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Minimum-Time System-Inversion-Based Motion
Planning for Residual Vibration Reduction

Aurelio Piazzi, Member, IEEE,and Antonio Visioli, Member, IEEE

Abstract—In this paper, we present a novel approach, based on
system inversion, for the point-to-point motion planning of vibra-
tory servosystems. The idea is to define a suitable parameterized
motion law of the load which assures that no oscillations occurs
during and at the end of the motion; then, by means of a non-
causal system inversion, the command function of the system is
determined with a continuous derivative of an arbitrary order. A
procedure that minimizes the duration of the movement, taking
into account actuator constraints, can then be performed. Compar-
isons with the well-known input shaping techniques have been per-
formed via both a simulation example and an experimental setup.
The proposed method, which is inherently robust to modeling er-
rors, emerges as a very flexible and competitive technique.

Index Terms—Open-loop control, system inversion, time opti-
mization, vibratory systems.

I. INTRODUCTION

I T IS WELL KNOWN that the performances of positioning
servosystems are limited by the presence of elasticity in

the transmissions that introduce vibrations. This generally
results in the increasing of the working cycle time in order for
the oscillation to vanish after the point-to-point motion has
been accomplished. To eliminate such an effect of residual
vibrations, two strategies can be implemented: the closed-loop
feedback control, which is based on the instantaneous knowl-
edge of the system state, and the open-loop control which
consists of an adequate shaping of the command input and
requires the knowledge of the system model. In the latter case,
a further closed-loop system is generally employed to cope
with the effect of disturbances and parameter variations. Many
solutions have been proposed in the literature addressing this
motion planning aspect. From a theoretical viewpoint, linear
quadratic optimal techniques can be adopted to obtain an
optimal final-state control, as shown, for example, in [1]; see,
also, [2, pp. 127–134]. With another standpoint, Aspinwall has
devised a pulse-shaping technique for the forcing function,
based on a short, finite Fourier series expression whose coeffi-
cient is selected to depress the envelope of the residual response
spectrum in desired regions [3]. Other methods proposed by
Meckl and Seering consist of using a multiswitch bang–bang
forcing function, which gives time-optimal performance [4],
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or adding up harmonics of ramped sinusoid functions in order
to approximate as close as possible a bang–bang function,
but minimizing the energy introduced at system resonance
frequencies [5]. The most well-known technique is, however,
the input shaping, which has been developed in the last decade
[6]–[11]. It consists of convolving a sequence of impulses, also
known as the input shaper, with a desired system command
to generate the system command that is then actually used to
drive the system. Different impulse sequences (which depend
on the natural frequencies and damping of the system to be
controlled) can be employed in order to cope with multiple
modes [7], [8], [11] and to increase robustness. In particular, if
a single oscillation mode is addressed, the zero-vibration (ZV),
zero-vibration and zero-derivative (ZVD), and ZVDD (also the
second derivative is set to zero) shapers aim to force to zero the
residual vibration if the real system corresponds to the nominal
one [6]. An alternative procedure uses extra-insensitive (EI)
constraints to increase the width of the notch of the insensitivity
curve, allowing a small residual vibration at the modeling
frequency [9]. Subsequent developments of this approach are
the two-humped and three-humped EI [10]. In general, the
increasing of robustness of the system (obtained with a larger
number of impulses adopted in the shaper) is paid with an
increasing of system delays, due to the convolution process.

In this paper, we present a novel approach to solve the
problem of residual vibration, which can be briefly described
as follows. An arbitrarily smooth closed-form motion law
for the load of the system is determined in such a way that
guarantees the absence of oscillations during and at the end of
the motion. The function is parameterized by the time interval

of the point-to-point motion. Then, by means of a noncausal
system inversion, the corresponding parameterized actuator
input is determined. Finally, a time optimization is performed
in order to minimize the motion time taking into account
actuator constraints. Polynomial functions are suitable to be
adopted as output functions for this method, since monotonicity
can be easily obtained and they assure the smoothness of the
input function and its derivatives until an arbitrarily prefixed
order. System invertibility has been the subject of numerous
investigations since the 1960’s, especially for linear multi-input
multi-output (MIMO) systems, for which issues such as test
conditions for system invertibility, algorithmic constructions
of the inverse system, and stability of the inverse system
were addressed [12]–[15]. Another issue is left-invertibility or
right-invertibility of a system. The latter concept is also known
with the more illuminating term of functional reproducibility,
which indicates the possibility to reproduce a given output
function by a suitable input function [16], [17]. In recent
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Fig. 1. Model of system with elastic linkage.

Fig. 2. Output function of the system (load motion).

Fig. 3. Input function of the system (position command signal).

years, the system inversion idea has been applied to perfect
or quasi-perfect tracking for linear and nonlinear dynamic
systems [18]–[21]. In these papers, the main emphasis is on
the construction of noncausal stable inverses in the presence
of unstable zero dynamics. For our purpose, the functional re-
producibility property necessary to perform a stable noncausal
inversion on the output motion is always secured because the
relevant system is scalar and minimum phase.

The paper is organized as follows. In Section II, the open-loop
control strategy based on system inversion is proposed. The pro-
cedure to minimize the motion time subject to actuator con-
straints is demonstrated in Section III. Sections IV and V show

Fig. 4. First derivative of the input function of the system (velocity command
signal).

Fig. 5. Second derivative of the input function of the system (acceleration
command signal).

Fig. 6. Maximum amplitude of residual vibration for different values of model
parameters.

simulation results for a given example. The former section ap-
plies the system inversion motion planning and presents the re-
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Fig. 7. Motion of the load using a bang–bang function of amplitudey =

10 (bang–bang I case).

Fig. 8. Maximum amplitude of residual vibration using a bang–bang
acceleration input function of amplitudey = 10 (bang–bang I case).

Fig. 9. Motion of the load using a bang–bang function of duration� = 0:874

s (bang–bang II case).

lated robustness analysis, whereas the latter one is devoted to
comparisons with the input shaping techniques. Experimental
results with comparisons for a linear flexible joint (by Quanser

Fig. 10. Maximum amplitude of residual vibration using a bang–bang
acceleration input function of duration� = 0:874 s (bang–bang II case).

Fig. 11. Maximum amplitude of residual vibration using the ZV impulse
shaper method for different values of the model parameter.

Fig. 12. Maximum amplitude of residual vibration using the ZVD impulse
shaper method for different values of the model parameter.

Consulting) are reported in Section VI. Conclusions are drawn
in Section VII.

II. SYSTEM-INVERSION-BASED MOTION PLANNING

Many mechanical positioning servosystems (e.g., robot arms
or overhead cranes) have an elastic transmission, mainly intro-
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duced by the gearbox [22], which can be simply described by the
model shown in Fig. 1 whereis the coordinate representing the
motor shaft displacement, is the coordinate representing the
mass displacement, is the load mass, the stiffness constant,
and the damping of the transmission [23]. The well-known
linear relation which links and has the following differen-
tial form:

(1)

which can be rewritten as

where rads is the frequency of
the oscillatory mode, and is the damping ratio. In
general (we refer, for example, to the motion planning of ma-
nipulators), the elasticity of the transmission is not taken into
account and the motion is planned on[the input of the system
(1)] hoping that the motion of is very close to it. Limits of the
actuators have to be considered in the choice of the motion law
of so that it can be followed in practical cases. Vibrations are
generally neglected in this phase and, in case they are not tol-
erable, actuator exertion has to be reduced. This is, however, a
severe drawback for high-performance systems. The approach
presented in this paper shows how it is possible to overcome
this limitation by calculating the motion of in order to get a
predefined motion of , assuming to have the knowledge of
the values of the parameters of the system. The idea is to de-
fine a priori and impose the desired function and then use
dynamic inversion in order to obtain that is the input move-
ment of the motor shaft that causes the desired output. The
choice of the function assumes great importance for the
whole procedure. Polynomial functions present important prop-
erties, illustrated in the following, that make them particularly
suitable for the purpose described above. The general expres-
sion of a polynomial function is

(2)

The choice of , the degree of the polynomial, results from the
following property, regarding the differentiability of the input of
the system. Denote by the class of functions which have an

th continuous derivative. Let also and for
all (at time all initial conditions are equal to zero).

Property 1: Assume that . For the system described by
the differential equation (1), if , then it is functional
reproducible by a unique .

Proof: Denote by the transfer function of the system
(1)

(3)

We can write , dividing the denominator by the numer-
ator, as

where

(4)

Applying the Laplace transform also to and , it follows,
trivially

(5)

In the time domain, the expression (5) results (is the real vari-
able of the integrand function)

(6)

where, denoting by the inverse Laplace transform operator

(7)

Now, multiplying by both the right and the left part of (5), we
obtain

where is the appropriate coefficient. Multiplying again by

Generalizing, multiplying times by , we have

(8)

Applying to (8) the Laplace inverse transform, it results in

(9)

where

From (9), it follows that, if , then is a
continuous function because all the functions in the right side
of (9) are continuous. Hence, , so if , the
property is proved.

The point-to-point motion of the load from position zero to
position has to be completed in the time interval with
being the free parameter that defines the motion duration time.
Therefore, formally, we have if and

if . The function over is chosen to be a
-degree polynomial in order to assure over

. The function class is selected, according to
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Fig. 13. Maximum amplitude of residual vibration using the ZVDD impulse
shaper method for different values of the model parameter.

Fig. 14. Maximum amplitude of residual vibration using the EI impulse shaper
method for different values of the model parameter.

Fig. 15. Maximum amplitude of residual vibration using the two-humped EI
impulse shaper method for different values of the model parameter.

Property 1, such as , the corresponding input that causes
the planned motion , has continuous derivatives.

Fig. 16. Maximum amplitude of residual vibration using the three-humped EI
impulse shaper method for different values of the model parameter.

The values of the coefficients of the sought polynomial
can be found by solving the following linear algebraic system:

...
...

(10)

The general closed-form expression of polynomial with
that results from (10) is given by the following re-

markable formula:

(11)

with positive coefficient . The
above formula (11) can be easily proven taking into account that

(12)

From (12), it is also clear that is monotonically in-
creasing, since is positive all over in this way,
it is guaranteed that there are no oscillations during the whole
motion of .

Having synthesized, according to (11), the desired param-
eterized load motion as a -class function over

, we proceed to determine, by system inversion,
the (unique) corresponding input function that belongs
to over (see Property 1). By virtue of
the explicit inversion formula (6) and using the definitions
appearing in (4) and (7), after a few passages, the following
closed-form expression of for can be derived
(obviously, if :

(13)
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TABLE I
COMPARISON OF THEDIFFERENTMETHODOLOGIES FOR THESIMULATION EXMAPLE

Fig. 17. The experimental setup (made by Quanser Consulting) adopted in the
experiments.

This expression can be simplified for . Indeed, consider
that and for . Hence,

Explicitly computing the second integral appearing in the above
expression, we obtain

Taking into account that

it follows that

By substitution, we eventually obtain

(14)

From (14), it is apparent that is all over bounded because
the excited zero mode is stable.

Fig. 18. Theoretical and actual load motion obtained with the
system-inversion-based methodology.

III. T IME OPTIMIZATION

Once parameter has been fixed in order to choose the class
of the motion law , the other parameter, the
duration of the output motion, can be selected to satisfy actuator
constraints. These constraints can be introduced, for example,
as bounds on the absolute values of the input and its
derivatives until a prefixed order . Hence, the following
semi-infinite optimization problem naturally arises (where
denotes the given bound on theth-order derivative):

minimize

subject to

The optimal solution of the above problem can be found by
means of the following algorithm, which is a typical bisection
algorithm.

1. Set .
2. Determine an initial value for

such as
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Fig. 19. Motor voltage during the point-to-point motion with the
system-inversion-based methodology.

3. Set .
4. If , then

set else set .
5. If then goto 3.
6. Set .
7. End.

Remark 1: At step 4, the required computation of the
global maximum of over can be successfully
performed by means of an interval algorithm which implements
a branch-and-bound strategy with the bounding given by a
suitable inclusion function [24], [25].

The initial value of can be easily found starting from a
reasonable value and, if it does not satisfy the constraints of step
2, multiplying it repeatedly by a constant until the condi-
tion becomes true. The other precision parameter deter-
mines the terminal condition of the algorithm at point 5. On the
practical side and we can typically impose constraints on

, which correspond to limits on velocity and
acceleration of the actuator.

IV. SIMULATION RESULTS

As an illustrative example, we considered the following
system:

(15)

where kg, kg s , and kg s ,
which corresponds to a natural frequency rad s
and a damping ratio . For the sake of simplicity, we
considered a point-to-point motion from 0 to m adopting
a polynomial of fifth order as output function
so that the first derivative (velocity) of the input function
is continuous. Hence, we have

The corresponding input function results, for

(16)

Optimization has been performed on the motion timetaking
into account the following constraints on the input function and
its derivatives :

m m s m s

The resulting optimal motion time is equal to 0.874 s. Sub-
stituting the parameter values in (16), we have for

Taking into account (14), for the input function is

The corresponding output function is shown in Fig. 2, while the
input function and its first and second derivatives are plotted,
respectively, in Figs. 3–5. It can be noted that the significa-
tive bound is the one on the acceleration input signal. A ro-
bustness analysis has been done applying the optimal input to
the system (15) where the dampingand the stiffness con-
stant has been perturbed in a range of of their nominal
values. With a tight gridding over the uncertain parameter do-
main, the maximum amplitude of the residual vibration (that is
the absolute value of the maximum difference between the ac-
tual output and the steady-state value after the scheduled mo-
tion time) has been plotted in Fig. 6. A worst case vibration
amplitude equal to m results. As a comparison, the
motion of the load for a bang–bang acceleration input signal
of amplitude equal to m s is reported in Fig. 7
(bang–bang I case). The corresponding (scheduled) motion time
is 0.6325 s. In this case, the resulting maximum amplitude of the
residual vibration is m. A robustness analysis has
been performed as above with this input, and the amplitudes of
the residual vibration for the different values of the parameters
of the systems are shown in Fig. 8. The worst case vibration
amplitude amounts to m. It can be noted that the
faster output transient obtained with the bang–bang input is paid
with residual vibrations for the nominal and perturbed system.
Comparing the robustness analyses shown by Figs. 6 and 8, the
better performance of the systems-inversion-based method with
respect to the bang–bang acceleration technique is evident. This
is also confirmed by applying a bang–bang acceleration function
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Fig. 20. Experimental motion of the load using a bang–acceleration function
with motion time� = 0:75 s (bang–bang I case).

Fig. 21. Experimental motion of the load using a bang–bang acceleration
function with motion time� = 1:11 s (bang–bang II case).

Fig. 22. Experimental motion of the load using the ZV impulse shaper method.

Fig. 23. Experimental motion of the load using the ZVD impulse shaper
method.

Fig. 24. Experimental motion of the load using the ZVDD impulse shaper
method.

Fig. 25. Experimental motion of the load using the EI impulse shaper method.
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Fig. 26. Experimental motion of the load using the two-humped EI impulse
shaper method.

Fig. 27. Experimental motion of the load using the three-humped EI impulse
shaper method.

TABLE II
EXPERIMENTAL COMPARISON OF THEDIFFERENTMETHODOLOGIES

whose duration time is chosen to be equal to 0.874 s, the op-
timal motion time of the inversion-based approach (bang–bang
II case). It results that the amplitude of the residual vibration
in the nominal case is m (the motion of the load is
plotted in Fig. 9) and in the worst case configuration ofand
is m (see Fig. 10).

Remark 2: It is worth stressing that, for the bang–bang
cases (and for the input shaping techniques, see Section V),
the input duration time, i.e., the time interval necessary for the
input signal to complete the transition from 0 to, is equal
to the scheduled (load) motion time. On the contrary, for the
system-inversion-based method, the actual input duration time
can be longer than the scheduled motion time[see (13)
and (14)]. However, for the presented numerical case, the
input for because it happens that

. From a physical viewpoint, this means that,
for , the system has almost reached the equilibrium, so
that the input duration time is equal to the optimal scheduled
motion time .

Remark 3: It is apparent from (14) and (16) that the com-
putational complexity of the noncausal input is moderate. In-
deed, the implementation of this input command can be easily
done,even on a low-cost digital processor with the computation
required in run time that is typically a small fraction of the sam-
pling period.

V. COMPARISONWITH THE INPUT SHAPING TECHNIQUES

A comparison with the input shaping method has been exe-
cuted in order to prove the effectiveness of the novel approach
presented in this paper. We consider a bang–bang function for
the acceleration input whose maximum amplitude is
m s as above (bang–bang I case). Then, the corresponding
position reference signal has been convolved with different
sequences of impulses (ZV, ZVD, ZVDD, EI, two-humped EI,
and three-humped EI) [6], [9], [10]. A robustness analysis has
been carried out as in the previous section. Results are shown
in Figs. 11–16. The scheduled motion time, increased by the
effect of the convolution of the input function, in the different
cases are shown in Table I, where the main results regarding
the simulation example are summarized. It appears that the
most robust methods, i.e., those with minimal worst case
residual vibration amplitude, are the ZVDD shaping and the
two- and three-humped EI shaping. However, these methods
have the longest motion times. Comparing the methods which
do not have residual vibrations in the nominal case, the best
one in terms of minimum motion time (equal to 0.745 s) is the
ZV shaping which has a relatively high worst case residual
vibration amplitude (equal to 12.7 mm). Pondering both the
scheduled motion time and the robustness performance, it
appears that the best methods are the system-inversion-based
one and the ZVD shaping, with the latter performing slightly
better than the former.

VI. EXPERIMENTAL RESULTS

The system-inversion-based methodology has been tested ex-
perimentally on a testbed system, made by Quanser Consulting,
composed of two carts, coupled by a spring, that slide on a
ground stainless steel shaft (see Fig. 17). The first cart (motor
cart) is driven by a dc motor, and it is equipped with a poten-
tiometer to measure its position, while the second cart (load
cart) only has a potentiometer. The overall control architecture
has been implemented by means of a CPU Pentium 233 MHz
with an I/O board and a real-time environment which assures a
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control frequency of 200 Hz. The aim of our experiments is to
move the load cart from 0 to m, according to the prede-
termined polynomial output function of fifth order, by control-
ling the position (input function) of the motor cart, by means
of a simple proportional plus integral plus derivative (PID) con-
troller. The parameters of the systems have been estimated by
means of a simple procedure, i.e., a force impulse has been ap-
plied to the load cart, keeping fixed the position of the motor
cart. Evaluating the impulse response, the stiffness constant and
the damping ratio (due to the friction) can be easily calculated.
It results in kg m and kg m , while
the mass of the load cart is kg (i.e.,
rad s and . The minimum motion time has
been determined by means of the algorithm described in Sec-
tion III, taking into account the maximum voltage (5 V) that
can be provided to the motor. It results in s. The the-
oretical output function and the experimentally obtained one are
plotted in Fig. 18, while the value of motor voltage during the
motion is plotted in Fig. 19. It appears that no vibrations occur
during the motion, as expected, and that the value of 5 V for the
motor voltage is attained, but not exceeded. It should be noted
that the slight difference between the theoretical and the actual
load motions is due to the presence of unmodeled nonlinearities
(e.g., friction effects).

The use of a bang–bang acceleration input has also been
tested experimentally. The minimum scheduled motion time
allowed by the system is, in this case, equal to 0.75 s, which
leads to the load motion shown in Fig. 20 (bang–bang I case).
In addition, a bang–bang acceleration profile of duration time
equal to 1.11 s has also been adopted (bang–bang II case).
The obtained load motion is plotted in Fig. 21. In both cases,
it turns out that the residual vibration is much higher than
in the system-inversion-based approach, so that the latter
methodology is more convenient.

In order to compare again the proposed methodology with
the input shaping one, the different input shapers have been also
experimentally tested. Plots of the corresponding load motions
are in Figs. 22–27.

Experimental results are summarized in Table II. It can be
seen that, for all the methodologies tested experimentally, with
the exception of the bang–bang ones and the ZV shaper, no
residual vibration occurs at the end of the motion. Hence, it re-
sults that the technique proposed in this paper is the most effec-
tive in the experiments, since it has the minimum transition time
among the methods that do not exhibit residual vibration.

VII. CONCLUSIONS

A novel methodology for the open-loop control of high-per-
formances servosystems with elastic transmission has been pre-
sented. It is based on an appropriate choice of the motion law
and on a noncausal system inversion which guarantees that ac-
tuator constraints are fully satisfied. The approach appears to be
very effective in reducing the residual vibration, and the smooth-
ness of the control input makes it inherently robust to modeling
errors, especially in case the stiffness constant is greater than ex-
pected (i.e., the system is more rigid). It also has to be stressed

that robustness increases as long as the motion time increases.
This provides a useful flexibility in the motion planning phase,
since, taking into account actuator limits, time intervals of the
automated cell where the system is situated can be usefully ex-
ploited in order to increase robustness. Moreover, limits on the
derivative of an arbitrary order of the input can be assigned in
order to enhance smoothness so that actuator dynamics is taken
into account. It has been shown that no particular problems (e.g.,
due to the computational complexity) arise in the practical im-
plementation of the methodology, and the flexibility and readi-
ness of the design makes it an attractive alternative to the tradi-
tional input shaping techniques.
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