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ABSTRACT

There are a number of trajectory planning algorithms which generate the
joint torques/forces required to drive a robot along a given geometric path in
minimum or near-minimum time [2, 4, 6, 7, 8, 11]. These methods make fairly
specific assumptions about the form of the joint torque/force constraints, thereby
limiting their applicability. A method, called the perturbation trajectory smprove-
ment algorithm (PTIA), is developed here which can generate the joint positions,
velocities, and torques required to move a robot along a specified geometric path
in minimum time under very general torque constraints.

The PTIA starts with a non-optimal trajectory which meets all the required
torque constraints, and perturbs the trajectory in such a way as to always
decrease the traversal time for the path. This perturbation process continues
until the torque constraints prevent any further improvement in the traversal
time. The torque constraints may be expressed in terms of quantities related to
torque rather than torque itself; it is possible, for example, to limit velocity,
acceleration, jerk, and motor voltage, either singly or in combination. The per-
turbation trajectory planner also is very simple to implement, and many of the
calculations are independent of each other and can therefore be done in parallel.
As a demonstrative example, the PTIA is applied to the first three joints of the
Bendix PACS Arm.
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1. INTRODUCTION

An important goal of contemporary industrial automation with robots is to
increase productivity. One way of accomplishing this goal is to move robots as
fast as possible, i.e., minimum-time control of robots. However, due to the non-
linearity and joint couplings in the robot dynamics, it is possible to obtain only
approximate solutions to the problem of direct control of robots in minimum
time [3, 5. To circumvent this difficulty, the control of robots is usually
divided into two sequential problems: off-line trajectory planning followed by
on-line trajectory iracking. We shall address in this paper the minimum-time

trajectory planning problem.

A number of techniques have been developed for planning minimum-time
trajectories of industrial robots [2, 4, 6, 7, 8, 11]. One potential problem with
these methods is the assumption that constraints on the torques/forces applied
to the robot’s joints have specific forms, thereby limiting their applicability. For
example, the method described in [7] assumes that the path consists of a
sequence of Cartesian straight line segments, and that constant limits on Carte-
sian velocity and acceleration are known @ priors along each path segment. Note
that it is almost impossible to select such limits without knowing the dynamic
properties and the actuator characteristics of the robot. Moreover, since max-
imum accelerations and velocities are assumed to be constant over some inter-

val, it is necessary to choose them to be the worst case bounds thereby resulting
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in under-utilization of the robot’s capabilities. To alleviate this problem, we
have developed a method in [4] which uses the robot dynamics to obtain approx-
imate velocity and acceleration bounds at each corner or knot point of the

robot’s path.

More dramatic improvements can be found in [2, 11, 12]. The trajectory
planner presented in [2] assumes that joint torque limits are given in terms éf
the joint’s position and velocity, and that the joint torque limits are mutually
independent. (Note that the joint actuator limits are dependent on each other
when more than one joint actuator share a common power source, e.g., a power
supply for DC servo motors and a pump for hydraulic actuators.) A similar tra-
jectory planner described in [11] makes the additional assumption that the velo-
city dependence of the torque constraints is at most quadratic. Torque con-
straints which interact, as well as performance indices other than minimum
time, can be handled by the trajectory planner described in [12], but the velo-
city must be discretized rather coarsely if the computations are to be performed
in a reasonable amount of time. In practice, torque limits may be relatively com-
plicated, and in fact there may be limits on the derivatives of the torques
because of the presence of large motor inductances or because of the compressi-
bility of the hydraulic fluid used in the robot’s actuators. It is the goal of this
paper to present a minimum-time trajectory planner which is simple and also

allows such complicated torque constraints.

This trajectory planner begins with an arbitrary trajectory meeting all the

constraints and always alters the trajectory so as to reduce the traversal time

3 Minimum-Time Trajectory Planning



RSD-TR-13-85

without violating any constraints until a satisfactory solution is obtained. This
planner is an iterative algorithm and is called the Perturbation Trajectory
Improvement Algorithm (PTIA). The method is very easy to use and implement
yet very powerful. Also, it is quite different from any known trajectory

planners.

The remainder of the paper is divided into four sections. We state the
minimum-time trajectory planning problem in the next section. Section 3
describes the PTIA, and gives a simple example of its application. Section 4
analyzes the amount of computation required by the PTIA. In Section 5, the
algorithm is applied to the first three joints of a real robot, and some complica-
tions regarding the application of jerk constraints are discussed. Section 6 con-

cludes the paper.

2. PROBLEM STATEMENT

The approach to trajectory planning described here assumes, as do the tra-
jectory planners described in [2, 11, 12], that the geometric path to be followed
by the robot is given as a parameterized curve in joint space, i.e., the joint posi-

tions q° are given by

qi=f‘(>‘),05)‘$>\mm lsfﬁﬂ (l)

where X is a scalar parameter used to specify geometric paths and n the number
of joints that the robot has. It should be noted that in practice the geometric

paths are given in Cartesian space. While it is in general difficult to convert a
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curve in Cartesian space to that in joint space, it is relatively easy to perform
conversion for individual points. One can then pick a sufficiently large number
of points on the Cartesian path, convert to points in joint space, and use some
sort of interpolation technique (e.g. cubic splines or straight line segments) to
obtain a similar path in joint space (see [6] for an example). The resulting joint

path is assumed to have the form of Eq. (1).
As in Eq. (1), the parameter \ is sufficient to represent all joint positions,

and hence referred to as a position variable. The speed p = id% of the mani-

pulator may be plotted versus the position M. The speeds and positions of the
robot’s joints can then be found from the values of A\ and g and the parametric
functions f*. It is well-known that the dynamics of a robot take the general

form

w =J3;9 +[jkila’d +R;q +g @

where u; is the §** generalized force, q° is the i** generalized coordinate, J ij s

oJ;; aJ; oJ;
the inertia matrix, the symbol | jk,i]E—l gy R,

-~ | is a Chris-
2laqt o’  Oq

toffel symbol of the first kind and represents an array of Coriolis coefficients,
R;; is the viscous friction matrix, and g; is the gravitational torque vector. By
plugging the parametric functions given in Eq. (1) into these dynamic equations
(2), joint torques/forces can be calculated in terms of \, g, f ¢ and their deriva-

tives as follows (see [11] for a detailed derivation).

b Minimum-Time Trajectory Planning
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A=pu (3a)
df i d2fi
— .. ——— .. X
ul Jl](x) dk I‘ +JIJ( ) dxz p

- .
+ Cii ()\)% % u?+ Ry d—l{i p+gi(2).  (3b)

The controller inputs (e.g., voltages or currents) are related to the applied
torques/forces, so that control input constraints can also be calculated in terms

of these quantities, i.e., \, g, f * and their derivatives,

Also assume that joint torque constraints are expressed in terms of joint

positions and velocities,

u € E(q,9) = E(\p) (4a)

and the jerk constraints in terms of positions, velocities and accelerations,

|u; | = |F(q,q9)| = |FOuu)| < K; (4b)

where E:R" XR" - R* is an admissible  input function,

F:R" XR" XR* — R is a jerk function, and K; a constant.

It is further assumed that one phase trajectory (p vs. X\ plot) can be found
which meets all constraints. {In practice, a trajectory with zero velocity usually
suffices.) This trajectory can then be perturbed to find the one with the shortest
traversal time. This perturbation process is made particularly simple by the fact

that minimizing time is equivalent to maximizing velocity, i.e.,

Minimum-Time Trajectory Planning 6
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tl Xm dX
T= L . dt = j; - | (5)
subject to the torque constraints (3a), (3b), (4a) and (4b), where X(¢; J=\,,, is
the final position. Here £y and ¢, denote the initial and final times, where ¢, is
left free. The minimum-time trajectory planning problem is then to maximize

#, so the phase trajectory should always be pushed upward without violating

the torque constraints.

3. PERTURBATICN TRAJECTORY IMPROVEMENT

ALGORITHM

In practice, a trajectory planner must deal with a variety of arbitrary
parametric curves; two representations for curves which immediately suggest
themselves are splines and simple sequences of (interpolation) points. We choose
to use the latter representation, i.e., the curve (1) is represented as an ordered
sequence of points ()\(,,),q(k)); this proves to be the most natural representation

for the application of the PTIA.

The trajectory planning process consists of assigning values of the ‘“‘velo-
city” p and “acceleration” u at each point. For the sake of simplicity, consider
only those constraints which can be expressed in terms of position- and
velocity-dependent bounds on the torque (as in Eq. (4a)), i.e., ignore jerk con-
straints for the time being. Then all constraints can ultimately be given as \-

and p-dependent constraints on g, or equivalently constraints on —Z—’; as shown

in [11]. In terms of the (\,s) plot, each point is assigned a set of allowable

7 Minimum-Time Trajectory Planning
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slopes. In fact, having the torque constraint (4a) is equivalent to assigning a pair
of vectors to each point in the X\ — p phase plane. One vector répresents the
maximum possible slope when the system is accelerating (i.e. p is maximized)
and the other represents the slope for deceleration(i.e. p is minimized). This pair
of vectors looks like a pair of scissors, and as the position in the phase plane
changes, the angles of both the upper and lower jaws of the pair of scissors
change. The phase trajectories must, at every point of the phase plane, point in
a direction which lies between the jaws of the scissors. At particular points of
the phase plane, though, the jaws of the scissors close completely, allowing only
a single value for the slope. At other points the scissors may try to go past the
closed position, allowing no trajectory at all. This phenomenon determines the
admissible region of the phase plane. Note that the boundary of the admissible
region passes through those points which have only a single vector associated
with them, corresponding to those states where only a single acceleration value

is permitted.

In the discrete approximation, having the maximum and minimum slope
sets limits on the differences between the values of g at adjacent interpolation
points. The process of trajectory planning requires that the initial and final
points of the curve have zero velocity (or some other fixed velocity) and that the
velocities at all the intermediate points be as large as possible, consistent with
the slope constraint that the velocities at neighboring points not differ too

much.

Minimum-Time Trajectory Planning 8
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One approach to the solution of this problem is to try to push the speed
higher at each individual point. The value of g can be pushed higher at each
point in succession until none of the velocities can be made any larger. If we

call this Algorithm A, then we have

Algorithm A:
Al. Set all velocities to values which are realizable (usually all zeroes).

A2. Push each intermediate point of the curve as high as possible consistent

with the slope constraints.

A3. If any of the velocities were changed in step A2, go back to step A2, other-

wise exit.

As a practical matter, the search required to find the highest possible velo-
city in step A2 of Algorithm A may be fairly expensive, especially since it may
be repeated many times for a single point. A simpler approach is to just try
adding a particular increment to each velocity, and then make the increment

smaller on successive passes of the algorithm. This gives

Algorithm A’ .
Al'. Set all velocities to values which are realizable (usually all zeroes).
A?2’. Set the current increment to some large value.

A3'. Push each intermediate point of the curve up by an amount equal to the

current increment, if this is consistent with the slope constraints.

9 Minimum-Time Trajectory Planning
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A4’ If any of the velocities were changed in step A3’, go back to step A3'.

A5’. If the current increment is smaller than the desired tolerance, stop. Other-

wise halve the increment and go to A3".

Algorithm A’ is really just a combination of gradient and binary search
techniques. The direction in which the curve must move (i.e. the gradient direc-
tion) is known a priors, since increasing the velocity always decreases the traver-
sal time, and the amount of the change is successively halved, as in a binary
search, until some desired accuracy is achieved. Clearly, this algorithm will ter-
minate in a finite number of steps. Algorithm A’ is very simple, except possibly
for the slope constraint check required in step A3’. This requires a knowledge of
the dynamics and actuator characteristics of the robot. Note that as discussed
earlier inadmissible regions are determined by the slope constraints. However,
this check is a simple “‘go/no go'’ check, and can be isolated as a single function
call. (Hereafter this function will be called the constraint function.) Hence the
trajectory planner can be used with other robots by changing a single, though

possibly complicated, function.

Another important characteristic of the constraint function is locality. In

the case discussed above, the constraints are expressed in terms of A, g, and

:—;‘ . We need two points to determine the slope -Z—L; , so the constraint depends

only upon two points. Therefore when a point of the curve has its p value
changed, it is constrained only by the two adjacent points (due to the slope con-

straints); the rest of the curve has no influence. This allows much calculation to

Minimum-Time Trajectory Planning 10
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proceed in parallel. Step A3’ of Algorithm A’ can be divided into two sequen-

tial steps, one which increments the odd numbered points and one which incre-

ments the even numbered ones.! Since the even numbered points stay the same
while the odd numbered ones are being incremented, and vice versa, the points
either side of the incremented points remain stationary, so that the constraint
checks are valid. (If all points were tested simultaneously, then it is possible, for
example, to increment two adjacent points; since in each case the constraint
check would be made on the assumption that the other point was remaining sta-
tionary, it is possible that the new configuration would not meet the required

constraints.)

It is easily seen that the process in Algorithm A’ can be extended to more
complicated constraints. For example, constraints on the jerk (the derivative of
the torque or acceleration) only require a more complicated constraint function,
i.e., both Eqgs. (4a) and (4b). Of course in this case the constraint function needs
three points to calculate second derivatives of the speed. Thus the constraints
on a single point will be functions of two points either side of the point being
checked, rather than one point. This affects the degree of parallelism which can
be achieved; step A3’ would require three passes instead of two. It also affects
the convergence properties of the algorithm, as will be seen later in the examples

of Section 5.

As a simple illustration of how the algorithm works, consider a simple one-

dimensional problem. Suppose we wish to move an object of mass m from z =0

YThus, step A3’ requires two passes.

11 Minimum-Time Trajectory Planning
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to z =4. Further, suppose that there is no friction, and that there are constant
bounds on the magnitude of the applied force. There will be only one parametric

function f , which may be taken to be the identity function, so that A=z . We

then have
d?z d2\ du dp dX dp
F =m=me— =m=mMe— = m— = m—= == = —
e g et " a "R (6)

If we consider \-intervals of length 1, then the discrete approximation to the

parameterized ‘“‘curve’’ will have 5 points. The acceleration g = p-g—'-; can be
approximated as
dp Bisr =By Biertli Bier - B Bl - ud
L N p—— . T e (7)
dA Aiv1— N 2 MNet-h 2 - N)
The torque constraints then become
2 2
. Bigr— B
Fou 2 |[F |l =m|p| =mj—F | (8)
e 21— N
fweusem =1, F .. =2, and A;,; - \; = 1{or all 1, this reduces to
|uda-wl] <4 (9)

Now consider what happens if Algorithm A is applied. We may look at the
intermediate points of the curve in sequence. First, point 1 can be raised by 2,
since the adjacent points have p values of zero (i.e. py=p,=0), and

| 22 - 0| = 4. Raising the middle point, point 2, we are constrained by the

Minimum-Time Trajectory Planning 12
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fact that g3 = 0, which limits p, to 2 also. Likewise, we may change uz to 2.
This completes step 2 of Algorithm A. Since some of the p valueﬁ changed, we
try to increase them again. This time only point 2 can be raised, giving a value
of py = 2v/2. On the next pass, no p values change, so Algorithm A terminates.
It is easily verified that the solution obtained from Algorithm A is indeed the
optimal solution to the discretized problem. (Figure 1 shows the discretized tra-

jectory after passes zero, one, and two of Algorithm A.)

Now look at what happens when we use Algorithm A’ . Say we start with
an increment of 2. Then the result of the first pass of Algorithm A’ is the same
as the result of the first pass of Algorithm A, namely g; = p, = p3 = 2. If the
increment is cut to 1, then there is no change. Cutting the increment to 1/ 2, we
may raise the middle point to 2.5. Continuing in this fashion, the middle point
gets closer and closer to 2v2, the correct result. (Figure 2 shows the trajectory

after passes zero, one, three, and four of Algorithm A’ .)

4. COMPUTATIONAL REQUIREMENTS AND CONVERGENCE

The PTIA, unlike dynamic programming [12], requires relatively little
memory; it requires only one floating point number per interpolation point.

However, computation of the CPU time requirements is interesting,.

Obviously, the computation time must increase at least linearly with the
number of interpolation points on the curve, that is, the size of \ intervals. In
fact, the time increases as the square of the number of interpolation points. To

see why this is so, consider what happens when the number of interpolation

13 Minimum-Time Trajectory Planning
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points is doubled. Since there are twice as many points to check on each pass of
the algorithm, the computation time must-increase by a factor of two. Recalling
that the torque constraints translate into slope constraints, it is clear that the

ratio of the amount by which a g-value may be raised to the distance between
A-values will be approximately constant. Therefore halving the spacing of the
interpolation points halves the size of the steps which can be taken in the p
direction, thus doubling the number of steps. This factor of two times the factor
of two which results directly from doubling the number of points gives a factor
of four increase in computation time. If doubling the number of interpolation
points quadruples the computation time, then the time dependence is quadratic
in the number of points, i.e., O(N,2) where N, is the number of the X inter-

vals.

It is obvious from the discussion that the fineness of the \ intervals will
have a significant impact on the running time of the algorithm. It will also

affect the accuracy of the results. Similarly to the convergence proof of the tra-

jectory planning with dynamic programming in an extended version® of {12] or
in [9], we can treat the effect of the grid density on the accuracy of our solution

in a quantitative manner.

Bellman proved in [1] that discrete approximations to a continuous optimal
control problem will converge as the step size of the dynamic programming
stage variable decreases. However, the class of systems to which Bellman’s proof

applies does not cover those considered in this papef. In particular, Bellman

2This version is currently submitted elsewhere for publication.
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assumes that the dynamic equations of the system are not functions of the stage
variable, which is the same as '\ in this paper. We have proven a theorem in an
extended version of [12] and [8] which is an extension of that of Bellman in that
it allows the dynamic equation and performance index to be (possibly discon-
tinuous) functions of the stage variable. A similar approach may be applied to
the proof of the convergence of our trajectory planning method discussed in this

paper. Thus, it is not repeated here.

5. NUMERICAL EXAMPLES

For comparison purposes, we will use the same example robot considered in
[12] and [10]. This robot is the Bendix PACS arm, which is cylindrical in confi-
guration and is driven by fixed-field DC motors. (We consider only the first
three joints.) The dynamics and actuator characteristics of this robot are g'iven
in [10].

First we consider only constraints on joint torques/forces and motor vol-
tages, without considering constraints on their derivatives. The torque and vol-
tage constraints are given in Table 1. The perturbation trajectory planner was
written in the C programming language, and run on a VAX-11/780 under the
Unix operating system. The planner was tried with a straight-line path, a geo-
desic in ‘‘inertia space” (see [10]), and a joint interpolated path. (The joint-
interpolated path has the form q* = qf + p(q,‘ -q/), where 0 < p <1 and
qf and q ,‘ are the points at which the curve starts and finishes.) The traversal

times for these paths are 1.79 seconds, 1.59 seconds and 1.80 seconds respec-
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tively. Plots of g vs. X\, joint positions vs. time, and motor volt'age vs. time are
shown in Figures 3a through 5c¢c. The traversal times and the various plots are

virtually identical to the solutions obtained in [10].

To demonstrate the application of the perturbation technique to problems
in which there are constraints on the derivatives of the torques, i.e., jerk con-
straints (4b), we consider the same problem with the additional constraint that
the time derivatives of the joint torques and forces be less than 100, i.e.,
K; =100 for all 1<:<n. The time derivatives of the torques are computed

using the identity

— — | ——— e— — — . 10
& - dx &t an’” 10)
.. da; . . .
The derivative - Was estimated by calculating the difference between the

applied torques on successive intervals and dividing by the average of the
lengths of the intervals. For a straight-line path with 25 interpolation points,
the traversal time is 2.04 seconds. The g vs. X plot is shown in Figure 6. For 50
points, the traversal time is 2.26 seconds; the phase plane plot is shown in Fig-
ure 7. Note that the trajectory has a “bump” in it; the process has not con-
verged to the proper solution. To understand why this happens, consider the
situation shown in Figure 8. The solid line shows the current trajectory, and the
dashed lines show what happens when either of the two interior points is raised.
In either case, a jerk limit is exceeded, even though the jerk constraint would

very possibly be met if both points were raised simultaneously. Neither point can

Minimum-Time Trajectory Planning 16
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move before the other does, resulting in a sort of ‘‘deadlock”. Similar situations
can occur with longer sequences of points. If jerk constraints are to be included,
then obviously" we must prevent this sort of situation from occurring. One fix
which seems to work in practice is to perform the trajectory planning operation
several times with some added constraints, relaxing the constraints each time
the trajectory is “improved”. The constraints used here were simple velocity
limits. On each pass, the velocity limit is raised. If the velocity increment is
small enough, the top of the phase trajectory remains flat, and the regions of
high inflection which cause the anomalies in the phase trajectory never get a
chance to appear. With this modification, a velocity increment of 0.1 at each
pass gives the results plotted in Figures 9a through 9c for a straight line with 50
points. 100 points and a velocity increment of 0.025 gives the results plotted in
Figures 10a through 10c. The calculated traversal times are 2.03 seconds in

both cases.

6. CONCLUSION

A minimum-time trajectory planning scheme has been presented which (i)
is extremely simple for actual implementation, and (ii) allows the use of very
general types of torque constraints. This trajectory planner has been shown to
give the same results as the trajectory planner described in [11} for the paths
and torque constraints given in [10]. In addition, this scheme has been applied

to a case where there are limits on jerk as well as torque.

17 Minimum-Time Trajectory Planning
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Since the PTIA is simple but general enough {0 accommodate various real-
istic constraints, it has high potential use for automatically generating trajec-

tories of the growing number of industrial robots.
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Parameter Description Value

7, Saturation torque of § motor 2.0 Nt-M.

7. Saturation torque of r motor 0.05 Nt.-M.

158 Saturation torque of z motor 2.0 Nt.-M.

y s Lower voltage limit for 8 joint 40 v.

|, mia Lower voltage limit for r joint 40 v.

y,mis Lower voltage limit for z joint 40 v.
Vv, ™ Upper voltage limit for @ joint 40 v.
v, B Upper voltage limit for r joint 40 v.
v, ™ Upper voltage limit for z joint 40 v.

k] Gear ratio for 8 drive 0.01176

k! Gear ratio for r drive 0.00318 Meters/radian
k! Gear ratio for z drive 0.00318 Meters/radian
k; Motor constant for € joint 0.0397 Nt.-M./amp

[ 3o Motor constant for r joint 0.79557 X 10~ Nt.-M./amp
[ 2l Motor constant for z joint 0.0397 Nt.-M./amp
R? Motor and power supply resistance, 8 joint 10

R~ Motor and power supply resistance, r joint 10

R™ Motor and power supply resistance, z joint 10

k, Friction coefficient of & joint 8.0 Kg./sec.

k, Friction coefficient of r joint 4.0 Kg./sec.

k, Friction coefficient of z joint 1.0 Kg./sec.

A, Mass of r joint 100 Kg.
M, Mass of z joint 40.0 Kg.

J; Moment of inertia around 6 axis 12.3183 Kg.-M.*

K Moment of inertia offset term 3.0Kg.-M

Table 1. Dynamic coefficients and actuator characteristics for

PACS arm.
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Figure 1. Results of Algorithm A.
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Figure 3a. Phase plane plot for straight line.
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Figure 3b. Joint position vs. time for straight line.
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Figure 3c. Motor voltage vs. time for straight line.
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Figure 4a. Phase plane plot for geodesic.
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Figure 4b. Joint position vs. time for geodesic.
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Figure 4c. Motor voltage vs. time for geodesic.
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Figure 5a. Phase plane piot for joint-intcrpolated curve.
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Figure 6b. Joint position vs. time for joint-interpolated curve.
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Figure 6c. Motor voltage vs. time for joint-interpolated curve.
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Figure 6. Phase plane plot for straight line. 25 Interpolation
points, with jerk constraints.
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Figure 7. Phase plane plot for straight line, 50 interpolation

points, with jerk constraints.

Minimum-Time Trajectory Planning

34



RSD-TR-13-85

Figure 8. Illustration of “deadlock” which may occur when jerk
constraints are applied.
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Figure 9a. Phase plane plot for straight line. 50 Interpolation
points, velocity increment 0.1.
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Figure 0b. Position vs. time for straight line. 50 Interpolation
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Figure 8c. Motor voltage vs. time for strzight line. §0 Interpola-
tion points, velocity increment 0.1.
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Figure 10a. Phase plane plot for straight line. 100 Interpolation
points, velocity increment 0.025.
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Figure 10b. Position vs. time for straight line. 100 Interpolation
points, velceity increment 0.025.
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