) = · · · = αil(s)

and αi1(s) > αj(s) for all j 6∈ I , then

u∗(s) ∈ {ei1
2m , . . . , eil

2m},

and any control in the form

w(j) =

v, if j = s,

u∗(j), otherwise,
(7)

with v ∈ {ei1
2m , . . . , eil

2m}, is a time-optimal control.

The next example demonstrates an application of this MP.

Example 3. Consider the three-state, one-input BCN

x1(k + 1) = x2(k),

x2(k + 1) = x3(k),

x3(k + 1) = u(k). (8)

Suppose that x1(0) = x2(0) = x3(0) = False, and that we are interested in finding a control

that steers this BCN to x1(N
∗) = x2(N

∗) = x3(N
∗) = True in minimal time N∗ (if it exists).

By inspection, we see that N∗ = 3, and that the unique optimal control is u∗(k) = True

for k ∈ {0, 1, 2}. We will show that this conclusion can also be deduced using the MP. In the

ASSR, n = 3, m = 1,

L =
[
e1
8 e3

8 e5
8 e7

8 e1
8 e3

8 e5
8 e7

8 e2
8 e4

8 e6
8 e8

8 e2
8 e4

8 e6
8 e8

8

]
, (9)
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x(0) = e8
8, and z = e1

8. Since λ(N∗) = e1
8 (see (5)), we begin by calculating

α1(N
∗ − 1) = λT (N∗) n L n e1

2 n x∗(N∗ − 1)

=
[
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]
n e1

2 n x∗(N∗ − 1)

=
[
1 0 0 0 1 0 0 0

]
n x∗(N∗ − 1)

=
[
1 0 0 0 1 0 0 0

]
x∗(N∗ − 1).

Similarly,

α2(N
∗ − 1) = λT (N∗) n L n e2

2 n x∗(N∗ − 1)

=
[
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]
n e2

2 n x∗(N∗ − 1)

= 0.

Thus α1(N
∗−1) ≥ α2(N

∗−1). If the inequality here is strict, then the MP implies that u∗(N∗−

1) = e1
2. If α1(N

∗ − 1) = α2(N
∗ − 1), then (7) implies that there exists an optimal control

satisfying u∗(N∗ − 1) = e1
2. Now (5) yields

λ(N∗ − 1) = (L n e1
2)

T n e1
8

=
[
1 0 0 0 1 0 0 0

]T

,

so

α1(N
∗ − 2) = λT (N∗ − 1) n L n e1

2 n x∗(N∗ − 2)

=
[
1 0 1 0 1 0 1 0

]
x∗(N∗ − 2),

and

α2(N
∗ − 2) = λT (N∗ − 1) n L n e2

2 n x∗(N∗ − 2)

= 0.

Hence, α1(N
∗ − 2) ≥ α2(N

∗ − 2), and thus the MP implies that there exists an optimal control

satisfying u∗(N∗ − 2) = e1
2. Proceeding in this way, we find that u∗(k) = e1

2, k ∈ {0, 1, 2}, is a
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candidate for a time-optimal control.

B. Maximum principle for time-optimal controls

It is straightforward to find a control u that steers the BCN in Example 3 to x(4) = z = e1
8.

Hence, this u maximizes the cost functional J(4; u) = zT x(4; u) and thus satisfies the MP in

Corollary 1. However, this control is certainly not time-optimal. The next result provides more

specific information on controls that are indeed time-optimal.

Theorem 3. Suppose that u∗ ∈ UN∗
is a minimum-time control for Problem 1, and let x∗ denote

the corresponding trajectory of (4). Define the adjoint λ : {0, 1, . . . , N ∗} → R2n
as in (5). Then

for any k, p ∈ {0, 1, . . . , N ∗}, with k < p,

λT (p)x∗(p) = 1, (10)

and

λT (p)x∗(k) = 0. (11)

Proof: First note that iterating (4) shows that for any k ≥ j ≥ 0,

x(k; u, x0) = C(k, j; u) n x(j; u, x0), (12)

where

C(k, j; u) =

L n u(k − 1) n L n u(k − 2) n · · · n L n u(j), k > j,

I2n , k = j.
(13)

We refer to the 2n × 2n matrix C(k, j; u) as the transition matrix from time j to time k

corresponding to the control u. Note that (13) implies that for any k ≥ l ≥ j,

C(k, j; u) = C(k, l; u) n C(l, j; u).

Fix an arbitrary p ∈ {0, 1, . . . , N ∗ − 1}. Then

1 = zT x∗(N∗)

= zT C(N∗, p + 1; u∗)x∗(p + 1)

= zT C(N∗, p + 1; u∗) n L n u∗(p) n x∗(p).
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It is straightforward to verify that (5) implies that λT (p + 1) = zT C(N∗, p + 1; u∗), so

1 = λT (p + 1) n L n u∗(p) n x∗(p)

= λT (p + 1)L n u∗(p) n x∗(p)

=
(
(L n u∗(p))T λ(p + 1)

)T n x∗(p)

= λT (p)x∗(p),

where the second equation follows from Remark 1. This proves (10). To prove (11) we use the

time optimality of u∗. Seeking a contradiction, assume that there exist k < p such that λT (p)x∗(k) 6=

0. It follows from (5) that each entry of λ(k) is nonnegative, so λT (p)x∗(k) > 0, that is,

zT C(N∗, p; u∗)C(k, 0; u∗)x0 > 0.

Since the transition matrix must map any column of I2n to a column of I2n , this implies

that C(N∗, p; u∗)C(k, 0; u∗)x0 = z. In other words, the control sequence

{u∗(N∗ − 1), u∗(N∗ − 2), . . . , u∗(p), u∗(k − 1), u∗(k − 2), . . . , u∗(0)}

steers the BCN from x(0) = x0 to x(N∗ + k − p) = z. Since k < p, N∗ + k − p < N ∗, and this

contradicts the fact that N∗ is the minimal time required to steer the BCN from x0 to z. This

completes the proof of Theorem 3.

Example 4. Consider again the time-optimal control problem in Example 3. We already know

that N∗ = 3 and that u∗(k) = e1
2, k = 0, 1, 2, is a time-optimal control. A calculation yields

x∗(0) = e8
8, x∗(1) = e7

8, x∗(2) = e5
8, x∗(3) = e1

8,

and

λ(3) = e1
8, λ(2) = e1

8 + e5
8, λ(1) = e1

8 + e3
8 + e5

8 + e7
8, λ(0) =

8∑
j=1

ej
8.

so (10) and (11) indeed hold.

Now consider the control u given by u(0) = e2
2, and u(k) = e1

2 for k = 1, 2, 3. This control
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yields

x(0) = e8
8, x(1) = e8

8, x(2) = e7
8, x(3) = e5

8, x(4) = e1
8,

so it steers the state to the desired final condition at time N = 4. Clearly, this control is not

time optimal. Let us show that this may be deduced from Theorem 3. Solving (5) for N∗ = 4

and the control u yields

λ(4) = e1
8, λ(3) = e1

8 + e5
8, λ(2) = e1

8 + e3
8 + e5

8 + e7
8, λ(1) = λ(0) =

8∑
j=1

ej
8.

so λT (1)x(0) = 1 and this violates (11).

C. Determining the optimal time using the generalized adjoint

The adjoint and the switching functions depend on (the generally unknown) u∗ and x∗. This

is of course a typical feature of MPs. In what follows, we define a modified adjoint vector that

does not depend on the optimal control u∗. This allows us to derive a stronger MP.

We introduce some notation from the binary algebra of binary matrices that will be used

later on; for more details, see [22, Chapter 11]. Let P ∈ {0, 1}m×n and Q ∈ {0, 1}p×q be two

matrices. If n = p, the Boolean product of P and Q, denoted P ¯Q, is a (m× q) binary matrix

defined by

(P ¯ Q)ij =
n∨

k=1

(pik ∧ qkj). (14)

In other words, the standard matrix multiplication but with logical and [logical or] replacing the

standard product [sum] operation. The kth Boolean power of A, denoted A[k], is the Boolean

product of k factors of A (e.g., A[3] = A¯A¯A). The Boolean semi-tensor product of P and Q

is

P nB Q = (P ⊗ Iα/n) ¯ (Q ⊗ Iα/p), (15)

where α = lcm(n, p).

Let 1j [0j] denote the column vector of length j with all entries equal to 1 [0]. For a time k ≥ 0

and a state z ∈ {e1
2n , . . . , e2n

2n}, let B(k; z) denote the set of all states x0 ∈ {e1
2n , . . . , e2n

2n} such
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that there exists a control u steering the BCN from x(0) = x0 to x(k) = z. Define

l(k; z) =
∑

x∈B(k;z)

x,

i.e., the sum of all states in B(k; z) (If B(k; z) = ∅ then we define l(k; z) = 02n .) Note that

since any x ∈ B(k; z) is a canonical vector, l(k; z) ∈ {0, 1}2n .

The next result provides a simple algebraic expression for l(k; a).

Proposition 4. For any z ∈ {e1
2n , . . . , e2n

2n} and any k ≥ 1,

l(k; z) = (Q[k])T ¯ z, (16)

where

Q = L nB 12m . (17)

Note that (15) implies that Q = (L ⊗ I1) ¯ (12m ⊗ I2n), so Q ∈ R2n×2n .

Proof: By induction on k. Consider the case k = 1. By definition, B(1; z) is the set of all

states x0 such that there exist a control steering (4) from x(0) = x0 to x(1) = z. Assume for the

moment that B(1; z) 6= ∅. Fix an arbitrary x0 ∈ B(1; z). Then there exist s ≥ 1 control values

w1, . . . , ws that steer x0 to z, that is,

z = L n wi n x0, i ∈ {1, . . . , s}, (18)

Since each control value is a column of I2m , there exist t = 2m − s different control values vj

such that

z 6= L n vj n x0, j ∈ {1, . . . , t}. (19)

Note that the term on the right-hand side of this inequality must be a column of I2n . Therefore,

a Boolean semi-tensor multiplication of (18) and (19) from the left by zT yields

1 = zT nB L n wi n x0, i ∈ {1, . . . , s},

0 = zT nB L n vj n x0, j ∈ {1, . . . , t}. (20)

Since each control value is a different column of I2m , summing up this set of s + t = 2m
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equations yields

s = zT nB L n 12m n x0.

Since s ≥ 1 and z, x0 are canonical vectors, this implies that

1 = zT nB L nB 12m n x0

= zT nB Q n x0. (21)

It is straightforward to verify that zT nB Q is a binary vector. Since Eq. (21) holds for any x0 ∈

B(1; z), this implies that (zT nBQ)T =
∨

x0∈B(1;z) x0. Since z ∈ R2n and Q ∈ R2n×2n , QT nBz =

QT ¯ z, so

l(1; z) = QT ¯ z. (22)

Recall that we assumed that B(1; z) 6= ∅. If B(1; z) = ∅, then the second equation in (20) holds

for t = 2m and any x0 ∈ {e1
2n , . . . e2n

2n}. Arguing as above yields 0 = zT nB Q n x0, so zT nB Q

is the zero vector, and (22) holds in this case as well. This proves (16) for k = 1.

Assume that (16) holds for some k ≥ 1. For the induction step, consider

(QT )[k+1] ¯ z = (QT )[k] ¯ (QT ¯ z),

= (QT )[k] ¯
∨

x0∈B(1;z)

x0,

=
∨

x0∈B(1;z)

(QT )[k] ¯ x0,

=
∨

x0∈B(1;z)

∨
y0∈B(k;x0)

y0, (23)

where the last step follows from the induction hypothesis. Clearly, the term in (23) is just l(k +

1; z).
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Example 5. Consider the three-state, one-input BCN

x1(k + 1) = x2(k),

x2(k + 1) = x3(k),

x3(k + 1) = u(k) ∨ [x2(k) ∧ x3(k)]. (24)

Suppose that the desired state is z = (True, True, True)T . The ASSR is given by n = 3, m = 1,

z = e1
8, and

L =
[
e1
8 e3

8 e5
8 e7

8 e1
8 e3

8 e5
8 e7

8 e1
8 e4

8 e6
8 e8

8 e1
8 e4

8 e6
8 e8

8

]
. (25)

Thus,

Q = L nB

[
1 1

]T

=
[
e1
8 e3

8 + e4
8 e5

8 + e6
8 e7

8 + e8
8 e1

8 e3
8 + e4

8 e5
8 + e6

8 e7
8 + e8

8

]
, (26)

and (16) yields

l(1; z) = QT ¯ e1
8 = e1

8 + e5
8,

l(2; z) = (Q[2])T ¯ e1
8 = e1

8 + e3
8 + e5

8 + e7
8,

l(3; z) = (Q[3])T ¯ e1
8 =

8∑
i=1

ei
8.

Fig. 1 depicts the trajectories of this BCN, where each node is a state in the ASSR, and edges

denote time transitions between the states. For z = e1
8, it is easy to see from this figure that

indeed l(1; z) = e1
8 + e5

8, l(2; z) = e1
8 + e3

8 + e5
8 + e7

8 and l(k; z) =
∑8

i=1 ei
8 for all k ≥ 3.

It is interesting to note that Zhao et al. [80] defined a matrix M = L n 12m . They used

this matrix for controllability analysis. That is similar, yet different, from the matrix Q defined

in (17).

We can now restate Theorem 3 in a different, and more explicit, form.

Theorem 5. Suppose that u∗ ∈ UN∗
is a minimum-time control for Problem 1, and let x∗ denote
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e7
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8 e8

8e5
8

e1
8 e3

8 e4
8

e2
8

Fig. 1. Trajectories of the BCN in Example 5. A solid [dashed] line denotes the transition corresponding to u(k) = e1
2

[u(k) = e2
2].

the corresponding trajectory of (4). Let η : {0, 1, . . . , N ∗} → R2n
be the solution of

η(k) = QT ¯ η(k + 1),

η(N∗) = z. (27)

Then for any k, p ∈ {0, 1, . . . , N ∗}, with k < p,

ηT (p)x∗(p) = 1, (28)

and

ηT (p)x∗(k) = 0. (29)

Note that η, unlike the adjoint λ in Theorem 3, does not depend on u∗, and so we can easily

calculate η(k) for k = N∗, N∗ − 1, . . . , 0.

Proof: It follows from (27) that η(N∗−k) = (Q[k])T ¯z, so (16) yields η(N∗−k) = l(k; z).
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Thus,

ηT (p)x∗(p) = [l(N∗ − p; z)]T x∗(p)

= [
∑

x0∈B(N∗−p;z)

x0]
T x∗(p)

for all p ∈ {0, 1, . . . , N ∗}. Since x∗(p) ∈ B(N∗ − p; z) this proves (28). To prove (29), fix

arbitrary k, p ∈ {0, 1, . . . , N ∗} with k < p. Seeking a contradiction, assume that ηT (p)x∗(k) > 0,

that is,

[
∑

x0∈B(N∗−p;z)

x0]
T x∗(k) > 0.

Since each x0 ∈ B(N∗ − p; z) and x∗(k) are canonical vectors, this implies that x∗(k) ∈

B(N∗ − p; z). In other words, there exists a control u that steers the BCN from x∗(k) to z

in N∗ − p time steps. But u∗, which is time optimal, does the same in N∗ − k time steps.

Since k < p this is a contradiction. This proves (29).

For k = 0 and p > 0, Eq. (29) becomes

ηT (p)x∗(0) = 0. (30)

On the other-hand, Eq. (28) yields

ηT (0)x∗(0) = 1. (31)

This implies that given the initial condition x(0), we can explicitly determine the minimal

time N∗ by calculating ηT (N∗)x∗(0), ηT (N∗ − 1)x∗(0), and so on until the first value k such

that ηT (N∗ − k)x∗(0) = 1. Then N∗ − k = 0 so N∗ = k.

Example 6. Consider again the three-state, one-input BCN from Example 5 with x1(0) =

x2(0) = x2(0) = False. In the ASSR, x(0) = e8
8, z = e1

8, and L is given in (25). We now

use Theorem 5 to find N∗. A calculation yields η(N∗) = z = e1
8, so η(N∗))T x0 = (e1

8)
T e8

8 = 0;

η(N∗−1) = e1
8+e5

8, so (η(N∗−1))T x0 = 0; η(N∗−2) = e1
8+e3

8+e5
8+e7

8, so (η(N∗−2))T x0 = 0;

and η(N∗− 3) =
∑8

i=1 ei
8, so (η(N∗− 3))T x0 = 1. We conclude that N∗ = 3. Fig. 2 depicts the

possible trajectories of the BCN up to time k = 3. Each node corresponds to a possible value

of x(i) at time i ∈ {0, 1, 2, 3}. It may be seen that indeed N∗ = 3.
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e8
8

e1
8 e3

8 e4
8 e5

8 e6
8

e7
8

e5
8 e6

8
e8
8e7

8

x(3)

x(2)

x(1)

x(0)

e1
8

e8
8

e8
8

u = e1
2 u = e2

2

e7
8

Fig. 2. Trajectories of the BCN in Example 6. Each node depicts the value of x(i) for either u(i − 1) = e1
2 (solid line)

or u(i − 1) = e2
2 (dashed line).

D. State-feedback representation of time-optimal controls

The next result shows that using the generalized adjoint η it is possible to provide a kind of

state-feedback expression for all the time-optimal controls. We require one more tool, introduced

by Cheng and Qi in [20].

Proposition 6. [20] For two integers i, j > 0, define the swap matrix W[i,j] ∈ R(ij)×(ij) by

W[i,j] =


Ii ⊗ (e1

j)
T

Ii ⊗ (e2
j)

T

...

Ii ⊗ (ej
j)

T

 .

Then for any x ∈ Ri and y ∈ Rj ,

W[i,j] n x n y = y n x. (32)

In other words, the swap matrix allows swapping the roles of x and y in the semi-tensor

product.

Given the BCN (4), let H = LW[2n,2m]. Note that this implies that H ∈ R2n×2m+n .

Theorem 7. Suppose that there exists a time-optimal control u∗ ∈ UN∗
that solves Problem 1,

and let x∗ denote the corresponding trajectory of (4). Fix an arbitrary time p ∈ {0, 1, . . . , N ∗−1}

and let r = x∗(p). Suppose that there exist exactly s different control values {v1(p), . . . , vs(p)}
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such that vi(p) steers (4) from x(p) = r to a point x(p + 1) satisfying

x(p + 1) ∈ B(N∗ − (p + 1); z). (33)

Then
s∑

i=1

vi(p) = (H n x∗(p))T η(p + 1). (34)

Note that (33) implies that vi(p), i ∈ {1, . . . , s}, is an optimal control value, as it steers the

BCN to a point from which it is possible to reach z in N∗ − (p + 1) time steps. As we will see

below, Theorem 7 allows to iteratively determine all the time-optimal controls.

Proof: By the proof of Theorem 5,

1 = ηT (p + 1)(L n vi(p) n x∗(p)), (35)

for all i ∈ {1, . . . , s}. Using the definition of H yields

1 = ηT (p + 1)(H n x∗(p) n vi(p))

= qT (p) n vi(p), (36)

where qT (p) = (ηT (p + 1)H) n x∗(p). Since (ηT (p + 1)H) ∈ R1×2n+m and x∗(p) ∈ R2n ,

qT (p) = (ηT (p + 1)H)(x∗(p) ⊗ I2m), so qT (p) ∈ R1×2m . Thus (36) becomes

1 = qT (p)vi(p). (37)

Recall that vi(p) is a column of I2m , i.e. for any i there exists a j = j(i) ∈ {1, . . . , 2m} such

that vi(p) = ej
2m . It follows from (37) that qj(i)(p) = 1 for all i. Furthermore, all the other entries

of q(p) must be zero, as otherwise (37) will imply (see (35)) that

ηT (p + 1)(L n w n x∗(p)) > 0

for some control value w with w 6∈ {v1(p), . . . , vs(p)}. But this contradicts the definition of the

set of control values {v1(p), . . . , vs(p)}. We conclude that (37) implies that

q(p) =
s∑

i=1

vi(p),
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so
s∑

i=1

vi(p) = ((ηT (p + 1)H) n x∗(p))T

= (H n x∗(p))T η(p + 1),

and this completes the proof.

Remark 4. Note that the state-feedback solution (34) at time p depends on both x∗(p) and η(p+

1). But the term η(p + 1) can be explicitly calculated using (27).

The next example demonstrates an application of Theorem 7.

Example 7. Consider again the three-state, one-input BCN in Example 5 with x1(0) = x2(0) =

x3(0) = False, and desired final state z = e1
8. The matrix H is

H = LW[8,2]

= L

I8 ⊗ (e1
2)

T

I8 ⊗ (e2
2)

T


=

[
e1
8 e1

8 e3
8 e4

8 e5
8 e6

8 e7
8 e8

8 e1
8 e1

8 e3
8 e4

8 e5
8 e6

8 e7
8 e8

8

]
.

We already found that N∗ = 3, and that

η(3) = e1
8, η(2) = e1

8 + e5
8, η(1) = e1

8 + e3
8 + e5

8 + e7
8

(see Example 6). Eq. (34) with p = 0 yields

s0∑
i=1

vi(0) = (H n x∗(0))T η(1) = e1
2, (38)

where s0 is the number of different control values that steer the BCN from x∗(0) to a state x(1)

in B(N∗−1; z). This implies that s0 = 1, and that the only optimal control value at time 0 is e1
2.

The corresponding state is x∗(1) = Lne1
2nx∗(0) = e7

8. Now (34) with p = 1 yields
∑s1

i=1 vi(1) =

(H n x∗(1))T η(2) = e1
2, so the only optimal control value at time 1 is e1

2, and x∗(2) = L n e1
2 n

x∗(1) = e5
8. Finally, (34) with p = 2 yields

∑s2

i=1 vi(2) = (Hnx∗(2))T η(3) = e1
2+e2

2. This implies

that both e1
2 and e2

2 are optimal control values at time 2. We conclude that there exist two time-
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optimal controls {v1(2), v1(1), v1(0)} = {e1
2, e

1
2, e

1
2} and {v2(2), v2(1), v2(0)} = {e2

2, e
1
2, e

1
2}.

This agrees with the trajectories depicted in Fig. 2.

IV. A BIOLOGICAL EXAMPLE: THE λ SWITCH

The λ phage is a virus that grows on a bacterium. To ensure successful propagation, the virus

had to develop efficient mechanisms of precise response to changes in the physiology of its host.

This was achieved by a specific genetic switch that allows this virus to choose the most effective

developmental pathway for the given environmental conditions.

Upon infection of the bacterium, the phage injects its chromosome into the bacterium cell.

The virus can then follow one of two different pathways: lysogeny or lysis.1 In the lysogenic

state, the phage integrates its genome into the bacterium’s DNA and passively replicates with the

bacterium. In the lytic state, the phage’s DNA is extensively replicated, new phages are formed

within the bacterium, and after about 45 minutes the bacterium lyses and releases about 100 new

phages. The phage may switch from the lysogenic state to the lytic state. This is a kind of SOS

response initiated when the host cell experiences DNA damage. This happens, for example, if

the bacteria is exposed to ultraviolet (UV) light (see Fig. 3).

The two possible pathways are the result of expressing different sets of genes. The molecular

mechanism responsible for the lysogeny/lysis decision is known as the λ switch [66]. Bistable

switches are common motifs in gene regulation networks [7], and the λ switch provides a

convenient test case, as the virus is one of nature’s simplest organisms.

A. Lambda phage decision circuit

The biomolecular mechanisms behind the lambda switch are generally known [66], [78], [1],

[76], [77], [64]. Two genes, cI and cro, directly affect this decision. When cI is ON [OFF]

and cro is OFF [ON], the phage is in the lysogenic [lytic] state. Whether or not gene cI will be

switched on, and, thus, whether or not lysogenic state will be established, depends on a subtle

control process in which five phage genes, cI , cro, cII , cIII , and N , and the environmental

state play a prominent role.

Immediately after infection genes cro and N are activated, and their induced proteins begin to

accumulate. Gene N exerts a positive control on cII and cIII genes and is itself under negative

1From the Greek, Lysis, act of loosening. Lysogenic, capable of producing or undergoing lysis.
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Lysis Lysogeny 

Cell lysis

UV induction

Cell division

Infection

Phage

Bacterium

Fig. 3. Two developmental pathways: lytic and lysogenic.

control of cI and cro. The most important factor in the lysis/lysogenization decision is actually

the CII protein, as its activity dictates the level of cI . The CIII protein also helps to establish

lysogeny; its role is to protect CII from degradation.

Several environmental conditions including concentration of nutrition, growth rate, tempera-

ture, and multiplicity of infection can influence the cII and cIII genes. If the environmental

conditions are favorable, then the cII and cIII genes are highly active, and the cII gene product

turns the cI gene on. The cI gene inhibits all other genes including cro, and the lysogenic state

is established. If the environmental conditions are not favorable, then genes cII , cIII are not

activated, the cro gene remains a active and its product represses the cI gene. Thus, the lytic

state is established.

The gene interactions are summarized in Fig. 4, where u is a binary input that represents

whether the sum of environmental conditions is favorable or not.
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cI

u

cIIcIII

cro

N

Fig. 4. Gene interactions for the λ switch. The edges represent either activatory (→) or inhibitory (⊥) interactions.

B. BCN model of the lambda switch

We derive a simple BCN model for the lambda switch based on the assumption that the effect

of activators and inhibitors is never additive, but rather inhibitors are dominant. Each gene is

modeled using a Boolean variable where state ON [OFF] of the gene corresponds to the logical

state True [False] of the variable. This yields

N(k + 1) = (¬cI(k)) ∧ (¬cro(k)),

cI(k + 1) = (¬cro(k)) ∧ (cI(k) ∨ cII(k)),

cII(k + 1) = (¬cI(k)) ∧ u(k) ∧ (N(k) ∨ cIII(k)), (39)

cIII(k + 1) = (¬cI(k)) ∧ u(k) ∧ N(k),

cro(k + 1) = (¬cI(k)) ∧ (¬cII(k)),

where ¬ denotes logical negation. The input u(k) is True [False] if the environmental conditions

are favorable [not favorable] at time k.

The Boolean interaction functions are constructed from the verbal description of the interac-

tions between the genes described above. For example, since cI suppresses all other genes, the
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right-hand side of the equations for N(k + 1), cII(k + 1), cIII(k + 1) and cro(k + 1) includes

a logical and with the term (¬cI(k)).

Remark 5. Our model considers what happens immediately after infection and thus does not

take into account some known interactions that control long time behavior. For example, it is

known that both cI and cro auto-regulate themselves in order to limit the concentration values

of the corresponding proteins, once they reach high values. We also ignore the negative control

of cII by Cro that takes place only at high concentration of Cro [76]. A third simplification is

that we consider a single control input. Indeed, as was discussed above several different external

factors affect the lytic/lysogenic decision process. However, we model their total effect using a

single control that can inhibit the expression of the cII or cIII genes (see [78]).

We assume from here on that the initial condition right after infection is N(0) = cI(0) =

cII(0) = cIII(0) = cro(0) = False, i.e., all genes are not expressed.

C. Algebraic representation of the BCN

Recall that in the ASSR every Boolean variable may attain the values e1
2 or e2

2. Let x(k) =

N(k) n cI(k) n cII(k) n cIII(k) n cro(k). The ASSR of (39) is given by (4) with n = 5,

m = 1, and

L = e32[ 32 24 32 24 32 24 32 24 26 2 26 2 25 9 25 9

32 24 32 24 32 24 32 24 28 4 32 8 27 11 31 15

32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15

32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15 ].

(40)

This notation means that the first column of L is e32
32, the second column is e24

32 and so on. The

initial condition is x(0) = xinit = e32
32.

To verify the model, we first consider the BNs obtained from this BCN for the case of a

constant control.

1) Constant control: For u(k) ≡ e1
2, the BCN becomes the BN

x(k + 1) = L1x(k), (41)
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with

L1 = e32[ 32 24 32 24 32 24 32 24 26 2 26 2 25 9 25 9

32 24 32 24 32 24 32 24 28 4 32 8 27 11 31 15 ].

This BN admits two equilibrium points: e24
32 and e31

32. Note that e24
32 = e2

2 n e1
2 n e2

2 n e2
2 n e2

2. This

corresponds to all the genes turned OFF except for cI which is ON, i.e. the lysogenic state, so we

denote xlysogenic = e24
32. Similarly, e31

32 = e2
2 n e2

2 n e2
2 n e2

2 n e1
2. This corresponds to all the genes

turned OFF except for cro which is ON. This is the lytic state, so we denote xlytic = e31
32. For

the initial condition x(0) = xinit, the trajectory of (41) satisfies x(5) = e24
32 (and thus x(k) = e24

32

for any k ≥ 5). This seems reasonable as it implies that for a constant signal of favorable

environmental conditions the BCN converges to the lysogenic state.

For u(k) ≡ e2
2, the BCN becomes the BN x(k + 1) = L2x(k) with

L2 = e32[ 32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15

32 24 32 24 32 24 32 24 32 8 32 8 31 15 31 15 ].

This BN admits the same two equilibrium points as (41), i.e. xlysogenic and xlytic. For the initial

condition x(0) = xinit, the corresponding trajectory satisfies x(2) = e31
32 (and thus x(k) = e31

32

for any k ≥ 2). This seems reasonable as it implies that for a constant signal of unfavorable

environmental conditions the BCN converges to the lytic state.

We now apply the theoretical results in this paper to determine time-optimal controls that steer

the BCN (39) from xinit to either xlytic or xlysogenic.

D. Minimum-time control in the λ switch

To apply Thm. 7 we calculate

Q =L nB

[
1 1

]T

(42)

=[e32
32 e24

32 e32
32 e24

32 e32
32 e24

32 e32
32 e24

32 e26
32 + e32

32 e2
32 + e8

32 e26
32 + e32

32

e2
32 + e8

32 e25
32 + e31

32 e9
32 + e15

32 e25
32 + e31

32 e9
32 + e15

32 e32
32 e24

32 e32
32 e24

32 e32
32

e24
32 e32

32 e24
32 e28

32 + e32
32 e4

32 + e8
32 e32

32 e8
32 e27

32 + e31
32 e11

32 + e15
32 e31

32 e15
32],
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and

H = LW[32,2]

= L

I32 ⊗ (e1
2)

T

I32 ⊗ (e2
2)

T


= e32[32 32 24 24 32 32 24 24 32 32 24 24 32 32 24 24

26 32 2 8 26 32 2 8 25 31 9 15 25 31 9 15 32 32 24

24 32 32 24 24 32 32 24 24 32 32 24 24 28 32 4 8

32 32 8 8 27 31 11 15 31 31 15 15].

1) Time-minimal transition to the lytic state: Let u∗
lytic be a time-optimal control steering

the BCN from xinit to xlytic in minimal time N∗
lytic. We find N∗

lytic using Theorem 5. Here

η(N∗
lytic) = xlytic = e31

32, so (η(N∗
lytic))

T xinit = (e31
32)

T e32
32 = 0; η(N∗

lytic − 1) = QT ¯ η(N∗
lytic) =

e13
32 + e15

32 + e29
32 + e31

32, so again (η(N∗
lytic − 1))T xinit = 0; η(N∗

lytic − 2) = QT ¯ η(N∗
lytic − 1) =

e13
32 + e14

32 + e15
32 + e16

32 + e29
32 + e30

32 + e31
32 + e32

32, so (η(N∗
lytic − 2))T xinit = 1, and we conclude

that N∗
lytic = 2. We can now use Theorem 7 to iteratively determine all the time-optimal controls:

s0∑
i=1

u∗
lytic(0) = (H n x∗(0))T η(1) = e1

2 + e2
2,

so there are two time-optimal values at time 0. The corresponding state for both these values is

is x∗(1) = e15
32. Since e15

32 = e1
2 ne2

2 ne2
2 ne2

2 ne1
2, this implies that for x(0) = xinit the state x(1)

does not depend on the environmental conditions and corresponds to genes N and cro ON, and

all other genes OFF. Now

s1∑
i=1

u∗
lytic(1) = (H n x∗(1))T η(2) = e2

2,

so there exists a unique time-optimal control value at time 1. The corresponding trajectory is,

as expected, x∗(2) = e31
32. Thus, time step k = 1 is critical for the switching decision and if at

this time step the environmental conditions are unfavorable, the virus immediately switches to

the lytic state.
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2) Time-minimal transition to the lysogenic state: We start with calculating the minimal

time N∗
lysogenic using Theorem 5. A calculation of η(N∗

lysogenic), η(N∗
lysogenic − 1), . . . until the

first value k such that (η(N∗
lysogenic − k))T xinit = 1 yields k = 5, so N∗

lysogenic = 5.

Now applying Theorem 7 yields

s0∑
i=1

u∗
lys(0) = (H n x∗(0))T η(1) = e1

2 + e2
2, x∗(1) = e15

32,

s1∑
i=1

u∗
lys(1) = (H n x∗(1))T η(2) = e1

2, x∗(2) = e25
32,

s2∑
i=1

u∗
lys(2) = (H n x∗(2))T η(3) = e1

2, x∗(3) = e28
32,

s3∑
i=1

u∗
lys(3) = (H n x∗(3))T η(4) = e1

2 + e2
2, x∗(4) = e8

32,

s4∑
i=1

u∗
lys(4) = (H n x∗(4))T η(5) = e1

2 + e2
2, x∗(5) = e24

32.

We conclude that any control u∗ satisfying u∗(1) = u∗(2) = e1
2 is time-optimal. Thus, there exist 8

different time-optimal controls steering the BCN from x(0) = xinit to x(N∗
lysogenic) = xlysogenic

and they all yield the same trajectory, namely, x∗ = {x∗(5), x∗(4), x∗(3), x∗(2), x∗(1), x∗(0)} =

{e24
32, e

8
32, e

28
32, e

25
32, e

15
32, e

32
32}. In particular the control u∗ = {e1

2, e
1
2, e

1
2, e

1
2, e

1
2}, corresponding to a

set of 5 consecutive favorable environmental conditions, is time-optimal. Here time steps k = 1, 2

are critical for the switching decision, and if the environmental conditions at these times are

favorable, then the virus will be steered to the lysogenic state.

From a biophysical point of view, these results suggest that the lambda switch is designed in

a way that guarantees a swift as possible response to the environmental conditions. This seems

reasonable and agrees with the biological findings. Indeed, Wegrzyn & Wegrzyn [78] note that

“The lysis-versus-lysogenization decision has to be made shortly after infection and is crucial

for effective propagation of the phage λ.”

V. CONCLUSION

BNs and BCNs are recently attracting considerable interest as computational models for

biological networks. We considered the following problem. Given an initial state x0 and a desired

state z, find a time-optimal control steering the BCN from x0 to z (if it exists). This problem may
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have important applications in the context of biological systems modeled using BCNs. Indeed,

intervention protocols may require transferring a biological network from an undesirable state to

a desirable one in minimal time. Also, it is possible that biological networks evolved to respond

in a time-minimal manner to important external or internal conditions.

Using the algebraic state-space representation of BCNs, we derived several MPs that provide

necessary conditions for time-optimality. The canonical structure of the state vectors in this

representation allows the derivation of an explicit state-feedback formula for all the time-optimal

controls.

Some of the theoretical results were demonstrated using a new BCN model for the lambda

switch, with the input representing the environmental conditions sensed by the phage at the time

of infection. Analysis of time-optimal controls suggests that the switch is designed in a way that

guarantees a fast response to the environmental conditions inside the bacterium.

As a topic for further research, we note that MPs combined with Lie-algebraic ideas have been

used to derive nice-reachability-type results for discrete-time linear switched systems (see [62]

and the references therein). It may be interesting to try and develop similar results for BCNs.
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