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MINIMUM TRIM DRAG DESIGN FOR INTERFERING LIFTING

SURFACES USING VORTEX-LATTICE METHODOLOGY

John E. Lamar
NASA Langley Research Center

SUMMARY

A new subsonic method has been developed by which the mean camber surface
can be determined for trimmed noncoplanar planforms with minimum vortex drag.
This method uses a vortex lattice and overcomes previous difficulties with
chord loading specification. This method uses a Trefftz plane analysis to
determine the optimum span loading for minimum drag, then solves for the mean
camber surface of the wing, which will provide the required loading. Pitching-
moment or root-bending-moment constraints can be employed as well at the design
lift coefficient.

Sensitivity studies of vortex~lattice arrangement have been made with this
method and are presented. Comparisons with other theories show generally good
agreement. The versatility of the method is demonstrated by applying it to
(1) isolated wings, (2) wing-canard configurations, (3) a tandem wing, and
(4) a wing-winglet configuration.

INTRODUCTION

Configuration design for subsonic transports usually begins with the wing,
after which the body and its effects are taken into account, and then the tails
are sized and located by taking into account stability and control requirements.
With the advent of highly maneuverable aircraft having closely coupled lifting '
surfaces, there has been an increased interest in changing the design order so :
that multiple surfaces could be designed together to yield a trimmed configura-
tion with minimum induced drag at some specified 1ift coefficient. Such a com-
bined design approach requires that the mutual interference of the lifting sur-
faces be considered initially.

Single planform design methods are available to optimize the mean camber
surface, better called the local elevation surface, for wings flying at sub-
sonic speeds (for example, ref. 1) and at supersonic speeds (for example,
refs. 2 and 3). The design method presented in reference 1 was developed from
an established analysis method (Multhopp type), also presented in reference 1,
by using the same mathematical model, but the design method solves for the
local mean slopes rather than the lifting pressures. In the usual implementa-
tion of reference 1, the design lifting pressures are taken to be linear chord-
wise, but must be represented in this solution by a sine series which oscillates
about them. An example presented herein demonstrates that corresponding oscil-
lations may appear in pressure distributions measured on wings which have been
designed by the method of reference 1. The method developed herein overcomes

this oscillatory lifting pressure behavior by specifying linear chord loadings
at the outset.
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The development approach used in the two~planform design problem will be
similar to that used for a single planform. The analytic method employed,
selected because of its geometric versatility, is the noncoplanar two-planform
vortex-lattice method of reference 4.

The design procedure is essentially an optimization or extremization prnb-
lem. Subsonic methods (for example, see refs. 5 and 6) are available for deter-
mining the span load distributions on bent lifting lines in the Trefftz plane,
but they do not describe the necessary local elevation surface. This is one of
the objectives of the present method which will utilize the Lagrange multiplier
technique (also employed in refs. 2 and 3). The method of reference 4 is used
to provide the needed geometrical relationships between the circulation and
induced normal flow for complex planforms, as well as to compute the lift, drag,
and pitching moment.

This paper presents limited results of precision studies and comparisons
with other methods and data and is a condensed version of reference 7. Several
examples of solutions for configurations of recent interest are also presented.

SYMBOLS
A a element of aerodynamic influence function matrix A which con-
1 tains induced normal flow at lth point due to nth horseshoe

vortex of unit strength; total number of elements is g-x g
AR aspect ratio
a fractional chord location where chord load changes from constant

value to linearly varying value toward zero at trailing edge
ai’bi’ci coefficients in spanwise scaling polynomial
b wing span
CD drag coefficient
CD,o drag coefficient at CL =0
CD vortex or induced drag coefficient, Yortex drag

A\ qS
o ref
C lift coefficient, Life
L q S
o ref
'Cm pitching-moment coefficient about ?-axis, Pitc:ingémoment
Y refCref

ACp 1lifting pressure coefficient
c chord
90

i
- 0 e T SN fo—

e ———

-—
N N

"3



e o

4]

Zi

section lift coefficient

reference chord
z [ﬁca + 0.75} (brackets indicate "take the greatest integer'")

maximum number of spanwise scaling terms in solution technique
for wings without dihedral

lift
pitching moment about coordinate origin
free-stream Mach number

number of span stations where pressure modes are defined as used
in reference 1

maximum number of elemental panels on both sides of configura-
tion; maximum number of chordal control points at each of m
span stations as used in reference 1

number of elemental panels from leading to trailing edge in
chordwise row

total number of (chordwise) rows in spanwise direction of
elemental panels on configuration semispan

free-stream dynamic pressure

reference area

horseshoe vortex semiwidth in plane of horseshoe (see fig. 1)
free-stream velocity

axis system of given horseshoe vortex (see fig. 1)

body~axis system for planform (see fig. 1)

wind~axis system for planform (see sketch (a))

distance along X-, Y-, and Z-axis, respectively

distance along X-, Y-, and Z-axis, respectively

incremental movement of X-Y coordinate origin in streamwise
direction

91

|
|

————_— £




T N T

.

*  k

Yy .2 y and 2z distances from imege vortices located on right half
of plane of symmetry, as viewed from behind, to points on {
left panel

Ec canard height with respect to wing plane, positive down

z/c local elevation normalized by local chord, referenced to local
trailing-edge height, positive down

(3z/93%) 1th elemental local slope in vector {3z/3x} of N/2 elements

1 (see eq. (1))

a angle of attack, deg

T, vortex strength of nth element in vector {I'} of N/2 elements

€ incidence angle, positive leading edge up, deg

§ independent variable in extremization process

n nondimensional spanwise coordinate based on local planform

1 semispan

£ distance along local chord normalized by local chord

g! fractional chordwise locaticn of point where mean camber height
is to be computed (see eq. (14))

g,c' dihedral angle from trailing vortex to point on left panel being
influenced; o measured from left panel, o' measured from
right panel

¢ horseshoe vortex dihedral angle in Y-Z plane on left wing panel,
deg

o' horseshoe vortex dihedral angle on right wing panel, ¢' = -9,
deg

Subscripts:

c canard

d design

i,j.k indices to vary over the range indicated

le leading edge

1,n assoclated with slope point and horseshoe vortex, respectively,
ranging from 1 to N/2

L left trailing leg
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R right trailing leg
ref reference value
w wing

Matrix notation:
{3 column vector

| square matrix

Flow angle of attack determined
at each slo: # point

i
>

Typical spanwise
vortex filament

S L~
<t

Z
/
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Wing section at an

Vortex-lattice trailing filaments
angle of attack

Sketch (a)

THEORETICAL DEVELOPMEN'T

This section presents the application of vortex-lattice methodology to the
mean-camber~surface design of two lifting planforms which may be separated ver-
tically and have dihedral. For a given planform, local vertical displacements
of the surfaces with respect to their chord lines in the wing axis (see
sketch (a)) are assumed to be negligible; however, vertical displacements of
the solution surfaces due to planform separation or dihedral are included. The
wakes of these beat lifting planforms are assumed to lie in their respective
extended bent chord planes with no roll up. For a two-planform configuration
the resulting local elevation surface solutions are those for which both the
vortex drag is minimized at the design lift coefficient and the pitching moment
is constrained to be zero about the origin. For an isolated planform no
pitching-moment constraint is imposed. Thus, the solution is the local eleva-
tion surface yielding the minimum vortex drag at the design 1ift coefficient.
Lagrange multipliers together with suitable interpolating and integrating pro-
cedures are used to obtain the solutions. The details of the solution are given
in the following five subsections.

Relationship Between Local Slope and Circulation

From reference 4, the distributed circulation over a lifting system is
related to the local slope by
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where the matrix [A] 1is the aerodynamic influence coefficient matrix based on
the paneling technique described in reference 4.

Circulation Specification

Once the surface slope matrix {3z/3x} 1is known, chordwise integration
can be performed to determine the local elevation surface z/c, which contains
the effects of camber, twist, and angie of attack. The major problem to be
solved is determining the necessary circulation matrix {T/U} to employ in
equation (1). The problem is simplified somewhat by having the chordwise shape
of the bound circulation remain unchanged across each span, although the chord-
wise shape may vary from one planform to another. The chordwise loadings allow-
able in the program range from rectangular to right triangular toward the lead-
ing edge and were selected because they are of known utility. An example is
given in figure 2, Two different techniques are utilized to arrive at the span-
wise scaling of the chordwise shapes. The particular technique to be employed
depends on whether the configuration has dihedral.

For a configuration having dihedral, the spanwise scaling must be deter-
mined discretely because no finite polynomial representation c¢f the scaling is
known with certainty, even for ar isolated wing. However, for configurations
with no dihedral, the spanwise scaling can be written as a polynomial for each
planform,

2 2 4
1- n‘ (ai+bin1 +cin1)

(see fig. 2) with a maximum of three coefficients per planform being determined
as part of the solution. It is possible to write this polynomial as a solution
because the isolated wing solution is known to be of the elliptical form

i1 - nlz, and the presence of the other planform is assumed to generate a load-

ing disturbance which can be represented by the other two terms in addition to
adjusting a . Once the scaling is known from either technique, then {r/ul 1is

readily obtained by multiplication.

Lift, Pitching-Moment, and Drag Contributions
Tre contributions to CL and to Cm’ respectively, from the jth chordwise

row of horseshoe vortices are

L 4q 8 cos ¢
- 15
b a8 USrer  1e1

) (2)

t::('—s

© ref
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M§ 4q 8 cos O N
i > 1<E (r)-
c - 2 - :E: ~) % (3)
™3 qmSrefcref qwsrefcref gm1 \U 1 3.1
where
<
1 (Ei-a)
(3) : (42)
= _ a
U/ 1-¢, (Ei >a>
l-a
-1i-0.
Ei = -0 75
Nc (4b)
and
- - (= _[1-0.75
R (xle)j 7 cj )
c
Even though CL j and Cm j actually occur on the wing at the jth span-
1 1]

wigse location, they can be utilized in a Trefftz plane solution if the chordwise
summations are performed. This utilization is possible herein because the trail-
ing wake is assumed not to roll up, and the general configuration has specifiable
chord loading shapes. Summing the chordwise loadings at this point allows the
solution of the spanwise scaling to be performed on a bent lifting line located
in the Trefftz plane, which is, of course, ideally suited for the vortex drag
computation. In addition, the summation reduces the number of unknowns from the

product of ﬁc and ﬁs to only ﬁs. Hence, a larger value of N_ can be used

in the Trefftz plane, which should yield improved accuracy in the spanwise scal-
ing factors without affecting the number of horseshoe vortices on the wing.
Then, when the circulations are needed on the wing for use in equation (1), the
well-defined variations of the spanwise scaling factors are interpolated to the
original spanwise positions of the wing vortex lattice which i1s used to generate

[A}. The procedure is implemented as follows:

The summation in the lift expression (eq. (2)) can be written as

N 1 . N

i (%)1 ) Z (ﬁt)i * Zc: (iri)i (6)

i=1 i=1 i=I+4]
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where I is the last 1 wvalue which satisfies 51 S a; that is,

I= [ﬁca + 0.7.'] (7)

where the brackets indicate "take the greatest integer." Hence,

ﬁc(%>i‘1+£ﬁc+o.7j(ﬁc-1)_ . %c:i

- - (8)
¢ i=] N (1 - a) N (1 - a) i=I+1
c c
Similarly, the summation in the pitch expression (eg. (3)) can be written as
N - -
c /1y - _ 0.75¢; (Nc +o.75)(nc - 1) ey L
> ()30 (), + =2 “-2a
i=1 i 3 Nc Nc(l - a) Nc f=]
1 _ 1.5cj Nc:
- <x1e) + cj + — E i
N (1 - a) 3 N i=I+1
) c c
N
c c
+ 3 < 42 (9)
2 i=I+1
N (1 - a)

The contribution to the vortex drag coefficient at the ith chordwise row due
to the jth chordwise row is obtained by using only half the trailing vortex
induced normal wash from the Trefftz plane. The result is
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P Py G teos (0,15 = ¢1)
D,i,] TS U 15 U 3

\‘I(yi’_1 + 8 cos ¢j)2 + (zi,j + s sin ¢j>2

2 2
\/(yi,j - 8 cos ¢j> + (zi,j - 8 sin ¢j>

[/y* + s cos ¢' 2 + (z* + 8 sin ¢' 2
\\\ i,3 3 i,] 3

(10)

* 2 * 2
V(yi’j - 8 cos ¢5) + (zi,j - 8 sin ¢5)

In the % sign, plus indicates that the trailing vortex filament is to the left
of the influenced point; minus, to the right.

In using equations (2), (3), and (10), a new vortex system is set up in the
Trefftz plane in which the bent chord plane is represented by a system of uni-
formly spaced trailing vortices (the quantity 2s 1in fig. 1). This un‘ormity
of vortex spacing leads to a simplification in the equations and can be thought
of as a discretization of the ideas of Munk (ref. 8) and Milne-Thomscen (ref. 9)
for a bound vortex of constant strength,

Spanwise Scaling Determination

To determine the spanwise scaling with either technique requires the com-
bination of the contributions from each spanwise position for configuratione
with dihedral or the mode shape contributions for configurations without dihe-
dral. These contributions must be employed in the appropriate total CL and

Cm constraint equations as well as in the C extremization operation. Due

D,v
to limited space only the solution for wings without dihedral will be discussed.
The equations to be employed in the Lagrange extremization method are

K
c =2 :_L: skcL’k (11)
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K
c =22 6, Cak (12)
k=1
and
K K
8,C ) (13)
cD,V -2 %:é_l 1°D,1,k°k

where K S 6 and C and C are the C and C contributions associ-
L,k m, k L m

ated with the kth term in the polyromials

\’ 2 2 4
1- n1 (61 + 62111 + 63\'11 )
\l 2 2 4

(Note that k = 1, 2, and 3 are assigned to the first planform and 4, 5, and 6
to the second.) These contributions are computed by first assuming a unit value
of scaling with each term in the polynomial, then multiplying each resulting

spanwise scaling distribution by the CL j and Cm j terms of equations (2)
] ]

and (3), and finally summing spanwise over all the chordwise rows associated

with 2ach set of k values (or planform). The vortex drag coefficient associ-

ated with the ith and kth combination of spanwise scaling distributions CD 1.k
L R

or

is compared similarly. The Gk terms are equivalent to the unknown coefficients ,

in the polynomial and are the independent variables in the solution.

An application of the preceding process to a conventional wing-tail config-
uration is shown in figure 3. The resulting idealized loading set is of the
type that would meet the constraints and extremization.

Determination of Local Elevation Curves
With 6§,  known, then {r/v}, C» Cyp» and Cp  cau be determined. The
1]
results for {I'/U} are interpolated to the original spanwise positions of the
paneling which is used in equation (l) and in the following equation to find the
local elevation curves. The equation for the local elevation above the computa-
tional plane at a particular point (£',y) is

- _ g - -
2,9 = j; 2,3 4t (14)

ox
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RESULTS AND DISCUSSION

General

It is riecessary to examine the sensitivity of the results of the present
method to vortex-lattice arrangement., It is 2lso important to compare res:lts
obtaine? with this method with those availabie in the literature. Unfortunately,
the available solutions, whether exact or numerical, may not be for configura-
t‘ons which will exercise the constraint or extreminization capabilities of the
present method. In fact, the available exact solutions are for configurations
which are either two~dimensional sections or iscla:’ . three-dimensionsl wings
with a nonelliptic span loading. The solutions rfor such configurations require
program modifications to the span loading and involve no optimization.

Two-Dimensional Comparison

Various chordwise arrangements and number of vortices were investigated for
several chordwise loading shapes, of which the a = 0.6 results are given in
figure 4. Although difficult to see clearly from this figure, the agreement of
the present method with analytic results (ref. 10) is good for both local slope
and elevation. Examination of figure 4 leads to the following general conclu-
sions concern‘'ng the chordwise arrangement: (1) Unifcrm spacing is preferred;
(2) Nc = 20 {s a good compromise when considering both computntional requira-

ments and completely converged results. An additional conclusion is that the
present method yields incidence angles near the leading edge which are slightly

higher than the analytical ones.

Number of Rows Along Semispan (ﬁs)

Various spanwise arvangements and number of vortices were studied for o..e
planform and from these studies the following conclusions were drawn: (1) Uni-
form spacing is preferred; (2) for at least 10 spanwire rows per semispan, the
local slopes and elevations were not too sensitive to increasing the number.

Three-Dimensional Comparisons

Two comparisons with available mean-camber-surface solutions will be made.

The comparisons are for a high-aspect-ratio sweptback and tapered wing with a
= 1.0 and M_ = 0.9% and a lower aspect-ratio

uniform area loading at CL d
?
a- 0.35, and

trapezoidal wing with a = 1.0, spanwise elliptic loading at CL
?

Mw = 0.40.

Figure 5 presents the predicted results from the present method for the
sweptback wing and compares these results with those from references 1 and 11.
A comparison of the three solutions indicates that they are all in generally

good agreement with the exception of the results at 3%7 = 0.05. The surprising

result is that the present method and the modified Multhopp method (ref. 1)
agree as well as they do at this span station because of the known differences

that exist between them near the plane of symmetry. <rhe reason for the larger

disagreement betweern the present method and that of reference 11 uear 3%5 =0
99




1

o,

B B L T L L I

is not clear, but this disagreement may be caused by the different ﬁc values

utilized by the two methods. Reference 11 effectively uses an infinite number
since over each infinitesimal span strip across the wing the method locates a
single quadrilateral vortex around the periphery of the enclosed area. This
vortex extends from the leading edge to the trailing edge and includes segments
of the edges as well. For a uniform area loading, the trailing leg parts of the
quadrilateral vortices cancel with adjacent spanwise ones all across the wing.
Thi- leaves only the edge segments to contribute to the induced flow field.

The present method utilizes a numerical rather than a graphical sclution in
order to provide a general capability; hence, ﬁc values ure limited as dis-

cussed previously. Also, vortices are not placed eround the leading and trail-
ing edges in the present method.

A comparison of the present design method with that of reference 1 is shown
in figure 6 for a lower aspect-ratio trapezoidal wing. The local s’opes and ele-
vations determined by the two methods are in reasonably close agreement at the
three spanwise locations detziled; however, an oscillatory trend is evident in
the local slopes obtained from the method of reference 1 (fig. 6(a)). These
oscillations apparently originate in the truncated sine series used in refer-
ence 1 to represent a uniform chordwise distribution. 1Integration of the local
slopes to obtain local elevations tends to suppress the oscillations (fig. 6(b));
however, the local pressures depend upon the slope rather than the elevation.
Consequently, the measured chordwise pressure distribution will demonstrate tha
same oscillatory character, A model built according to the design of reference 1
was tested (ref. 12), and the measured pressure distributions for a typical span-
wise location (fig. 6(c)) indicate that indeed the oscillations are present.
Presumably, similar measurements on a model designed by the present method would
not behave in this manner since the input loadings are truly linear.

Force tests (ref. 13) of an essentially identical model indicate that the

c 2
measured drag polar was tangent to CD = CD,o + AR’
was indeed a minimum at the design CL (or 100 percent leading-edge suction was

that is, the vortex drag

obtained). It is presumed from the small differences in local slope between the
present method and the method of reference 1 that a similar result would be
obtained for a design by the present method.

Application to a Wing-Canard Combination

The present method has been demonstrated by optimizing a wing-canard com-
bination (fig. 7). To illustrate how the span load optimizing feature operates
with the constraints, figure 8 presents individual and total span load distri-
butions for various values of a, and a, with the moment trim poiat at

- 2
%%7 = 0.1 and E%E = (0. (This trim point is given with respect to the axis
system shown in the sketch in figure 9.) From figure 8 there are three impor--
tant observations to be made: (1) The individual span loadings change in the
anticipated direction with the changing chord loadings in order to meet the same
CL and Cm constraints; f2) the total span loading does not change; (3) con-

sequently, the vortex drag of the configuration is constant, as would be antic-
ipated from Munk's stagger theorem.
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The effects of varying the vertical separation and the moment trim point on
the resulting drag and span loadings are also illustrated (figs. 9 and 10). All
surfaces are designed for CL 4= 0.2, a, = 0.6, a, = 0.8, and M= 0.30 and

have Cm = () about the moment trim point. Figure 9 shows that for all vertical !

separations, moving the moment trim point forward increases the vortex drag over ‘
some range, and furthermore, increasing the out-of-plane vertical separation Ps
reduces the vortex drag. Of course, not all moment trim points utilized will '
produce a stable configuration. These variations illustrate the importance of
balancing the lift between the two lifting surfaces so that for some reasonable
moment trim point and vertical separation, the vortex drag will be at a minimum.
The minimum point on each vortex drag curve occurs with the pitching-moment con-
straint not affecting the extremization.

Figure 10 presents the individual span loadings with increasing vertical
z
separation 3%5 < 0 above the wing plane| with a = 0.6 and a, = 0.8. There
are three observations which can be made from these results for increasing ver- g
tical separation: (1) The individual span loadings tend to become more ellipti- !
cal; (2) consequently, the vortex drag decreases; (3) the individual 1lift con-
tributions show only a little sensitivity to separation distance once the canard

is above the wing when compared with the coplanar results.

Application to Tandem Wing Design

This design method has-been employed in the determination of the local ele-~
vation surfaces for a tandem wing. Figure 11 shows a sketch of a tandem wing
configuration and selected results taken from the wind-tunnel tests made with a

model based on this design at a Mach number of 0.30 (ref. 14). At CL d= 0.35

the vortex drag increment is correctly estimated. The measured Cm is slightly

£ Rp gy T Ao e B Lk et 4

positive (0.02). Reference 14 states that a part of the Cm error (Cm should be ?

k zero) is a result of a difference in the fuselage length between the designed and
constructed model.

Design of a Wing-Winglet Configuration

H
Figure 12 presents the wing-winglet combination of interest along with !
pertinent aerodynamic characteristics and local elevations obtained from the !
present method. For comparison these same items are calculated with a program
modification that adds a root-bending-moment constraint to produce the same
moment that would be obtained o the original wing extending to the plane of
symmetry but without its basic wingtip. The assumed span loading is elliptical.
The force and moment coefficients are based on the wing outside of a representa-
tive fuselage and without the basic wingtip.

3
H
i
5
i
]
3

The results of this comparison are as follows: (1) The root-bending-moment
constraint increases the vortex drag slightly because of the changes in the ¢ ¢

1
distribution required; (2) the differences in local elevations are confined pri-
marily to the outer 50 percent semispan and result mainly from the differences
in the incidence angles; (3) significant amounts of incidence are required in
the winglet region with or without the root-bending-moment constraint.
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CONCLUDING REMARKS

A new subsonic method has been develuped by which the mean camber (local
elevation) surface can be determined for trimmed noncoplanar planforms with
minimum vortex drag. This method employs a vortex lattice and cvrercomes pre-
vious difficulties with chord loading specification. This method designs con-
figurations to have their local wmidsurface elevations determined to yield the
span load for minimum vortex drag while simultaneously controlling the pitching-
moment or root-bending-moment constraint at the design 1ift coefficient. This
method can be used for planforms which (1) are isolated, (2) are in pairs,

(3) include a winglet, or (4) employ variable sweep, but only at a specified
sweep position.

Results obtained with this method are comparable with those from other
methods for appropriate planforms. The versatility of the present method has
been demonstrated by application to (1) isolated wings, (2) wing-canard config-
urations, (3) a tandem wing, and (4) a wing-winglet configuration.
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Figure 1.~ Axis systems, elemental panels, and horseshoe vortices
for typical wing planform.

ASSUMED SPANWISE MODES

(CONFIGURATIONS WITHOUT DIHEDRAL)

2
l-n'l
2 2

4—\’ 2

—\

0 ] 1.0

Figure 2.- Planform load distributions.




Figure 3.~ Idealized loading set on trimmed configuration for minimum drag.
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Figure 4.- Two-dimensional local slopes and elevations; a = 0.6.
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Figure 5.~ Local elevation estimates for high-aspect-ratio wing;
CL ar 1.0; M_ = 0.90.
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Figure 6.~ Local slopes, elevations, and lifting pressure distributions;
CL a- 0.35; M_ = 0.40.
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Figure 7.- Typical wing-canard combination.
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Figure 8.- Effect of chord loading on span loadings for trimmed
coplanar wing-canard c-mbination; M_ = 0.30.
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Figure 9.- Vortex drag for range of center-of-gravity positions and vertical
separations; CL 4 = 0.2; M_= 0.30.
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Figure 10.- Effect of vertical displacement of span loadings for trimmed wing-

canard combination; a, = 0.6; a, =0.8; M, = 0.30; %% = 0,.10.
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Figure 1l.- Longitudinal aercdynamic characteristics of tandem wing;
CL q= 0.35; M_ = 0.30.
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(c) Local elevations.

ot-bending-momwent constraint on aerodynamic charac-

AR = 6.67); = 20; = 17; M, = 0.80.
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