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Abstract

Given a system (V, f, d) on a finite set V consisting of two set
functions f : 2V → R and d : 2V → R, we consider the problem of
finding a set R ⊆ V of minimum cardinality such that f(X) ≥ d(X)
for all X ⊆ V − R, where the problem can be regarded as a natural
generalization of the source location problems and the external net-
work problems in (undirected) graphs and hypergraphs. We give a
structural characterization of minimal deficient sets of (V, f, d) under
certain conditions. We show that all such sets form a tree hypergraph
if f is posi-modular and d is modulotone (i.e., each nonempty subset
X of V has an element v ∈ X such that d(Y ) ≥ d(X) for all subsets
Y of X that contain v), and that conversely any tree hypergraph can
be represented by minimal deficient sets of (V, f, d) for a posi-modular
function f and a modulotone function d. By using this characteri-
zation, we present a polynomial-time algorithm if, in addition, f is
submodular and d is given by either d(X) = max{p(v) | v ∈ X} for
a function p : V → R+ or d(X) = max{r(v, w) | v ∈ X, w ∈ V − X}
for a function r : V 2 → R+. Our result provides first polynomial-time
algorithms for the source location problem in hypergraphs and the ex-
ternal network problems in graphs and hypergraphs. We also show
that the problem is intractable, even if f is submodular and d ≡ 0.

1 Introduction

Given a system (V, f, d) on a finite set V consisting of two set functions
f : 2V → R and d : 2V → R with f(∅) ≥ d(∅), we consider the problem
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of finding a set R ⊆ V of minimum cardinality such that f(X) ≥ d(X) for
all X ⊆ V − R. The problem can be regarded as a natural generalization
of the source location problems and the external network problems with
edge-connectivity requirements in (undirected) graphs and hypergraphs [1,
7, 8, 14]; we will discuss these problems in Section 6. We give an interesting
structural characterization of minimal deficient sets of (V, f, d), i.e., minimal
sets X ⊆ V such that f(X) < d(X), under certain conditions. We show
that all such sets form a tree hypergraph if f is posi-modular and d is
modulotone (i.e., each nonempty subset X of V has an element v ∈ X
such that d(Y ) ≥ d(X) for all subsets Y of X containing v), and that
conversely any tree hypergraph can be represented by minimal deficient sets
of (V, f, d) for a posi-modular function f and a modulotone function d. By
using this characterization, we present a polynomial-time algorithm when f
is in addition submodular and d is given by either d(X) = max{p(v) | v ∈ X}
for a function p : V → R+ or d(X) = max{r(v, w) | v ∈ X,w ∈ V − X} for
a function r : V 2 → R+.

As applications of our algorithm, we present first polynomial-time algo-
rithms for the following problems:

1. The source location problem in hypergraphs with edge-connectivity
requirements.

2. The external network problems in graphs and hypergraphs with edge-
connectivity requirements.

We also show that the problem is intractable even if f is submodular and
d ≡ 0. Namely, we show that the problem is NP-hard if a submodular
function f is given as a functional form, and it requires at least 2

n
2 time in

the worst case, if f is given implicitly by an oracle, where n = |V |.
Our approach partly follows the idea by Bárász et al. [2] that is used to

construct a polynomial-time algorithm for the source location problem with
a uniform demand function in directed networks. They introduced a new
concept of solid sets for cut functions of directed graphs, proved that solid
sets form a tree hypergraph, and gave an efficient algorithm for computing
the underlying tree of the tree hypergraph by introducing a technique to
reduce the size of solid sets required to obtain the tree. However, their proof
is based on the properties of cut functions f of directed graphs (which cannot
be generalized to submodular functions, as will be observed in Proposition 8)
and the uniformness of demand functions (which cannot also be generalized
to modulotonicity), while our proof is based on the posi-modularity of f and
modulotonicity of demand functions.

The rest of this paper is organized as follows. In Section 2 we formulate
our problem, introduce some known results, and present our structural re-
sult on the minimal deficient sets. Section 3 shows the intractability of the
problem, even if f is submodular. Section 4 reveals the structural properties
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of posi-modular systems and gives a proof of our new hypertree character-
ization (Theorem 4). Section 5 describes a polynomial-time algorithm if f
is submodular and posi-modular. Section 6 addresses applications of our
problem. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Hypergraphs

Let V be a finite set. A family E ⊆ 2V is called a Sperner family if for
arbitrary two distinct sets E,E ′ ∈ E , neither E ⊆ E ′ nor E′ ⊆ E holds.
For a family E ⊆ 2V , the hypergraph (V, E) is simply written as E . For a
hypergraph E , a subset R ⊆ V is called a transversal (or hitting set) of E if
R ∩ E 6= ∅ for all E ∈ E . Let τ(E) denote the transversal number of E , i.e.,

τ(E) = min{|R| | R is a transversal of E}.

A subfamily E ′ ⊆ E is called a matching of E if E ∩E ′ = ∅ for arbitrary two
distinct sets E,E ′ ∈ E ′, and let ν(E) denote the matching number of E , i.e.,

ν(E) = max{|E ′| | E ′ is a matching of E}.

A hypergraph E is called a tree hypergraph (or hypertree) if there exists
a tree T with a vertex set V such that each hyperedge E ∈ E induces a
subtree of T . Such a tree T is called a basic tree for the hypergraph E . For
a tree hypergraph, the following result is known.

Theorem 1 (e.g., [3]) Let E be a tree hypergraph. Then E satisfies the

König property, i.e., τ(E) = ν(E).

We review two characterizations of tree hypergraphs. A hypergraph E
is said to have the Helly property if every subfamily of pairwise intersecting
hyperedges has a nonempty intersection. The line (or intersecting) graph

L(E) of a hypergraph E is a graph in which the vertices correspond to the
hyperedges, two of them being adjacent if the corresponding hyperedges have
a nonempty intersection. An undirected graph is called chordal if every cycle
of length at least 4 has a chord.

Theorem 2 (e.g., [11]) A family E ⊆ 2V is a tree hypergraph if and only if

E has the Helly property and its line graph L(E) is chordal.

Another characterization is known as follows. Define a weight function
c(u, v) on the edge set of the complete graph on V as follows. For every pair
{u, v} of elements in V , let c(u, v) be the number of hyperedges containing
both u and v.
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Theorem 3 (Bárász et al.[2]) A family E is a tree hypergraph if and

only if a spanning tree of maximum c-weight has weight
∑

E∈E(|E| − 1).
Furthermore, such a spanning tree is a basic tree for E.

It follows from Theorem 3 that any maximum spanning tree algorithm
can be used to compute a basic tree for a tree hypergraph.

2.2 Transversals over set functions

In this paper, we consider a system (V, f, d) on a finite set V consisting
of two set functions f : 2V → R and d : 2V → R with f(∅) ≥ d(∅), and
introduce the following problem:

Minimize |R|

subject to f(X) ≥ d(X) for all X ⊆ V − R (1)

R ⊆ V.

Here f(∅) ≥ d(∅) is necessary for the problem to have a feasible solution. A
vertex subset X ⊆ V is called deficient if f(X) < d(X). A deficient set X
is called minimal if no proper subset of X is deficient. Let W(f, d) denote
the family of all minimal deficient sets of (V, f, d). Then the constraint in
problem (1) is equivalent to

R ∩ X 6= ∅ for all X ∈ W(f, d). (2)

Therefore, it follows that the problem we consider is to compute a minimum
transversal R of W(f, d). We remark that W(f, d) is not given explicitly
and |W(f, d)| may be exponential in n = |V |.

A set function f : 2V → R is called submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (3)

for arbitrary two subsets X,Y of V , and posi-modular if

f(X) + f(Y ) ≥ f(X − Y ) + f(Y − X) (4)

for arbitrary two subsets X,Y of V . We call a function d : 2V → R modulo-

tone if each nonempty X ⊆ V has an element v ∈ X such that d(Y ) ≥ d(X)
for all Y ⊆ X containing v.

One of the main contributions of this paper is to derive the following
new characterization of tree hypergraphs in terms of set functions.

Theorem 4 A Sperner family E ⊆ 2V is a tree hypergraph if and only if

E = W(f, d) holds for a posi-modular function f : 2V → R and a modulo-

tone function d : 2V → R. �
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3 Submodular Systems

This section shows that problem (1) with a submodular function f is in-
tractable in general and W(f, d) may not be a tree hypergraph. We first
show that every Sperner hypergraph E can be represented by W(f, d) of a
submodular function f and a constant function d.

Lemma 5 For a Sperner hypergraph E ⊆ 2V , let d, f : 2V → R be functions

defined by

d(X) = 0 for all X ⊆ V, (5)

f(X) = −|E(X)| for all X ⊆ V, (6)

where E(X) = {E ∈ E | E ⊆ X}. Then f is submodular and it holds that

E = W(f, d).

Proof. By definition, a subset X of V is deficient if and only if X contains
at least one hyperedge E in E . Since E is Sperner, it follows that the family
W(f, d) of all minimal deficient sets is given by W(f, d) = E .

We next show that f is submodular, which completes the proof. It is
easy to see that |E(X)|+ |E(Y )| ≤ |E(X ∩ Y )|+ |E(X ∪ Y )| for arbitrary X,
Y ⊆ V , since E(X), E(Y ) ⊆ E(X ∪ Y ) and E(X) ∩ E(Y ) = E(X ∩ Y ). Then
we have

f(X) + f(Y ) = −|E(X)| − |E(X)|

≥ −|E(X ∩ Y )| − |E(X ∪ Y )|

= f(X ∩ Y ) + f(X ∪ Y ),

i.e., f is submodular. �

Since it is NP-hard to compute a minimum transversal of a general
Sperner hypergraph, Lemma 5 implies the following negative result.

Theorem 6 Let d be a function defined by d ≡ 0. For a given Sperner

hypergraph E ⊆ 2V , let f be a submodular function given by (6). Then it is

NP-hard to compute a minimum transversal of W(f, d).

We also have the following negative result if f is given by an oracle, i.e.,
we can invoke an oracle for the evaluation of f(X) for any X ⊆ V and use
the function value f(X).

Theorem 7 Let f be a submodular function given by an oracle. Then prob-

lem (1) requires at least 2
n
2 calls to the oracle in the worst case, where

n = |V |.
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Proof. Let us assume a contrary that there exists an algorithm (called A)
that solves problem (1) by calling the oracle at most 2

n
2 − 1 times.

Let V = {1, . . . , n}, where n is even. Let E be a Sperner hypergraph on
V defined by E = E1 ∪ E2, where

E1 =
{

{2j − 1, 2j}
∣

∣

∣
j = 1, . . . ,

n

2

}

E2 =
{

E ⊆ V
∣

∣

∣
|E ∩ {2j − 1, 2j}| = 1 for all j = 1, . . . ,

n

2

}

.

We then apply algorithm A to problem (1) in which f is given by (6) and d
given by d ≡ 0. Since |E2| = 2

n
2 , there exists a hyperedge E∗ in E2 such that

f(E∗) is not evaluated by the oracle. Take such a hyperedge E∗ arbitrarily.
Let f ′ be a function on V defined by

f ′(S) =

{

f(S) if S 6= E∗

f(S) + 1 (= 0) otherwise,

Then it is not difficult to see that f ′ is submodular. Note that T is a
minimum transversal of system (V, f, d) if and only if it satisfies |T | = n

2 +1
and T ∩ E 6= ∅ for all E ∈ E1, while T ′ is a minimum transversal of system
(V, f ′, d) if and only if T ′ = V − E∗, which implies |T ′| = n

2 (6= |T |). Since
f(S) = f ′(S) for all S with S 6= E∗, and algorithm A does not evaluate
f(E∗), this is a contradiction. �

Lemma 5 also implies that W(f, d) is not a tree hypergraph even if f is
submodular, which contrasts to the result on posi-modular functions f .

Proposition 8 The family W(f, d) is not always a tree hypergraph, even if

f is a submodular function and d is given by d ≡ 0.

Proof. We give an instance such that W(f, d) is not a tree hypergraph. Let
E be a hypergraph given by

V = {v1, v2, v3, v4} and E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}},

i.e., E is an undirected graph that forms a simple cycle of length 4. From
Lemma 5, we have E = W(f, d) for a submodular function f given by (6)
and d given by d ≡ 0. The line graph L of W(f, d) has a cycle of length 4
and this cycle has no chord. That is, L is not chordal and hence by Theorem
2 W(f, d) is not a tree hypergraph. �

4 Posi-modular Systems

This section discusses problem (1) for posi-modular functions f . We first
prove the sufficiency part of Theorem 4, where the necessity will be shown
in Section 4.2.
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4.1 Structure of posi-modular functions

Let V be a finite set and f : 2V → R be a posi-modular function.

4.1.1 Basic properties of posi-modular functions:

This section gives two properties of posi-modular functions.

Lemma 9 Let X0, X1, . . . , Xh−1, Xh (= X0) (h ≥ 3) be subsets of V such

that Xi ∩ Xj 6= ∅ if and only if i and j are consecutive integers. For each

i = 0, . . . , h − 1, let Yi = Xi ∩ Xi+1. Then any posi-modular function f
satisfies

h−1
∑

i=0

f(Xi) ≥
h−1
∑

i=0

f(Yi).

Proof. We have

2

h−1
∑

i=0

f(Xi) =

h−1
∑

i=0

{f(Xi) + f(Xi+1)}

≥
h−1
∑

i=0

{f(Xi − Xi+1) + f(Xi+1 − Xi)} (by posi-modularity of f)

=

h−1
∑

i=0

{f(Xi+1 − Xi) + f(Xi+1 − Xi+2)}

≥
h−1
∑

i=0

{f(Xi+1 ∩ Xi) + f(Xi+1 ∩ Xi+2)} (by posi-modularity of f)

=
h−1
∑

i=0

{f(Yi) + f(Yi+1)} = 2
h−1
∑

i=0

f(Yi),

where Xh+1 = X1, and the second inequality follows from the fact that
(Xi+1 − Xi) − (Xi+1 − Xi+2) = (Xi+1 − Xi) ∩ Xi+2 and Xi ∩ Xi+2 = ∅. �

Let X = {X1, . . . , Xh} ⊆ 2V and I = {1, . . . , h}. For each subset J of I,
let

ZJ =
⋂

j∈J

Xj . (7)

Lemma 10 If X is pairwise intersecting, i.e., Xi ∩ Xj 6= ∅ for all i, j ∈ I,
then for any posi-modular function f on 2V , we have

h
∑

i=1

f(Xi) ≥
h

∑

i=1

f(ZI\{i} − ZI).
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Proof. We proceed by induction on the size h of X . For h = 2, we can
prove it directly from the posi-modularity of f since ZI\{1} −ZI = X2 −X1

and ZI\{2} −ZI = X1 −X2. Let ` be an integer with ` ≥ 2. Assuming that
the statement in the lemma is true for h = `, we consider the case when
h = ` + 1. By the inductive hypothesis, we have

(h − 1)
∑

i∈I

f(Xi)

=
∑

i∈I

∑

j∈I\{i}

f(Xj)

≥
∑

i∈I

∑

j∈I\{i}

f(ZI\{i,j} − ZI\{i}) (by inductive hypothesis)

=
∑

i,j∈I:i<j

{f(ZI\{i,j} − ZI\{i}) + f(ZI\{i,j} − ZI\{j})}

≥
∑

i,j∈I:i<j

{f(ZI\{i} − ZI) + f(ZI\{j} − ZI)} (by posi-modularity of f)

= (h − 1)
∑

i∈I

f(ZI\{i} − ZI),

where we note that in the second inequality (ZI\{i,j} − ZI\{i})− (ZI\{i,j} −
ZI\{j}) = (ZI\{i,j} − ZI\{i}) ∩ ZI\{j} = ZI\{j} − ZI . �

4.1.2 Solid sets

For an element v ∈ V , we call a nonempty subset X of V v-solid (with
respect to f) if v ∈ X and f(X) < f(Y ) for all nonempty proper subsets Y
of X containing v. For each v ∈ V , we denote by Sv the family of all v-solid
sets. Let S(f) =

⋃

v∈V Sv. We prove that S(f) is a tree hypergraph if f is
posi-modular. For each subset X ⊆ V , let AX = {v ∈ X | X ∈ Sv}.

Lemma 11 Let X and Y be sets in S(f) such that X ∩ Y 6= ∅. Then AX

or AY is included in X ∩ Y , if f is a posi-modular function.

Proof. We suppose that X − Y and Y − X are both nonempty, since the
lemma clearly holds if X ⊆ Y or Y ⊆ X. By the posi-modularity, we have

f(X) ≥ f(X − Y ) or f(Y ) ≥ f(Y − X).

By symmetry, we assume without loss of generality that f(X) ≥ f(X − Y ).
Then X cannot be v-solid for any v ∈ X − Y since X − Y is a nonempty
proper subset of X. Therefore all elements v ∈ X such that X ∈ Sv belong
to X ∩ Y , i.e., AX ⊆ X ∩ Y . �
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Lemma 12 The line graph L of S(f) is chordal, if f is a posi-modular

function.

Proof. Assuming that L is not chordal, we derive a contradiction. Let X0,
X1, . . . , Xh−1, Xh (= X0) be a chordless cycle in S(f) of length at least 4.
For each i = 0, . . . , h − 1, let Yi = Xi ∩ Xi+1. Then we have Yi 6= ∅ for all
i = 0, . . . , h − 1 and Yi ∩ Yj = ∅ for all i and j with i 6= j. It follows from
Lemma 11 that

AX0 ⊆ Y0 or AX1 ⊆ Y0.

By symmetry, we assume without loss of generality that AX1 ⊆ Y0. Then
by applying Lemma 11 to X1 and X2, AX2 ⊆ Y1 holds, since Y0 ∩ Y1 = ∅.
By repeating this argument, we have

AXi+1 ⊆ Yi for i = 0, 1, . . . , h − 1.

From this,

f(Yi) > f(Xi+1) for i = 0, 1, . . . , h − 1

since Yi is a proper subset of Xi+1 containing some v with Xi+1 ∈ Sv.
Therefore we have

h−1
∑

i=0

f(Yi) >

h−1
∑

i=0

f(Xi),

which contradicts Lemma 9. �

Let us next show the Helly property of S(f) by extending Lemma 11.

Lemma 13 Let f be a posi-modular function, and let X = {Xi | i ∈ I =
{1, . . . , h}} be a pairwise intersecting subfamily of S(f). Then it has a set

Xi such that AXi
⊆ ZI , where ZI is given by (7).

Proof. We proceed by induction on the size h of X . We first note that the
statement in the lemma holds from Lemma 11 when h = 2.

Let ` be an integer with ` ≥ 2. Assuming that the statement in the
lemma is true for h = `, we consider the case when h = `+1. Let us assume
that AXi

6⊆ ZI for all i ∈ I, and we derive a contradiction. By the inductive
hypothesis and the assumption, for each j ∈ I there exists an i(j) ∈ I \ {j}
such that

AXi(j)
⊆ ZI\{j} and AXi(j)

∩ (ZI\{j} − ZI) 6= ∅.

We also have

f(Xi(j)) < f(ZI\{j} − ZI),
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since ZI\{j}−ZI is a proper subset of Xi(j) containing some v with Xi(j) ∈ Sv.
Note that i(j) 6= i(j ′) for j 6= j′, since otherwise we would have

AXi(j)
= AXi(j′)

⊆ ZI\{j} ∩ ZI\{j′} = ZI ,

which contradicts the assumption. This implies that I = {i(j) | j ∈ I}.
Therefore we have

h
∑

i=1

f(Xi) <

h
∑

i=1

f(ZI\{i} − ZI),

which contradicts Lemma 10. �

Lemma 13 directly implies the following.

Corollary 14 If f is posi-modular, then S(f) has the Helly property. �

Lemma 12 and Corollary 14 imply the following theorem.

Theorem 15 If f is posi-modular, then S(f) is a tree hypergraph. �

We are ready to prove the sufficiency part of Theorem 4.

Lemma 16 If f is a posi-modular function and d is a modulotone function,

then W(f, d) ⊆ S(f).

Proof. Let X be a member of W(f, d). Then f(X) < d(X) and f(Y ) ≥ d(Y )
for all nonempty proper subsets Y of X. From the assumption on d, there
is an element v ∈ X such that d(Y ) ≥ d(X) for all Y ⊆ X containing v.
Therefore we have f(Y ) ≥ d(Y ) ≥ d(X) > f(X) for all proper subsets Y of
X containing v. That is, X is v-solid and hence X ∈ S(f) holds. �

Theorem 15 together with Lemma 16 implies the sufficiency part of The-
orem 4.

4.2 Necessity Part of Theorem 4

Let us show the necessity part of Theorem 4.
For a hypergraph E ⊆ 2V , let w : E → R+ be a nonnegative weight

function on E . Let us define f, d : 2V → R by

f(X) =
∑

{w(E) | E ∈ E , E ∩ X 6= ∅, E − X 6= ∅}

d(X) = maxv∈X d(v),
(8)

where d(∅) = 0 and

d(v) =
∑

{w(E) | v ∈ E ∈ E}.

Note that f is a cut function of the hypergraph. This implies that f is
symmetric submodular, and hence it is posi-modular. It is clear that d :
2V → R+ is modulotone.
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Lemma 17 For any weight function w : E → R+, W(f, d) defined by f and

d by (8) has a property that each set X ∈ W(f, d) contains a set E ∈ E.

Proof. Let X ∈ W(f, d). Since f(∅) = d(∅) = 0, X 6= ∅ holds. Let v ∈ X be
an element such that d(v) = d(X). Then we have d(X) = d(v) ≤

∑

{w(E) |
E ∈ E , E ∩X 6= ∅}. Assume that E 6⊆ X holds for all E ∈ E . Then we have

f(X) =
∑

{w(E) | E ∈ E , E ∩ X 6= ∅} ≥ d(X),

which implies that X is not deficient. Therefore, X ∈ W(f, d) contains some
set E ∈ E . �

From Lemma 17, we can see that E ∈ E is minimal deficient if it is
deficient.

Let E be a tree Sperner hypergraph with |E| = m. Then by Theorem 2,
E admits an ordering of edges σ = [E1, E2, . . . , Em] such that

⋂

{Ej ∈ E | Ej ∩ Ei 6= ∅, j > i} 6= ∅, i = 1, . . . ,m, (9)

if {Ej ∈ E | Ej ∩ Ei 6= ∅, j > i} 6= ∅. Here we note that this ordering
corresponds to a perfect elimination ordering of the line graph L(E) [11].
Let

E↓
i = {Ej ∈ E | Ej ∩ Ei 6= ∅, j < i},

E↑
i = {Ej ∈ E | Ej ∩ Ei 6= ∅, j > i}, and

Ei = E↓
i ∪ E↑

i .

Then (9) is equivalent to the following claim.

Claim 18 For all i = 1, . . . ,m, E↑
i 6= ∅ implies that

⋂

{E | E ∈ E↑
i } 6= ∅. �

We define a weight function w : E → R+ by

w(Ei) =
∑

{w(E) | E ∈ E↓
i } + 1 for i = 1, . . . m. (10)

For this weight function w, we have the following lemma.

Lemma 19 Each Ei ∈ E is deficient.

Proof. For a hyperedge Ei ∈ E , we separately consider two cases: (i) E ↑
i = ∅

and (ii) E↑
i 6= ∅.

(i) If E↑
i = ∅, then from the Sperner property of E , we have

f(Ei) =
∑

{w(E) | E ∈ E↓
i } < w(Ei) ≤ d(Ei).
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(ii) If E↑
i 6= ∅, then from Claim 18 and the Sperner property of E , we have

d(Ei) ≥ w(Ei) +
∑

{w(E) | E ∈ E↑
i }

=
∑

{w(E) | E ∈ Ei} + 1

= f(Ei) + 1.

From (i) and (ii), each Ei ∈ E satisfies f(Ei) < d(Ei), i.e., Ei is deficient. �

Lemmas 17 and 19 imply the following result, which immediately implies
the necessity part of Theorem 4.

Theorem 20 Let E ⊆ 2V be a tree Sperner hypergraph. Then there is

a weight function w : E → R+ such that E = W(f, d) holds for two set

functions f and d defined as above.

5 Submodular and Posi-modular Systems

In this section, we assume that a function f is posi-modular and submodular
and a function d is given by one of the following two forms, since applications
discussed in the subsequent section satisfy this assumption.

1. For a given function p : V → R+, let

d(X) =

{

max{p(v) | v ∈ X} if X 6= ∅
0 if X = ∅.

(11)

2. For a given function r : V 2 → R+, let

d(X) =

{

max{r(u, v) | u ∈ X, v ∈ V − X} if X 6= ∅, V
0 if X = ∅ or V.

(12)

It is not difficult to see that d is modulotone in both cases.
Theorem 20 together with the result in [6, 7] implies that problem (1)

with a posi-modular function f and a modulotone function d is solvable in
O(n3ρ(n)) time, if the feasibility (i.e., a given R ⊆ V satisfies f(X) ≥ d(X)
for all X ⊆ V − R) can be checked in O(ρ(n)) time. We first show that
the feasibility (transversal) check is possible in polynomial time if f is posi-
modular and submodular and d is given by either (11) or (12), which implies
polynomiality of the problem. We then improve the complexity by using
maximal s-avoiding t-solid sets, which will be defined later, where a similar
technique can be found in [2].

We remark that it is open whether the feasibility check is possible in
polynomial time for a posi-modular function f and a modulotone function
d.
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5.1 Transversal check

We consider how to check whether a given set R ⊆ V is a transversal.
Let us first consider a function d of the form (12). In this case, a subset

R ⊆ V is a transversal, i.e., f(X) ≥ d(X) for each X ⊆ V −R if and only if

min{f(X) | u ∈ X ⊆ V − (R ∪ {v})} ≥ r(u, v) (13)

for each ordered pair (u, v) ∈ V 2. The value of the left-hand side of (13)
is the minimum value of the submodular function f ′ : 2V −(R∪{u,v}) → R+

defined by

f ′(X) = f(X ∪ {u}). (14)

Therefore we can check whether R is a transversal by minimizing the sub-
modular function f ′ for every ordered pair (u, v) ∈ V 2. Since the submod-
ular function minimization is solved in O((n6γ + n7) log n) time [9], where
γ denotes the time required to compute the function value for each sub-
set X, problem (1) can be solved in O(n3 × n2 × O((n6γ + n7) log n)) =
O((n11γ + n12) log n) time.

Similarly, for functions d given by (11), the problem can be solved in
O((n10γ + n11) log n) time.

In the subsequent sections, we reduce these complexities.

5.2 Computing s-avoiding solid sets

For s, t ∈ V with s 6= t, by an s-avoiding t-solid set X we mean a t-solid
subset of V − {s}. An s-avoiding t-solid set X is called maximal if X is
not included in any other s-avoiding t-solid set. For each s ∈ V , let S (s)

be the family of maximal s-avoiding t-solid sets for t ∈ V − {s}, and let
S∗(f) =

⋃

s∈V S(s).
We consider minimizing a submodular function f , in particular, finding

a subset X of V − {s} containing t such that

f(X) = min{f(Y ) | t ∈ Y ⊆ V − {s}}. (15)

From the submodularity of f , the family of the minimizers is closed under
taking union and intersection. Let N s

t denote a unique minimal member of
this family.

Lemma 21 For s, t ∈ V with s 6= t, N s
t is a unique maximal s-avoiding

t-solid set.

Proof. From the definition, it is easy to show that N s
t is a maximal s-

avoiding t-solid set. Then we only prove the uniqueness.
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By the submodularity of f , for any X ⊆ V − {s} with t ∈ X 6⊆ N s
t , we

have

f(X) + f(N s
t ) ≥ f(X ∩ N s

t ) + f(X ∪ N s
t ) ≥ f(X ∩ N s

t ) + f(N s
t ).

It follows that f(X) ≥ f(X ∩ N s
t ) and X ∩ N s

t is a proper subset of X
containing t, which implies that X is not t-solid. �

Based on this, the family S (s) can be obtained by computing all sets N s
t

for t ∈ V −{s}. We note that a unique minimal minimizer for a submodular
function can be computed by using (strongly) polynomial algorithms for
submodular function minimization (e.g., [4, 9, 10, 12]) once. The best known
algorithm due to [9] computes a maximal minimizer. Since the minimal
minimizer can be obtained by executing it for the submodular function f ∗

defined by f ∗(X) = f(V − X) for all X ⊆ V , N s
t can be computed in

O((n6γ + n7) log n) time [9]. Thus S∗(f) can be computed in O((n8γ +
n9) log n) time.

5.3 Computing a basic tree for S(f)

From Theorem 3, given a tree hypergraph with the explicit list of the hy-
peredges, we can compute a basic tree and the algorithm is polynomial in
n = |V | and m = |E| [2].

Since |S∗(f)| is at most n2 as mentioned above, we can compute a basic
tree T for S∗(f) in polynomial time. Moreover, we can show that T is also
a basic tree for S(f), where a similar proof can be found in [2].

Lemma 22 If T is a basic tree for S∗(f), then it is basic for S(f).

Proof. Let T be a basic tree for S∗(f). Suppose that T is not basic for
S(f), that is, for some v ∈ V there is a v-solid set X that does not induce a
subtree of T . Then there are two elements a, b of X so that a unique path
P in T between a and b contains an element s 6∈ X. This X is an s-avoiding
v-solid set and hence there is a maximal s-avoiding v-solid set X ′ including
X. But T is basic for S∗(f) and hence P must belong to X ′, a contradiction.
�

5.4 Computing a minimum transversal

In this section, we consider the problem of computing a minimum transversal
R of W(f, d), i.e., a minimum size set R ⊆ V such that R ∩ X 6= ∅ for all
X ∈ W(f, d).

Theorem 4 implies that W(f, d) is a tree hypergraph, and it follows
from Lemmas 16 and 22 that a basic tree T for W(f, d) can be computed
in polynomial time. It is known (e.g., [2]) that if a basic tree T is available,
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we can compute a minimum transversal by the following simple algorithm
which uses the transversal check as a subroutine.

Choose an arbitrary element r of T , and regard T as an arborescence
with a root r. Here T [U ] denotes the subtree of T induced by a vertex set
U .

Algorithm MinTransversal

Input: A posi-modular function f : 2V → R, a modulotone function d :
2V → R with f(∅) ≥ d(∅), and a basic tree T for W(f, d).

Output: A minimum transversal R of W(f, d).

Step 1. Initialize R := ∅ and U := V .

Step 2. If U is empty, then output R and halt.

Step 3. Choose a leaf v of T [U ] and U := U − {v}.

Step 4. If R ∪ U is not a transversal then R := R ∪ {v}. Go to Step 2. �

Lemma 23 Algorithm MinTransversal outputs a minimum transversal

of W(f, d).

Proof. Let R∗ be a set which the algorithm outputs. Since R∗ is clearly
a transversal, we only prove the optimality of R∗. Let D(v) be the set of
all descendants of v in T (containing v). Let R(v) and U(v) respectively
denote R and U after Step 3 of the iteration in which v is chosen. Note that
for every v ∈ V , R(v) ∪ U(v) ∪ {v} is a transversal. If R(v) ∪ U(v) is not a
transversal, then there exists a hyperedge Xv with v ∈ X ⊆ D(v)−R(v). For
each w ∈ R(v), w 6∈ Xv implies that Xv ∩ D(w) = ∅, since each hyperedge
induces a subtree of T . Therefore, we have Xv ∩ Xw = ∅ for all v, w ∈ R∗

with v 6= w. This implies that the family {Xv | v ∈ R∗} is a matching.
Since any transversal R satisfies R ∩ Xv 6= ∅ for all Xv , v ∈ R∗, we have
|R| ≥ |R∗|, which completes the proof. �

5.5 Complexity

Given a posi-modular and submodular function f : 2V → R+ and a function
d : 2V → R+ given by either (11) or (12), the algorithm outlined above
for finding a minimum-size set R ⊆ V such that f(X) ≥ d(X) for each
X ⊆ V − R consists of the following three steps:

1. Computing the family S∗(f).

2. Computing a basic tree T for S∗(f).
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3. Computing a minimum transversal R of the family W(f, d) of all min-
imal deficient sets using T (Algorithm MinTransversal).

As discussed in Section 5.2, Step 1 can be done in O((n8γ + n9) log n)
time. In Step 2, we first determine the weight function c in Theorem 3 and
then construct a maximum weight spanning tree T . These can be executed
in O(n2|S∗(f)|) = O(n4) time, since |S∗(f)| ≤ n2. Since the time-consuming
part of Step 3 (i.e., Algorithm MinTransversal) is to check whether R∪U
is a transversal of W(f, d) for every v ∈ V , Step 3 can be performed in
O((n8γ +n9) log n) time and O((n9γ +n10) log n) time for functions d given
by (11) and (12), respectively. The time bound of Step 3 dominates the
time complexity of the entire algorithm.

Theorem 24 Let f be a posi-modular and submodular function. Then prob-

lem (1) can be solved in O((n8γ + n9) log n) and O((n9γ + n10) log n) time

if d is given by (11) and (12), respectively.

We note that the complexities above are essentially O(n2SFM (n)) and
O(n3SFM (n)), where SFM (n) denotes the time complexity for minimizing
a submodular function on 2V with n = |V |. We also note that the algo-
rithms are quadratically faster than the ones based on [6, 7] (See Section
5.1).

6 Applications of Problem (1)

In this section, we briefly discuss applications of our problem, where we
focus on the source location problem and the external network problem in
undirected graphs.

Let G = (V,E) be an undirected graph with a capacity function c :
E → R+. It has a demand function p : V → R+. Then the source location
problem with edge-connectivity requirements in undirected graphs [1, 8, 13,
14] is given by

Minimize |S|

subject to λG(S, v) ≥ p(v) for all v ∈ V (16)

S ⊆ V,

where λG(S, v) denotes the maximum flow value (i.e., edge-connectivity)
between S and v in G, and we define λG(S, v) = +∞ if v ∈ S. This problem
has been studied as a location problem concerned with network reliability.

Suppose that we are asked to locate a set S of multiple servers which
can provide a certain service in a multimedia network N . A user at vertex
v can receive a service by connecting to a server in S through a path in N .
To ensure the quality of the service to v even if certain number p(v) − 1 of
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links become out of order, we should select S so that the edge-connectivity
between S and v is at least p(v). Therefore, this kind of fault-tolerant setting
can be formulated as the source location problem.

For each X ⊆ V , let f(X) denote the sum of edge capacities between X
and V − X, i.e.,

f(X) =
∑

{c(u, v) | u ∈ X, v ∈ V − X, (u, v) ∈ E}. (17)

It is well known that f is called a cut function and is posi-modular and
submodular. Then by the max-flow min-cut theorem, the source location
problem can be regarded as problem (1) when f and d are, respectively,
given by (17) and (11).

Let us next consider that the external network problem with edge-
connectivity requirements in undirected graphs [7].

Let G = (V,E) be an undirected graph with a capacity function c : E →
R+. It has a demand function r : V 2 → R+. Then the external network
problem is given by

Minimize |S|

subject to λG/S(u, v) ≥ r(u, v) for all (u, v) ∈ V 2

S ⊆ V,

where G/S denotes the graph obtained from G by identifying vertex set
S with a single vertex s, and if u ∈ S, we define λG/S(u, v) = λG/S(s, v).
Similarly to the source location problem, this has been studied as a network
reliability problem [7]. Let f and d be respectively given by (17) and (12).
Then by the max-flow min-cut theorem, the external network problem can
be formulated as problem (1).

Let us now apply the algorithm given in Section 5.5 to these problems.
In Step 1, for each s and t, N s

t can be computed in O(nm log(n2/m))
time [5], where n = |V | and m = |E|. Thus Step 1 can be done in
O(n3m log(n2/m)) time. As mentioned in Section 5.5, Step 2 can be done in
O(n4) time. Since each transversal check in Step 3 is, respectively, possible
in O(n2m log(n2/m)) and O(n3m log(n2/m)) time for d given by (11) and
(12), Step 3 can be done in O(n3m log(n2/m)) and O(n4m log(n2/m)) time,
respectively.

Therefore, by using our general framework given in Section 5.5, we have
the following result.

Corollary 25 The source location problem and the external network prob-

lem are solvable in O(n3m log(n2/m)) and O(n4m log(n2/m)) time, respec-

tively.

We remark that this is the first polynomial-time algorithm for the exter-
nal network problem, and it is known that the source location problem can
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be solved in O(n2m log(n2/m)) time by using its own specific properties [1].
We also note that our general framework is applicable for the source location
problem and the external network problem for not only graphs G = (V,E)
but also hypergraphs (V, E), where f is given by

f(X) =
∑

{c(E) | E ∩ X,E ∩ (V − X) 6= ∅, E ∈ E}. (18)

7 Concluding Remarks

In this paper we considered the problem of finding a minimum transversal
of the hypergraph of all minimal deficient sets of a given system (V, f, d).
We analyzed the hypergraph of minimal deficient sets of a posi-modular
system and proved that it is a tree hypergraph. Then we described a
polynomial-time algorithm if f is also submodular and d is defined by
d(X) = max{r(v, w) | v ∈ X,w ∈ V − X} for a function r : V 2 → R+.
Moreover, we showed that a tree hypergraph consisting of a Sperner family
can be described by minimal deficient sets of a posi-modular system with a
modulotone function. That is, we provided a new characterization of tree
hypergraphs.

Some problems remain for further work. One issue is to construct a
polynomial-time algorithm when the demand function is a general modulo-
tone function, while the algorithm in this paper only addresses a function
by (12) or (11). Another issue is to construct a polynomial-time algorithm
for posi-modular function minimization or to prove that it is NP-hard. As
mentioned in Section 4, Theorem 4 and the good properties of solid sets fol-
low from the posi-modularity, and the submodularity is required only from
the algorithmic aspect. Therefore if we have a polynomial-time algorithm
for posi-modular function minimization, then the argument in this paper is
completed by the posi-modularity.
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