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ABSTRACT 

As i n  t h e  case f o r  t he  r a t e  o f  descent o f  an a i r c r a f t ,  f r e q u e n t l y  the  

d e r i v a t i v e  o f  a  s t a t e  cannot be observed w i t h  s u f f i c i e n t  accuracy.  The 

s t a t e  i t s e l f  can however; bu t ,  as w i t h  t he  radar  a l t i m e t e r ,  t h e  s i g n a l  

i s  t o o  n o i s y  f o r  d i f f e r e n t i a t i o n .  

The approach presented i n  t h i s  paper, uses t he  form o f  t h e  Kalman 

f i l t e r  as an observer  f o r  t he  d e r i v a t i v e s  o f  t h e  observed s i g n a l s  o r  s t a t e s .  

The g a i n  m a t r i x  f o r  t he  f i l t e r  i s  d e r i v e d  t o  m in im ize  t h e  va r i ance  o f  t h e  

es t ima te  o f  t he  d e r i c a t i v e  o f  t he  s t a t e ,  i n s tead  o f  t he  s t a t e  i t s e l f .  The 

de r i ved  g a i n  m a t r i x  and t h e  covar iance  o f  t h e  ( d e r i v a t i v e )  e s t i m a t i o n  

e r r o r  a r e  r e l a t e d  t o  those o f  t he  Kalman f i l t e r  th rough  t he  system's  
CT 

dynam i cs . 
I 

A q u a n t i t a t i v e  e v a l u a t i o n  o f  t h i s  method's improvement over  t a k i n g  t h e  

d e r i v a t i v e  o f  t he  otimum f i l t e r  o f  t h e  s t a t e  and/or augmenting the  s t a t e  

vec to r ,  i s  i nc luded .  The improvement over  t he  former i s   show^ t o  inc rease  

1 i n e a r l y  w i t h  t h e  covz r iance  o f  t he  s t a t e ' s  e s t i m a t i o n  e r r o r  (i .e., t h e  

advantage o f  t h i s  approach i s  g r e a t e r ,  t h e  worse t h e  s i g n a l  e s t i m a t i o n ) .  

For t h e  unusual case o f  i n f i n i t e  obse rva t i on  t ime,  t h i s  e r r o r  and t h e  

improvement d isappear  as would be expected f rom Z a k a i ' s  r e l a t i o n  f o r  Wiener 

f i l t e r s .  Over augmenting t he  s t a t e  vec to r ,  t h e  improvement uses t he  lower 

o rde r ,  observab le  s t a t e s  more d i r e c t l y  through t h e  systems dynamics. 

S imu la t i on  o f  t he  a i r c r a f t ' s  dynamics, used r e a l - t i m e  w i t h  t h e  d i g i t a l  

f i l t e r ,  co r robo ra ted  t he  t h e o r e t i c a l  advantages presented.  



INTRODUCTION 

As i n  t h e  case f o r  t h e  r a t e  o f  descent o f  an a i r c r a f t ,  f r e q u e n t l y  t h e  

d e r i v a t i v e s  o f  a s t a t e  cannot be observed w i t h  s u f f i c i e n t  accuracy.  The 

s t a t e  i t s e l f  can however, bu t  as w i t h  t he  radar  a l t i m e t e r ,  t h e  s i g n a l  i s  

t o o  n o i s y  f o r  d i f f e r e n t i a t i o n .  

Three approaches have been cons idered t o  t h e  e s t i m a t i o n  o f  s t a t e  

d e r i v a t i v e s  (observed s t a t e ,  unobserved d e r i v a t i v e s )  . They a re :  

1. a. Tak ing t h e  "optimum d e r i v a t i v e 1 '  o f  t h e  minimum va r i ance  
es t ima te  o f  t he  s t a t e .  

b. Tak ing t h e  minimum va r i ance  es t ima te  o f  t h e  "optimum 
d e r i v a t i v e "  o f  t h e  s t a t e .  

2. Using Phase-Locked Loops; they o f f e r  no i se  advantages over  t h e  
optimum low pass f i l t e r  f o r  c e r t a i n  no i se  spec t ra .  Th i s  i s  
d iscussed below. 

3. Us ing t h e  Kalman f i l t e r  as an observer  f o r  t h e  d e r i v a t i v e  o f  
t h e  observed s t a t e .  

A s t r a i g h t f o r w a r d  comparison o f  t h e  e r r o r  covar iances f o r  approaches 

1 
( l a )  and ( l b )  show them t o  be equal .  T h e i r  covar iances a r e  used f o r  

comparison w i t h  approach ( 3 ) .  Regarding the  Phase-Locked Loop approach, 

n 
i t  i s  s u p e r i o r  t o  a low-pass f i l t e r  o n l y  f o r  cases o f  one over  f t ype  

no i se .  2,3 A l though  a t  t h i s  w r i t i n g ,  da ta  ( w i t h  no i se )  f o r  a c t u a l  l and ings  

(made a t  Ames Research Center,  M o f f e t t  F i e l d ,  Cat i f o r n i a )  have n o t -  been 

reduced, i t  i s  f e l t  c e r t a i n  t h a t  t h e  n o i s e  i s  near w h i t e  i n  t h e  f requency 

range o f  t h e  system. Thus, approach (2)  was r e j e c t e d  f o r  (3 ) .  

THE KALMAN OBSERVER ESTIMATOR 

The minimum var iance ,  g a i n  m a t r i x  i s  developed us i ng  t he  Kalman filter 

as an observer  f o r  t h e  d e r i v a t i v e  o f  t he  s t a t e .  Th i s  observer  i s  d i f f e r e n t  

4 
f rom those o f  Ka lman and ~ u e n b e r ~ e r '  i n  t h a t  t h e  measurement-noi se - f  ree  

case i s  n o t  r equ i r ed .  



The observable 7 is related to the states by 

- - 
y(t> = ~ ( t )  x(t) + T(t), 

where q(t) is observation noise, 

and the system equation (the dynamics) is 

where u(t) is the control. 

All of the variables may be time varying; however, the time auguments will 

be left off in subsequent equations. 

The Kalman, state estimation equation for such a system is 6 

1 On replacing K by H + ~n the gain matrix H can be determined which minimizes 

the covariance of the error, defined by 

Note in the Kalrnan equation H, which replaces K, is derived, so as to minimize 

the covariance of the unobserved derivative error rather than that of the 

state (completely observable in the proposed system). Thus the estimate o f  

the derivative is defined 



where w and are defined by comparing the last two equations. 

The expression for H has been determined three ways. The first 

I 
was by using Calculus of Variation, the second, by taking the derivative of 

1 
the covariance of ;with respect to the matrix H . The third and simplest 

is presented below. It has the added advantage of giving the expression 

for the minimum error covariance (minimum trace). 

Using the expressions above and the apostrophe to indicate a transpose, 

the covariance of the error is 

where ~ ( w )  is the ensemble average operation. Since real stationary ergodic 

processes are considered, the covariance Q = E(W w'), for w zero mean. 
W 

Analogous to "completing the square" for H, a matrix indentityS7 on 

Since all terms are nonnegative-definite matrices, the minimum covariance is 

- 1 C O V ( ~  = Q - @ @ Q 
min wv v vw 

for the optimum gain matrix, 

In the appendix, the following expressions are developed: 

@VW 
= C R A '  @v = C R C '  + Q 



d e f i n i n g  = ( - , the  s t a t e  e s t i m a t i o n  e r r o r  f o r  t he  Kalman f i l t e r ,  and 

- - - 
R = E(; g ' ) ,  Q = E ( ~  c q ' ) ,  t he  covar iances o f  t h e  s t a t e  e s t i m a t i o n  e r r o r  and 

obse rva t i on  no ise ,  r e s p e c t i v e l y .  

T h e i r  use g ives ,  

and 

Since t h e  d e r i v a t i v e s  o f  t he  system's s t a t e s  a r e  r e l a t e d  t o  i t s  s t a t e s  
8 

by A, t h e  c o e f f i c i e n t  m a t r i x  o f  t he  system's  dynamics, t he  minimum e r r o r  

covar iance  f o r  t h e  es t ima te  o f  t h e  d e r i v a t i v e s  cou ld  be no l ess  than t h e  

minimum e r r o r  covar iance  o f  t h e  s ta tes ,  p r e  and pos t  m u l t i p l i e d  by A. 
8 

Equat ion (2) i s  recognized t o  be j u s t  t h a t  minimum va lue  ( i . e . ,  t h e  e r r o r  

covar iance  f o r  t he  optimum ( ~ a l m a n )  e s t i m a t e  o f  t h e  s t a t e  so m u l t i p l  i e d  

by A ) .  As 20-20 h i n d s i g h t  would suggest Equat ion ( 3 )  i s  j u s t  AK where K i s  

the  optimum f i l t e r  f o r  s t a t e  e s t i m a t i o n .  9 

COMPARISON OF ERROR COVARIANCES 

The Kalman-observer e s t i m a t o r  (KOE) , developed f o r  minimum va r i ance  

e s t i m a t e  o f  s t a t e  d e r i v a t i v e s ,  w i  11 now be compared w i t h  t he  r e s u l t s  o f  (11,  

t a k i n g  t h e  d e r i v a t i v e  o f  t h e  optimum es t ima te  o f  t h e  s t a t e s  (DFC f o r  d e r i v a t i v e -  

f i l t e r  combinat ion)  and (2 ) ,  augmenting t he  s t a t e  v e c t o r  t o  i nc l ude  i t s  

d e r i v a t i v e s  (ASF) . 

Since t he  Kalman f i l t e r  i s  l i n e a r ,  t h e  d e r i v a t i v e  o f  the  ou tpu t  must 

equal  t h e  i n p u t  t o  i t s  i n t e r g r a t o r ,  o r  j u s t  Equat ion ( I ) .  I t  i s  noted t h a t  

i t  has t he  same form as Equat ion ( I  I )  f o r  . the KOE w i t h  K r e p l a c i n g  H. thus  



t he  e r r o r  covar iance  i s  t h e  same as Equat ion (1)  w i t h  H rep laced  by K, 
J. 

S u b s t i t u t i n g  f o r  K ( the  terms a f t e r  A  i n  Equat ion ( 3 ) )  and t h e  @IS. ' '  

Comparison o f  t h i s  equa t i on  w i t h  (2) shows i t  g r e a t e r  than (2)  by t he  terms 

on t h e  second l i n e .  A f t e r  man ipu la t i on  u s i n g  t he  i d e n t i t i e s  f o r  t ransposes 

and inverses  o f  p roduc ts .  

I f  measurements were near p e r f e c t  (Q = 0)  

T h i s  express ion  shows the  advantage o f  t h e  KOE increases w i t h  g r e a t e r  

e s t i m a t i o n  e r r o r  covar iance ,  R .  

SIMULATION 

The f i l t e r ,  o p e r a t i n g  on a  t y p i c a l  a i r c r a f t  d u r i n g  f l i g h t ,  was modeled 

us ing  CSMP/360 supplemented w i t h  severa l  user  subprograms. Four a i r c r a f t  

s t a t e s  were cons idered,  t h a t  o f  t h e  p i t c h  ang le ,  t h e  a l t i t u d e ,  and t h e  f i r s t  

d e r i v a t i v e  o f  each. Both DFC and t h e  KOE f i l t e r s  were c o n c u r r e n t l y  employed, 

and e r r o r  a n a l y s i s  performed us i ng  t he  r e s u l t i n g  data.  The s i m u l a t i o n  may be 

grouped i n t o  two major  d i v i s i o n s ,  t h a t  o f  system dynamics and t h a t  o f  t h e  

o p e r a t i o n  and upda t i ng  o f  each f i l t e r .  

*As seen i n  the  appendix,  t he  @ I s  a r e  independent o f  t he  form o f  W ,  
t hus  t h e i r  express ions  a r e  i n v a r i a n t  on changing H t o  K. 



Before "flying" the system, the discrete state transition matrix was 

calculated for use in the updating of the filters. A time increment of 

0.05 seconds was used.  Q ow ever, the time increment parameter could be 

varied at will.) Also at this point the Kalman filter and the derivative 

filter were developed for the initial time state. 

During "flight," the dynamics of the system were modelled and disturbed 

by various forms of Gaussian noise. The pitch angle and the altitude of 

the aircraft were observed, and to these observations proper Gaussian noise 

was added. The noise produces observation errors commensurate with the 

9; 
real instrument. The corrupted system was filtered with both filters. Every 

0.05 seconds of the flight both filters and their respective covariances were 

updated . 

Pertinent simulation information is included in the following: 

1. The state transition matrix was produced using the first 
seven terms of an exponential power series expansion. 

2. Gaussian noise was produced using a pseudorandom, 
congruential noise generator, from which noise of uniform 
density was obtained. This noise was then sampled twelve 
times and averaged to produce normal noise. (central L i m i t  
Theorem) 

3. The integral equations involved in the simulation, both 
in the system dynamics and the filter calculations, were 
solved using a fourth order Runge-Kutta integration technique. 
A variable step version was employed. 

4. As stated earlier Equation (3)  for H is just AK. On using it, 

'KOEIDFC becomes A 
KOE/DFC 

= (RC' - ARC') CK - H)' 

The computer flowcharts are appended (pages A-4, A-5, and A-6). 

t 
The radar altimeter and pitch gyro, used on the test flight at Anies 
Research Center have variances of 25 and 5 x respectively. 



CONCLUSIONS 

For continuous systems (such as aircraft in fl ight, possibly observed 

at discrete t imes) the diagonal terms of A, corresponding to the augmented 

states (as to include their derivatives) are zero.', Thus the KOE has the 

special advantage of using the system's dynamics associated with the lower 

order states. 

For discrete cases, the diagonal terms of A are unity for unobserved 

 state^,^ showing. that when there is no knowledge of the system's dynamics 

(as in the stock market for most people), the rate of change can be 

estimated only by pass errors as i n  ASF. 

The above analysis has been based-on the covariance of the estimation 

and measurement errors. Since they are not affected by the input control, its 

consideration has been obviated. 

In the section on "Comparision of Error Covariances," the advantage o f  the 

KOE over the DFC, is strongly dependent on the A matrix. Equation 1 1 ,  the 

derivative estimate by definition, is recognized as Kalman's optimal estimate 

9 of the state multiplied by A. The dependence is on the form of A rather than 

its accuracy, for inaccuracies can be corrected by observation. The form 

is controlled by the type of the dynamic process. In the simulation above, the 

A matrix has all zeros in the fourth column. This condition shows that the 

associated state (altitude) is not in a Markov process of any order]' as the 

model is structured. For this reason, the covariance of the rate of change 

of altitude, is not affected by the observered data from any state; t h u s ,  the 

advantage of the KOE is minimal. The simulation showed it is less than one 

percent. This could have been due to such as round-off errors; however, the 

advantage was always positive for the entire run (20 sec.). 



The A matrix shows that the pitch angle, while not in a simple ( f i r s t  

order) Markov process, is in one of multiple order. l o  The results of the 

simulation give improvements of the KOE as expected. The advantage i n i t i a ' l l y  

exceeds one hundred percent but decreases rapidly (e.g., fourteen percent i n  

.25 sec.) as expected by its dependences on R, the .covariance of the state 

estimation error. Recall, both filters cause R to decrease. It is felt that 

the KOE's faster response from zero time, is of paramount importances in 

systems such as aircraft. 

In continued work, an aircraft model will be structured so that t h e  
4 

altitude will be in a multiple order Markov process. This will be approached 

in using the altitude and its first three derivatives as a four state vector. 

Concurrent with this work optimum mixicg of information from other sources 

as rate sensitive gyros will be pursued. 

As noted above, both filters cause R to decrease. In steady-state as on 

occassions of no perturbations, R could be small compared to Q, the covariance 

of the measurement error. On neglecting R relative to Q, the advantage of 

KOE would be 

where Q to the minus T is used to indicate the inverse of Q transpose, This 

expression shows how the improvement increases with smaller Q (i.e., better 

measuring instruments). 



REFERENCES 

1. M a r t i n ,  J .  C . ,  "Semi-Annual S ta tus  Report  (November 1, 1969 t o  Elay I ,  19701, 
NASA Grant NGR-41-001-024. 

2. Rowbotham, John R.  and Sanneman, R ichard  W., "Random C h a r a c t e r i s t i c s  of t h e  
Type I1 Phase-Locked Loop," IEEE Trans. on Aerospace and E l e c t r o n i c  
Systems, Vol . AES-3, pp. 604-612, J u l y  1967. 

3. TEK TALK, Vo l .  6, No. 1, American Dynamics Corp., Cambridge, Massachusetts.  

4. Kalman, R. E. ,  "On t h e  General Theory o f  Con t ro l  Systems," Proceeding 1s t  
l FAC Congress, Moscow, pp. 481 -492, 1960. 

5. Luenberger, D. G . ,  "Observers f o r  M u l t i v a r i a b l e  Systems," IEEE Trans. on 
Automat ic .Cont ro4,  Vo l .  AC-11, No. 2, pp. 190-197, A p r i l  1966. 

6. M a r t i n ,  J .  C . ,  "A Simple Development o f  t h e  Wiener-Hopf Equat ion and t he  
Der ived Kalman F i l t e r , ' '  I E E E  Trans. on Aerospace and E l e c t r o n i c  Systems, 
Vol . AES-5, pp. 980-984. 

7 .  L i e b e l t ,  P. B . ,  "An l n t r o d u c t i o n  t g o p t i m a l  Est imat ion, "  Addison-Wesley 
P u b l i s h i n g  Co., Inc . ,  Reading, Massachusetts,  1967. 

8. G r a y b i l l ,  F. A . ,  An l n t r o d u c t i o n  t o  L i nea r  S t a t i s t i c a l  Models, Vol .  1 ,  
McGraw-Hil l  Book Co., New York, 1961. 

9. Schmidt, S tan ley  F., " A p p l i c a t i o n  o f  State-Space Methods t o  Nav iga t i on  
Problems," i n  Advances i n  Con t ro l  Systems, Vol .  3, 1966, Academic Press  
Inc . ,  New York, New York. 

10. Pugachev, V. W. Theory o f  Random Func t ions ,  Pergamon Press, 
London, 1965. 



Appendix 

Reduction of Covariance Matr ices  

Reca l l :  System equa t ions  

- x = A Z ( t )  + B a t )  
- 
y = C Z(t) -t- 5( t )  

Hencefore t h e  .t w i l l  be dropped, 
.4 

Der iva t ive  e s t i m a t e  

Er ro r  v e c t o r s ,  

On u s i n g  t h e  system equa t ions  and t h e  e r r o r  v e c t o r s ,  

and 



Again by t h e  sys tem's  (observat ion e q u a t i o n ) ,  

where f ronl above R = 4; = E ( a d  I3 ( )  = Q, and the no i se  

i s  considered uncor re la t ed  with e i t h e r  t h e  s t a t e  o r  i t s  estimate, 

where on us ing  t h e  system e q u a t i o d  

and t h e  d e r i v a t i v e  e s t ima te  

= (A  - HC) ; - ~q 

Thus 

= (A  - HC) R ( A  - HC)' C HQH' 

t: 

*The c o n t r o l  BS i s  neglec ted  f o r  i t  does not  a f f e c t  x ,  



Now 

= CRA' - CRC'II' - (211' 

Thus recogniz ing  ,$I;? as  t h e  t ranspose  of 4 ,  s u b s t i t u t i n ~  from 

above and on u s i n g  (A-1) , (A-2) becomzs 

+w = (A-HC) R (A-WC) ' 3. EIQI1' f HCRA' 

A£ t e r  m u l t i p l y i n g  o u t  and c a n c e l l i n g ,  

+ w 
= ARB' 

L a s t l y ,  I 

+W = E ( :  + nG)FO 

On s u b s t i t u t i n g  from (A-1) and u s i n g  t h e  t ranspose  of (A-3) 

(WV 
= ARC' - HCRC' - EIQ 9 HCRC' C HQ 

= ARC' 



FLOWCHART DATA 

1. S t a t e  v a r i a b l e s  

x 1  = ( e ,  e, (I, h) ; w h e r e e  : p i t c h w a n g l e  
h : a l t i t u d e  

2. A m a t r i x  

8 

3. C m a t r i x  

4. R m a t r i x  (a t  t = 0.0 sec.)  

5. Q m a t r i x  

""I 0.0 

25.01 - 



FLOWCHART # 1 System simulation' 

-filter equations 

filter update- 



FLOWCHART # 2 Filter U p d a t e  


