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ABSTRACT

As in the case for the rate of descent of an aircraft, frequently the
derivative of a state cannot be observed with sufficient accuracy. The
state itself can however; but, as with the radar altimeter, the signal
is too noisy for differentiation.

The approach presented in this paper, uses the form of the Kalman
filter as an observer for the derivatives of the observed signals or states.
The gain matrix for the filter is derived to minimize the variance of the
estimate of the derivative of the state, instead of the state itself. The
derived gain matrix and the covariance of the (derivative) esfimation
error are related to those of the Kalman filter through the system's

L

dynamics.

A quantitative evaluation of this method's improvement over taking the
derivative of the ofimum filter of the state and/or augmenting the state
vector, is included. The improvement over the former is shown to increase
linearly with the coveriance of the state's estimation error (i.e., the
advantage of this approach is greater, the worse the signal estimation).
For the unusual case of infinite observation time, this error and the
improvement diéappear as would be expected from Zakai's relation for Wiener
filters. Over augmenting the state vector, the improvement uses the lower
order, observable states more directly through the systems dynamics.

Simulation of the aircraft's dynamics, used real-time with the digital

filter, corroborated the theoretical advantages presented.



INTRODUCTION

As in the case for the rate of descent of an aircraft, frequently the
derivatives of a state cannot be observed with sufficient accuracy. The
state itself can however, but as with the radar altimeter, the signal is
too noisy for differentiation.

Three approaches have been considered to the estimation of state
derivatives (observed state, unobserved derivatives). They are:

1. a. Taking the 'optimum derivative' of the minimum variance
estimate of the state.

b. Taking £he minimum variance estimate of the "optimum
derivative' of the state.

2. Using Phase-lLocked Loops; they offer noise advantages over the
optimum low pass filter for certain noise spectra. This is
discussed below.

o

3. Using the Kalman filter as an observer for the derivative of
the observed state.

A straightforwérd comparison of the error covariances for approaches
(1a) and (1b) show them to be equa].] Their covariances are used for
comparison with approach (3). Regarding the Phase-Locked Loop approach,
it is superior to a low-pass filter only for cases of one over £ type

2,3 Although at this writing, data (with noise) for actual landings

i

(made at Ames Research Center, Moffett Field, California) have not been

noise.

reduced, it is felt certain that the noise is near white in the frequency

range of the system. Thus, approach (2) was rejected for (3).
THE KALMAN OBSERVER ESTIMATOR

The minimum variance, gain matrix is developed using the Kalman filter

as an observer for the derivative of the state. This observer is different

5

from those of Kalmanq and Luenberger” in that the measurement-noise-free

case is not required.



The observable y is related to the states by

v(t) = c(t) X(t) + 3(t),

where q(t) is observation noise,
and the system equation (the dynamics) is

;.(—(t) = A(t) x(t) + B(t) u(t)

where u(t) is the control.

A1l of the variables may be time varying; however, the time auguments will
be left off in subsequent equations.

The Kalman, state estimation equation for such a system is

= A x4+ Ky - Xl (1)

X e

On replacing K by H + en the gain matrix H can be determined1 which minimizes

the covariance of the error, defined by

%8

e = X -

Note in the Kalman equation H, which replaces K, is derived, so as to minimize
the covariance of the unobserved derivative error rather than that of the
state (completely observable in the proposed system). Thus the estimate of

the derivative is defined

b
i

AX + H(y -CXx) (11)
or

X = Ax - H(y - ¢tx)

o]
[
x



where w and v are defined by comparing the last two equations.

The expression for H has been determined three ways. The first
was by using Calculus of Variation,1 the Second, by taking the derivative of
the covariance of e with respect to the matrix H1. The third and simplest
is presented below. It has the added advantage of giving the expression
for the minimum error covariance (minimum trace).

Using the expressions above and the apostrophe to indicate a transpose,

the covariance of the error is

Cov(e) = E(e e') = E(w - HV) (w - Hv)!

= ¢ - Ho - & H' + Ho H'.
w vw wv v

where E(w) is the ensemble average operation. Since real stationary ergodic

processes are considered, the covariance @W = E(w w'), for w zero mean.
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Analogous to ''‘completing the square'' for H, a matrix indentity,’ on

noting ®xy = @'yx’ gives

_ } S R I
Cov(e) = o+ (H 2%y )@V(H Iy ) @ 0

-1
VARY <I)v (1)

w

Since all terms are nonnegative-definite matrices, the minimum covariance is

fl
1
L]

®
Cov(E)min w wlv Cuw

for the optimum'gain matrix,

s -1
wv Vv

In the appendix, the following expreésions are developed:

it

ARA' ® = ARC!

WV

o
w

it

CRA! ¢
vw v

]

CRCY + Q



~

defining X = (x -~ x), the state estimation error for the Kalman filter, and

R=E(x x'), Q=E(qq'), the covariances of the state estimation errcr and
observation noise, respectively.

Their use gives,

cOv(E)min = ARA' - ARC'(CRC' + Q)—1CRA’ (2)

and

H = ARC' (CRC' + Q)"‘ ‘ (3)

Since thg deriv?tives of the system's states are related to its states
by A, the coefficient matrix of the system's dynamics, the minimum error
covariance for the estimate of the derivatives could be no less than the
minimum error covariance of the states, pre and post multiplied by A.8
Equation (2) is recognized to be just that minimum value (i.e., the error
covariance for the optimum (Kalman) estimate of the state so multiplied
by A). As 20-20 hindsfght would suggest Equation (3) is just AK where K is
9

the optimum filter for state estimation.
COMPARISON OF ERROR COVARIANCES

The Kalman-observer estimator (KOE), developed for minimum variance
estimate of state derivatives, will now be compared with the results of (1),
taking the derivative of the optimum estimate of the states (DFC for derivative-
filter combination) and (2), augmenfing the state vector to inc]gde its
derivatives (ASF).

Since the Kalman filter is linear, the derivative of the output must
equal the input to its intergrator, or just Equation (1). 1t is noted that

it has the same form as Equation (I!) for the KOE with K replacing H. Thus



the error covariance is the same as Equation (1) with H replaced by K.

Substituting for K (the terms after A in Equation (3)) and the @'s.

Cov (e) = ARA' - ARC'(CRC' + Q)’TCRA'

DFC

+ (RC' - ARc')[(RcQ - ARC') (CRC* + Q)"]'

Comparison of this equation with (2) shows it greater than (2) by the terms
on the second line. After manipulation using the identities for transposes

and inverses of products.

(I - A)RC'(CRC' + Q)_TCR(I - A)l

BoE/DFC =

If measurements were near perfect (Q = 0)

Broespre = (1 = ARG = A).

This expression shows the advantage of the KOE increases with greater

estimation error covariance, R.

SIMULATION
The filter, operating on a typical aircraft during‘flight, was modeled
using CSMP/360 supplemented with several user subprograms. Four aircraft
states were considered, that of the pitch angle, the altitude, and the first
deﬁivativé of each. Both DFC and the KOE filters were concurrently employed,
and error analysis performed using the resulting data. The simulation may be
grouped into two major divisions, that of system dynamics and that of the

operation and updating of each filter.

*As seen in the appendix, the ¢'s are independent of the form of H,
thus their expressions are invariant on changing H to K.
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Before '"flying'' the system, the discrete state transition matrix was
~calculated for use in the updating of the filters. A time increment of
0.05 seconds was used. (However, the time increment parameter could be
varied at will.) Also at this point the Kalman filter and the derivative
filter were developed for the initial time state.

During '"flight," the dynamics of the system were modelled and disturbed
by various forms of Gaussian noise. The pitch angle and the altitude of
the aircraft were observed, and to tHese observations proper Gaussian noise
was added. The noise produces observation errors commensurate with the
real instrument.* The corrupted system was filtered with both filters. Every
0.05 seconds of the flight both filters and their respective covariances were
updated.

Pertinent simulation information is included in the following:

1. The state transition matrix was produced using the first
seven terms of an exponential power series expansion.

2. Gaussian noise was produced using a pseudorandom,
congruential noise generator, from which noise of uniform
density was obtained. This noise was then sampled twelve
times and averaged to produce normal noise. (Central Limit
Theorem)

3. The integral equations-involved -in the -simulation; both
in the system dynamics and the fllter calculations, were
solved using a fourth order Runge-Kutta integration technigque.
A variable step version was employed.

L. As stated earlier Equation (3) for H is just AK. On using It,

- - t - L
AKOE/DFC becomes AKOE/DFC (RC ARC') (K - H)

The computer flowcharts are appended (pages A-4, A-5, and A-6).

o

“The radar altimeter and pitch gyro, used on the test flight at Ames
Research Center have variances of 25 and 5 x 10 7, respectively.



CONCLUSIONS

For continuous systems (such as aircraft in flight, possibly observed
at discrete times) the diagonal terms of A, corresponding to the augmented
states (as to include their derivatives) are zero.a Thus the KOE has the
special advantage of using the system's dynamics associated with the lower
order states.

For discrete cases, the diagonal terms of A are unity for unobserved
states,9 showing. that when there is no knowledge of the system's dynamics

: .
(as in the stock market for most people), the rate of change can be
estimated only by pass errors as'in ASF.

The above analysis has been based_on the covariance of the estimation
and measurement errors. Since they are not affected by the input control, its
consideration has been obviated.

. In the section on '"Comparision of Error Covariances,' the advantage of the
KOE over the DFC, is strongly depen&ent on the A matrix. Equation I, the
derivative estimate by defihition, is recognized as Kalman's optiha] estimate
of the state9 multiplied by A. The dependence is on the form of A rather than
-its accuracy, for .inaccuracies can be corrected by.observation. The form
is controlled by the type of the dynamic process. In the simulation above, the
A matrix has all zeros in the fourth column. This céndition shows that the
associated state (altitude) is not fn a Markov process of any orderlO as the
model is structured. For this reason, the covariance of the rate of change
of altitude, is not affected by the observered data from any state; thus, the
advéntage of the KOE is minimal. The simulation showed it is less than one

percent. This could have been due to such as round-off errors; however, the

advantage was always positive for the entire run (20 sec.).



The A matrix shows that the pitch angle, while not in a simple (first
order) Markov process, is in one of multiple order.]O The results of the
simulation give improvements of the KOE as expected. The advantage initially
exceeds one hundred percent but decreases rapidly (e.g., fourteen percent in
.25 sec.) as expected by its dependences on R, the ‘covariance of the state
estimation error. Recall, both filters cause R to decrease. It is felt that
the KOE's faster response from zero time, is of paramount importances in
systems such as aircraft.

In continued work, an aircraft model will be structured so that the
a]titﬁde will‘be in ; multiple order Markov process. This will be approached
in using the altitude and its first three derivatives as a four state vector.
Concurrent with this work optimum mixing of information from other sources
as rate sensitive gyros will be pursued.

As noted above, both filters cause R to decrease. In steady-state as on
occassions of no perturbations, R could be small -compared to Q, the covariance
of the measurement error. On neg]eéting R relative to Q, the advantage of

KOE would be

- - el - 1
BROE/DFC = (1 - A) RC'Q "CR(I = A)',

where Q to the minus T is used to indicate the inverse of Q transpose. This
expression shows how the improvement increases with sma]ler Q (i.e., better

measuring instruments).
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Appendix

Reduction of Covariance Matrices

Recall: System equations

A X(t) + B u(t)

e
it

C x(t) + g(t)

<1
it

Hencefore the .t will be dropped.

&

Derivative estimate

X=%=A%4+ H(y - Cx)
|
Exrror vectors,
- 3 2 = - 2
w = X - AX X = X = X
=9 - Cx R = E(%%~)

On using the system equations and the error vectors,

~

% = A% + HV

or
Aé = % - HY
and _ & : -
w =X - X + Hv
= x + HY




Again by the system's (observation equation),
V=C%+q-~-CX

Cx + q

i

¢z = E(CX + g)(cx + q)°
= CRC* + Q (A-1)
where from above R = 9z = E(%X*) and E(3§’) = Q, and the noise

is considered uncorrelated with either the state or its estimate,

E(X + HV) (X + Hv)”

il

<bW

+ Hosz + $2=H" + HozH (A=2)

]
=
ot

oL
where on using the system equation”

= AX

Wl

and the derivative estimate

X = AX + H(Y - CX)
= AR + H(Cx + q)
X = X =-x = Ax - A% - H(Cx + Q)

= (A - HC) % - Hg

Thus

¢ = (A - HC) R(A - HC)” + HQH~

3
X

*The control BU is neglected for it does not affect x.



Now .
o=k = E(CE + §) (A% - A% -~ H)
- B(CE + q) (x* A® - V°H”)
= CRA® = ¢ H’
= CRA” - CRC’H’ - QH- (A~3)

Thus recognizing ¢;§ as the transpose of doge substituting from

above and on using (A-~1l), (A-2) becomes

- (A~HC) R (A~HC)~” + HQH” + HCRA~

HCRC“H” - HQH'+ ARC“H’ = HCRC“H”

HQH” + HCRC’H + HQH~”

After multiplying out and cancelling,

) = ARA~“ (A4}
. w V )
Lastly, 4
v = E (x + HV)V

On substituting from (A-~1l) and using the transpose of (A-3)

-©-
it

v ARC” = HCRC” = HQ + HCRC” + HQ

it

ARC” (A=-5)



A-L

FLOWCHART DATA
1. State variables
x' = (e, e, h, h) ; where e : pitch angle

h ¢ altitude

2. A matrix

0.6 -0.76 0.003 o.—o—}
Ao |10 0.0 0.0 0.0
0.0 1.025 -0.4 0.0
0.0 0.0 1.0 0.0
3. C matrix
1o. 1. 0. 0.
C =
| 0. 0. 0. 1. )
|
L., R matrix (at t = 0.0 sec.)
1.E-6 0.0 0.0 0.61
R = 0.0 1.E-4 0.0 0.0
0.0 0.0 0.25 0.0
0.0 0.0 0.0 25.0|

5. Q matrix

Q:
{9.0 25.0




A-5

FLOWCHART # 1 . System Simulation’

) e
At t = 0.0 Y
calculate A _
g, H, K error analysis~ KOE/DFC
(RC' - ARC')

ﬁ%/ o (K - H)'

-flight equations

xC = Axc + u <

y = CxC + v No

Xk T Axk T -filter equations

Kly - €%, )
a ~ £
xh=Axh+H(y—th‘ N F]ozc;art

filterrupdate—

END j}




FLOWCHART # 2

K =
rRC' (CRC'+0) !

Filter Update

A-6



