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Abstract. Unique substrings appear scattered in the stringology litera-
ture and have important applications in bioinformatics. In this paper we
initiate a study of minimum unique substrings in a given string; that is,
substrings that occur exactly once while all their substrings are repeats.
We discover a strong duality between minimum unique substrings and
maximum repeats which, in particular, allows fast computation of one
from the other. We give several optimal algorithms, some of which are
very simple and efficient. Their combinatorial properties are investigated
and a number of open problems are proposed.

1 Introduction

The contrasting ideas of unique and repeating substrings in a given string w
are natural and intuitive: a unique substring occurs just once in w, a repeating
substring more than once. Thus it is not surprising that these ideas have been
explored in various ways by many authors in the past; what is perhaps surpris-
ing is that they have not been studied together, in such a way as to highlight
— indeed to exploit — the contrast or duality between them. In this paper we
take a first step toward the integrated study of unique and repeating substrings.
We report results of combinatorial significance, we propose efficient new algo-
rithms, and we propose applications and extensions of our methods, especially
to computational biology.

Repeating substrings — specifically adjacent repeating substrings or “repeti-
tions” — were the focus of what is acknowledged to be the paper that established
combinatorics on words as a mathematical discipline [26]: more than a century
ago, Thue showed how to construct infinitely long strings on a three-letter al-
phabet that contained no repetitions. Three-quarters of a century later, with the
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advent of the electronic computer, three of the earliest and most influential pa-
pers in computational stringology [2, 7, 17] described algorithms for computing
all the repetitions in a given string.

The discovery of the human genome sequence [5, 15] made the computation of
nonadjacent repeats (copied DNA) an important algorithmic problem, one that
became computationally feasible with the invention of the suffix tree by Weiner
[27]: in the suffix tree Tw of w, repeating substrings could now be identified
simply by locating the root of a corresponding subtree. Significantly, Weiner’s
paper also introduced the concept of a “minimum length unique substring” of
w that begins at position i; that is, a substring w[i . . j] that occurs exactly once
in w, while w[i . . j−1] occurs at least twice. However, no link was suggested
between unique substrings and repeats.

In biological and other applications, not all repeats are of equal interest, and
so methods were devised to use the suffix tree to compute repeats that were
nonextendible to left or right [11, Chapter 7.12], that were separated by a gap
of bounded size [4], that contained blocks of undefined (don’t-care) symbols [8],
or that occurred a bounded number of times in different segments of w [3]. With
the discovery of suffix arrays in 1990 [18], and with the gradual recognition that
their use saved time as well as space [1], many other algorithms were proposed
for the computation of repeats [9, 13, 16, 19] that made use of these and other
related data structures.

Meanwhile, in an apparently quite separate development, though using the
same suffix tree/array techniques, many papers were written [10, 12, 24, 28] to
find unique strings (oligonucleotides in the DNA context). In fact, the last of
these cited papers is the only source we have found that gives the same definition
of “minimum unique substring” that we give here: a substring that occurs exactly
once in w and whose every proper substring occurs at least twice in w. Our
contribution in this paper is to put together the ideas of “minimum unique” and
“maximum repeat” — combinatorial properties arise from this duality that are
interesting in their own right, and that also lead to new and efficient algorithms.

Section 2 of this paper gives basic definitions; then Section 3 introduces
unique substrings and repeats, followed in Section 4 by an analysis of the dual-
ity between them. Section 5 presents linear-time algorithms to compute unique
substrings and repeats using suffix arrays. Then Section 6 shows that de Bruijn
strings are exactly those that maximize both the number of unique substrings
and the number of repeats. Finally, Section 7 suggest possible future applications
of these ideas.

2 Basic definitions

Let w be a string of length |w| = n. For 1 ≤ i ≤ n, w[i] is the ith letter
of w. A substring of w is a string of the form w[i . . j] = w[i]w[i + 1] . . . w[j],
for some 1 ≤ i ≤ j ≤ n. In particular w = w[1 . . n]. The reverse of w is
denoted wr = w[n] . . . w[1]. The suffix of w that starts at position i is denoted
suf[i] = w[i . . n].
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The suffix array SA contains the positions 1, 2, . . . , n sorted in increasing
lexicographical order of the corresponding suffixes suf[i], i = 1, 2, . . . , n. That is,
SA[i] = j means that suf[j] is the ith smallest suffix in lexicographical order.
The longest common prefix array, LCP, contains in its ith position the length of
the longest common prefix of suf[SA[i]] and suf[SA[i− 1]]. An example is shown
in Fig. 1.

As noted in Section 1, suffix arrays were introduced in 1990 by Manber and
Myers [18], and today provide the most efficient text index. Currently the fastest
suffix array construction algorithm (SACA) is due to [20], an algorithm that is
linear in string length, fast in practice, and lightweight in its use of storage. See
also [21] for a survey of SACAs and further analysis of their properties. The LCP
array can also be computed in linear time and space [14]; what is at present the
most economical algorithm is described in [23].

i SA[i] suf[SA[i]] LCP[i]
1 8 a

2 3 aababa 1
3 6 aba 1
4 1 abaababa 3
5 4 ababa 3
6 7 ba 0
7 2 baababa 2
8 5 baba 2

Fig. 1. The SA and LCP arrays for the string w = abaababa. The third column shows
the suffixes with the LCP positions underlined.

3 Unique substrings and repeats

A repeat of w is an interval [i . . j] such that the substring w[i . . j] occurs at
least twice in w. A subinterval of a repeat is also a repeat and therefore it is
natural to consider maximum repeats. A maximum repeat is an interval [i . . j]
such that the string w[i . . j] occurs at least twice in w but the strings w[i−1 . . j]
and w[i . . j + 1], if defined, do not. Maximum repeats include all repeats as
subintervals.

A unique substring of w is an interval [i . . j] such that the substring w[i . . j]
occurs exactly once in w. When computing unique substrings, it makes sense to
compute only the minimum ones, as all the substrings of w containing those will
be unique as well. That means, minimum ones determine all unique substrings.
A minimum unique substring of w is an interval [i . . j] such that either i = j and
the letter w[i] occurs only once in w or i < j and each of the intervals [i+ 1 . . j]
and [i . . j − 1], if defined, is a repeat of w.

As an example, the maximum repeats and minimum unique substrings for
the string w = abaababa are shown in Fig. 2.
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a b a a b a b a
1 2 3 4 5 6 7 8� �� �� �

Fig. 2. The maximum repeats (half ovals: [1 . . 3], [4 . . 6], [6 . . 8]) and minimum unique
substrings (half rectangles: [3 . . 4], [5 . . 7]) of the string abaababa.

Notice that our definitions are in terms of intervals. For unique substrings,
minimum or not, there is, conceptually, no difference if we define them as inter-
vals or strings, because there is a bijection between the two concepts: an interval
determines a string uniquely (which is always true) and a unique string deter-
mines an interval uniquely as well, as it has only one occurrence. The difference
is important from an algorithmic point of view though, as it takes linear time
to find the interval corresponding to a given string and only constant time vice
versa.

Repeats are defined as intervals as well, with similar advantages. However, the
correspondence between repeated strings and repeated intervals is more complex.
Traditionally, “repeat” has usually been defined [1, 22, 25] in terms of the set of
all occurrences of the repeating substring — in other words, all the intervals
[i′ . . i′+(j−i)] such that w[i′ . . i′+(j−i)] = w[i . . j]. For example, in Fig. 2, ab
is a repeating substring that occurs three times at positions 1, 4, and 6 with
length 2, and so the repeat can be described by the tuple (2; 1, 4, 6). In order
to restrict repeats to those that are interesting, it is usual also to require that
repeats be nonextendible (NE); that is, such that not every occurrence of a repeat
is a substring of the same enclosing repeat. In our example, every occurrence of
ab extends to the repeating substring aba and is therefore extendible; however,
aba is nonextendible and so as an NE repeat is reported by (3; 1, 4, 6).

In order to further restrict unnecessary output, it is common to report only
repeats that are SNE or supernonextendible [22, 25] (also called “supermaximal”
[1]) — that is, NE repeats whose repeating substring is not a proper substring
of any other repeating substring of w. In Fig. 2 we see that the three maximum
repeats collectively determine an SNE repeat (3; 1, 4, 6), and so in this case the
two notions coincide. To see however that this is not always the case, consider

w = a b a a b a b a a b a a b .
1 2 3 4 5 6 7 8 9 10 11 12 13

This string contains exactly three maximum repeats, [1 . . 6], [6 . . 11], and [9 . . 13],
but of these only the first two constitute an SNE repeat, abaaba = w[1 . . 6] =
w[6 . . 11] — this is because the repeating substring abaab = w[9 . . 13] is a sub-
string of abaaba. Thus in a sense the idea of a maximum repeat is more precise.
Note also that the maximum repeat abaab occurs only once! This is because
its two other occurrences are embedded in maximum repeats abaaba and are
therefore not separately reported. We have

Proposition 1. A maximum repeat [i . . j] in w is reported as a component of
an SNE repeat if and only if w[i . . j] does not occur as a proper substring in any
other maximum repeat.
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We call a letter that occurs only once in a string a singleton. Clearly, all
singletons represent minimum unique substrings. In order to avoid this trivial
case, we assume from now on that, unless otherwise specified, there are no sin-
gletons in the strings we consider. This means that each letter has at least two
occurrences and so implies two things. First, any minimum unique substrings
has length at least two. Second, each letter is part of a maximum repeat. The
latter assertion is due to the fact that any repeat can be extended to a maximum
repeat.

4 Duality

Minimum unique substrings and maximum repeats are, in a certain sense, to be
made precise, dual concepts. The investigation of this duality is the topic of this
section.

Assume [i . . j] is a minimum unique substring of w. That means the substring
w[i . . j−1] occurs again in w whereas w[i . . j] does not. We can therefore extend
[i . . j − 1] to the left, by zero or more positions, in order to obtain a maximum
repeat [k . . j−1], with 1 ≤ k ≤ i. Symmetrically, there is `, j ≤ ` ≤ n, such that
[i + 1 . . `] is a maximum repeat of w; see Fig. 3.

Notice that the above reasoning works even when the interval [i . . j] is at the
beginning or at the end of w. Indeed, if i = 1, then [i . . j − 1] is a maximum
repeat and hence k = i. The case when j = n is symmetric.

w � �� �i+1 j−1k `i j

Fig. 3. The minimum unique substring [i . . j] implies the existence of the maximum
repeats [k . . j − 1] and [i + 1 . . `].

For the example in Fig. 2, w = abaababa, consider the minimum unique
substring [5 . . 7]. We have that [4 . . 6] is a maximum repeat, that is, k = 4. Also,
[6 . . 8] is a maximum repeat, which makes ` = 8 in this case.

Conversely, assume a maximum repeat [i . . j] of w. Then the substring w[i . . j]
occurs again in w whereas w[i − 1 . . j] does not. Therefore, it will include a
minimum unique substring [i− 1 . . `], with ` ≤ j. Symmetrically, there exists a
minimum unique substring [k . . j + 1], for some k ≥ i; see Fig. 4.

In this case, as opposed to the previous one, if the maximum repeat occurs at
the beginning or at the end of the string, then one of the two minimum unique
substrings is missing. For instance, if i = 1, then the minimum unique substring
[i− 1 . . `] does not exist in this case.

In Fig. 2, for the maximum repeat [4 . . 6] we have the minimum unique strings
[3 . . 4] and [5 . . 7], which makes k = 5 and ` = 4.

We summarize the above findings in Proposition 2.
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w � �i−1 j+1`ki j

Fig. 4. The maximum repeat [i . . j] implies the existence of the minimum unique sub-
strings [i− 1 . . `] and [k . . j + 1].

Proposition 2. For any string of length n which does not contain singletons
we have:

(i) For any minimum unique substring [i . . j], 1 ≤ i < j ≤ n, there exist k and
` with k ≤ j − 1, ` ≥ i + 1 such that [k . . j − 1] and [i + 1 . . `] are maximum
repeats.

(ii) For any maximum repeat [i . . j], 1 ≤ i < j ≤ n, we have:

(ii.1) If i ≥ 2, then there exists ` ≤ j such that [i−1 . . `] is a minimum unique
substring.

(ii.2) If j ≤ n− 1, then there exists k ≥ i such that [k . . j + 1] is a minimum
unique substring.

The relation between minimum unique substrings and maximum repeats is
even stronger than the statement of Proposition 2. To start with, it is clear
that maximum repeats cannot be included in each other. Therefore, sorting the
maximum repeats by their starting positions gives the same ordering as sorting
by the ending position. The same property holds for minimum unique substrings.
For an example, see Fig. 5.

b a a b a a b b b b a a
1 2 3 4 5 6 7 8 9 10 11 12� �� �� �� �� �

Fig. 5. The maximum repeats (half ovals: [1 . . 4], [4 . . 7], [7 . . 9], [8 . . 10], [10 . . 12]) and
minimum unique substrings (half rectangles: [3 . . 5], [6 . . 8], [7 . . 10], [9 . . 11]) of the
string baabaabbbbaa.

We have seen that the existence of an object of one type implies the existence
of two objects of the other type. (With the exception of maximum repeats at the
beginning or end of the string.) The next propositions show that the intervals
of the two types are interleaved.

Proposition 3. For any string of length n which does not contain singletons,
an interval [i . . j] is a minimum unique substring if and only if there exist k and
` with 1 ≤ k ≤ i, j ≤ ` ≤ n, such that

(i) [k . . j − 1] and [i + 1 . . `] are maximum repeats and
(ii) there is no maximum repeat [k′ . . `′] with k < k′ ≤ i or j ≤ `′ < `.
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Proof. Assume [i . . j] is a minimum unique substring. The existence of k and `
with the property (i) follows from Proposition 2. Assume there exists a maximum
repeat [k′ . . `′] with k < k′ ≤ i. As it cannot be included in another maximum
repeat, such as [k . . j − 1], it must be that `′ ≥ j. But then it includes [i . . j]
contradicting its uniqueness. The existence of a maximum repeat [k′ . . `′] with
j ≤ `′ < ` causes a similar contradiction.

Conversely, assume (i)-(ii). If [i . . j] is not unique, then it can be extended to
a maximum repeat [k′ . . `′], with k < k′ ≤ i and j ≤ `′ < `, contradicting (ii).
Thus [i . . j] is unique. It is also minimum as both [i . . j − 1] and [i + 1 . . j] are
repeats. ut

A dual results is stated as Proposition 4 and has a similar proof. The only
difference comes from the fact, discussed above, that a maximum repeat at the
end of the string implies the existence of only one unique substring.

Proposition 4. For any string of length n which does not contain singletons,
an interval [i . . j] is a maximum repeat if and only if there exist k ≥ i (assuming
i ≥ 2) and ` ≤ j (assuming j ≤ n− 1) such that

(i) [k . . j + 1] and [i− 1 . . `] are minimum unique substrings and
(ii) there is no minimum unique substring [k′ . . `′] with i ≤ k′ < k or ` < `′ ≤ j.

Proposition 3 proves that every minimum unique substring starts in-between
two consecutive left ends of maximum repeats and ends between their right
ends. Proposition 4 proves that the converse is also true, with the exception
of the first and last maximum repeats. Therefore, the sorted lists of maximum
repeats and minimum unique substrings are interleaved, with maximum repeats
both starting and ending the sequence. Theorem 1 gives a precise picture of the
dual relation (for an example see Fig. 5).

Theorem 1. For any string of length n which does not contain singletons, if
the maximum repeats, sorted increasingly by their left ends (or right ends, the
same thing) are [i` . . j`], 1 ≤ ` ≤ k + 1, then the minimum unique substrings
(also sorted increasingly, by either end) are [i`+1 − 1 . . j` + 1], 1 ≤ ` ≤ k.

Several remarks are in order. First, it is clear from the statement of Theo-
rem 1 that we can also obtain the maximum repeats from the minimum unique
intervals. Second, singletons represent trivial minimum unique substrings and
no maximum repeat can span a singleton. Therefore, singletons divide the string
into substrings not containing any singletons and so all our results extend imme-
diately to the general that includes singletons. Third, the number of maximum
repeats is always one larger than the number of minimum unique substrings.

5 Algorithms

We focus in this section on algorithms to compute minimum unique substrings. It
should be noted that a direct consequence of Theorem 1 is that any algorithm for
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MinUniqueFromMaxRepeat(w,maximum repeats)

1. sort maximum repeats in ascending order: [i1 . . j1], . . . , [ik+1 . . jk+1]
2. for ` from 1 to k do
3. output [i`+1 − 1 . . j` + 1]
4. return

Fig. 6. Finding all minimum unique substrings using the maximum repeats.

MaxRepeatFromMinUnique(w,minimum unique substrings)

1. sort minimum unique substrings in ascending order: [i1 . . j1], . . . , [ik . . jk]
2. output [1 . . j1 − 1]
3. for ` from 1 to k − 1 do
4. output [i` + 1 . . j`+1 − 1]
5. output [ik + 1 . . n]
6. return

Fig. 7. Finding all maximum repeats using the minimum unique substrings.

computing minimum unique substrings is easily transformed into an algorithm
for computing maximum repeats and vice versa; the corresponding procedures
are shown in Figs. 6 and 7.

We give next several algorithms to compute both maximum repeats and
minimum unique substrings directly. The first two are, in some sense, straight-
forward. They make use of the inverse suffix array, ISA, defined by ISA[j] = i iff
SA[i] = j. The inverse suffix array helps in finding the position of a given suffix
in the suffix array in constant time. We shall denote the arrays corresponding
to the reverse string, wr, by SAr, ISAr, and LCPr. These algorithms use two
indexes, for both w and wr. In order to simplify the code, we shall assume that
LCP[1] = LCP[n + 1] = 0.

The algorithm TwoIndex-MaxRepeat in Fig. 8 starts by computing five
arrays, which can be done in linear time and space as previously mentioned.
Then, at the end of step 5, w[i . . j] is the longest prefix of suf[i] that is a repeat;
it has length lcp. To see whether [i . . j] is a maximum repeat, the corresponding
check in wr is performed; ISAr is needed to find the place where the corresponding
suffix of wr is in SAr. The length of its longest prefix that is a repeat is lcpr. If
they are the same (step 7), then [i . . j] is a maximum repeat.

The algorithm TwoIndex-MinUnique in Fig. 9 is similar. After detecting
that [i . . j] is a maximum repeat in step 7, it finds the minimum unique substring
ending at j + 1 by computing its length in the reverse index.

The above algorithms are straightforward as they use the two indexes to
compute the correct length of the strings searched for. However, the computation
of the data structures involved is by far the most time consuming step. It is a
great disadvantage that so many arrays are needed. We give next two algorithms
which not only require a single index but also are very simple.

The MaxRepeat algorithm, shown in Fig. 10, uses the property that any
maximum repeat [i . . j] is the longest among all repeated prefixes ending at j of
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TwoIndex-MaxRepeat(w)

1. compute SA, LCP, SAr, ISAr, LCPr

2. for k from 1 to n do
3. lcp = max(LCP[k], LCP[k + 1])
4. if (lcp > 0) then
5. i← SA[k]; j ← i + lcp− 1; jr ← n− j + 1
6. lcpr ← max(LCPr[ISAr[jr]], LCPr[ISAr[jr] + 1])
7. if (lcp = lcpr) then
8. output [i . . j]
9. return

Fig. 8. Finding all maximum repeats by indexing both w and wr.

TwoIndex-MinUnique(w)

1. compute SA, LCP, SAr, ISAr, LCPr

2. for k from 1 to n do
3. lcp = max(LCP[k], LCP[k + 1])
4. if (lcp > 0) then
5. i← SA[k]; j ← i + lcp− 1; jr ← n− j + 1
6. lcpr ← max(LCPr[ISAr[jr]], LCPr[ISAr[jr] + 1])
7. if (lcp = lcpr) and (j < n) then
8. `← max(LCPr[ISAr[jr − 1]], LCPr[ISAr[jr − 1] + 1])
9. output [j − ` + 2 . . j + 1]

10. return

Fig. 9. Finding all minimum unique substrings by indexing both w and wr.
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all suffixes of w. The maximum repeat [i . . j] will be stored in the end by setting
maxRep[j] = i. Therefore, we initialize the maxRep array with values larger
than any valid ones in step 3. In step 5 we compute the longest repeated prefix
of each suffix and update maxRep in step 6 if a longer one is found. We remark
that this algorithm is conceptually much simpler than the two algorithms PSY2
proposed for SNE repeats in [22], and that moreover, unlike the PSY2 algorithms,
its execution time has no explicit dependence on alphabet size.

MaxRepeat(w)

1. compute SA, LCP
2. for i from 1 to n do
3. maxRep[i]← n + 1
4. for i from 1 to n do
5. lcp← max(LCP[i], LCP[i + 1])
6. maxRep[SA[i] + lcp− 1]← min(maxRep[SA[i] + lcp− 1], SA[i])
7. return maxRep

Fig. 10. A simple algorithm for finding all maximum repeats.

The MinUnique algorithm, shown in Fig. 11, is based on a similar obser-
vation: Any minimum unique substring [i . . j] is the shortest among all unique
prefixes ending at j of all suffixes of w. The minimum unique substring [i . . j]
will be stored in the end by setting minUnique[j] = i. Therefore, we initialize
the minUnique array with values smaller than any valid ones in step 3. In step 5
we compute the longest repeated prefix of each suffix. The shortest unique prefix
is one position larger, except when the longest repeated prefix reaches the end
of w. (To avoid checking this at every step, we allow minUnique to have n + 1
components; its last one will be ignored.) We update minUnique in step 6 if a
shorter one is found.

Since the initialization in steps 2-3 is often done automatically when the
array is created, the code of MinUnique has, aside from computing the index,
only three lines.

MinUnique(w)

1. compute SA, LCP
2. for i from 1 to n do
3. minUnique[i]← 0
4. for i from 1 to n do
5. lcp← max(LCP[i], LCP[i + 1])
6. minUnique[SA[i] + lcp]← max(minUnique[SA[i] + lcp], SA[i])
7. return minUnique

Fig. 11. A simple algorithm for finding all minimum unique substrings.
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Alternatively, we could store the minimum unique substring by their left
end, that is, [i . . j] is stored by setting minUnique2[i] = j. This is done in the
MinUnique-LeftEnd algorithm, shown in Fig. 12. We compute the shortest
unique substrings with a given left end (steps 2-3) and then identify and retain
the minimum ones (steps 4-8). We assume minUnique2[n + 1] = 1.

MinUnique-LeftEnd(w)

1. compute SA, LCP
2. for i from 1 to n do
3. minUnique2[SA[i]]← 1 + max(LCP[i], LCP[i + 1])
4. i← 1
5. while (i ≤ n) and (i + minUnique2[i] ≤ n + 1) do
6. while (minUnique2[i] > minUnique2[i + 1]) do
7. minUnique2[i]← 0
8. i← i + 1
9. return minUnique2

Fig. 12. Finding minimum unique substrings by their left end.

A similar idea works also for computing maximum repeats.
Clearly, all the above algorithms, for computing minimum unique substrings

or maximum repeats, run in linear time, independent of the size of the alphabet.

Theorem 2. Minimum unique substrings can be computed in linear time, inde-
pendent of the size of the input alphabet.

6 De Bruijn strings

Strings having the highest possible number of minimum unique substrings are
expected to have a high complexity and we investigate them in this section.
In view of Theorem 1, this is the same as considering strings with the highest
number of maximum repeats. The notion of the highest number of substrings
brings immediately in mind the de Bruijn strings [6] but a bit of work is required
to establish the precise connection.

Considering an alphabet of k letters and a substring length `, de Bruijn
strings have as substrings all possible distinct strings of length ` and have min-
imum possible length for this property, that is, k` + ` − 1. Two examples are
shown in Figs. 13 and 14, for k = 2, ` = 4 and k = 3, ` = 2, respectively. Their
maximum repeats and minimum unique substrings are also shown.

We show that de Bruijn strings, and only those, satisfy our properties.

Theorem 3. A string of length k` + ` − 1 over an alphabet of size k has a
maximum number of minimum unique substrings (or, equivalently, maximum
repeats) if and only if it is a de Bruijn string. In such a case, its number of
minimum unique substrings is k`.
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a a a a b a a b b a b a b b b b a a a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

Fig. 13. The maximum repeats and minimum unique substrings of the binary de Bruijn
string aaaabaabbababbbbaaa.

a a b a c b b c c a
1 2 3 4 5 6 7 8 9 10� �� �� �� �� �� �� �� �� �� �

Fig. 14. The maximum repeats and minimum unique substrings of the ternary de
Bruijn string aabacbbcca.

Proof. A de Bruijn string has k` minimum unique substrings by definition. As-
sume there is a k-letter string w of the same length that has more than k`. The
fact that minimum substrings cannot be substrings of each other implies two
things. First, w must have some minimum unique substrings of length higher
than `; denote the maximum such length by `′ > `. Second, w cannot have more
than |w|−`′ +1 minimum unique substrings. Since |w|−`′ +1 = k` +`−`′ < k`,
a contradiction is obtained. ut

7 Conclusions and future research

We have clarified the relation between minimum unique substrings and maximum
repeats and our algorithms for finding both types are very simple, making their
computation almost a byproduct of the suffix array construction. It remains an
open problem to find algorithms that do not employ text indexes.

Minimum unique substrings are used by [10] to design DNA oligonucleotides.
Precisely, a heuristic algorithm is given to predict the location of oligonucleotides,
based on counting right ends of minimum unique prefixes. Rigorously, what is
needed is finding approximate unique substrings, that is, substrings which are
far from all the other ones with respect to a given distance. Considering the
Hamming distance, d, and a fixed k ≥ 0, a substring x of w is called k-unique
if d(x, y) > k, for any substring y 6= x of w. A superstring of a k-unique string
is also k-unique. Therefore, minimum k-unique substrings are well defined. The
(exact) case we investigated corresponds to k = 0. Finding practical algorithms
(that is, which can handle large genomic sequences) for computing minimum
k-unique substrings is an interesting research direction.
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