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Abstract.  Ultrasonic guided waves are capable of rapidly interrogating large, plate-like structures for both nondestructive 

evaluation (NDE) and structural health monitoring (SHM) applications.  Distributed sparse arrays of inexpensive 

piezoelectric transducers offer a cost-effective way to automate the interrogation process.  However, the sparse nature of the 

array limits the amount of information available to perform damage detection and localization.  Minimum variance 

techniques have been incorporated into guided wave imaging to reduce the magnitude of imaging artifacts and improve 

imaging performance for sparse array SHM applications.  The ability of these techniques to improve imaging performance is 

related to the accuracy of a priori model assumptions, such as scattering characteristics and dispersion.  This paper reports 

the application of minimum variance imaging under slightly inaccurate model assumptions, such as are expected in realistic 

environments.  Specifically, the imaging algorithm assumes an isotropic, non-dispersive, single mode propagating 

environment with a scattering field independent of incident angle and frequency. In actuality, the composite material 

considered here is not only slightly anisotropic and dispersive but also supports multiple propagating modes, and 

additionally, the scattering field is dependent on incident angle, scattered angle, and frequency.  An isotropic propagation 

velocity is estimated via calibration prior to imaging to implement the non-dispersive model assumption.  Imaging 

performance is presented under these inaccurate assumptions to demonstrate the robustness of minimum variance imaging to 

common sources of imaging artifacts. 

PACS. 43.20.Fn, 43.35.Zc, 43.40.Le, 43.60.Fg, 43.60.Lq, 43.60.Mn 

1. Introduction 

Guided waves are capable of propagating throughout large, 

plate-like structures and interacting with both surface and 

sub-surface defects.  As such, distributed sparse arrays of 

inexpensive, piezoelectric transducers have been proposed 

as a cost-effective alternative to traditional bulk wave 

c-scans for structural health monitoring (SHM) of large, 

plate-like structures [1].  Obtaining comparable 

information from guided wave sparse arrays is made 

challenging by the fact that recorded signals typically have 

a large number of reflections from geometric scattering 

and guided wave propagation is both multimodal and 

dispersive by nature.  Guided wave imaging techniques, 

such as elliptical (or delay-and-sum) [2,3] and hyperbolic 

imaging [4,5], have been shown to be capable of 

overcoming these challenges to detect and localize damage 

sites in experimental tests.  The images produced with 

these methods typically also contain imaging artifacts that 

cannot be distinguished from additional damage.  The 

imaging artifacts can be due to a number of factors, 

including uncompensated dispersion, geometric 

reflections, multiple propagating modes, and inaccurate a 

priori assumptions, such as propagation velocity, 

scattering behavior, and transducer placement.   

Recently, minimum variance techniques have been 

incorporated into the conventional elliptical imaging 

algorithm to successfully reduce undesired imaging 

artifacts [6-8].  In these studies, imaging performance 

improves as additional information is incorporated into the 

imaging algorithm.  For example, if incident waves can be 

assumed to interact with a potential defect in a specific 
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manner, then imaging performance is improved.  

Additionally, further imaging improvement can be 

obtained if phase information is incorporated into the 

imaging algorithm.  In realistic environments, however, 

the scattering behavior of potential defects may not be 

known a priori and sufficient information may not be 

available to enable effective use of phase information.  A 

description of minimum variance imaging, referred to as 

MVDR imaging, is provided in Section 4.2 of this paper.  

To date, much of the work with guided wave imaging 

algorithms has been applied to isotropic media, such as 

aluminum plates, in a non-dispersive frequency regime.  

However, carbon-fiber reinforced plastics (CFRP) are in 

widespread use in modern aerospace structures.  As with 

all plate-like structures, these materials are dispersive and 

capable of supporting multiple propagating modes.  In 

addition, CFRP materials also exhibit some degree of 

anisotropy, even for a quasi-isotropic layup, meaning that 

the dispersive nature of the material is direction-

dependent.   

This paper demonstrates the robustness of minimum 

variance imaging to inaccurate assumptions about the 

propagating environment.  Specifically the algorithm 

assumes an isotropic, non-dispersive, single mode 

propagating environment with a scattering field solely 

dependent on the difference between incident and scattered 

angles.  In reality, however, the propagating environment 

is slightly anisotropic and dispersive, two propagating 

modes are present, and the scattering field is dependent on 

incident angle, scattered angle, and frequency.  The ability 

of guided wave imaging algorithms to successfully detect 

and localize damage in realistic materials, such as 

aerospace-quality, quasi-isotropic CFRP, and under 

slightly inaccurate assumptions, such as the case 

considered in this paper, is critical to the adoption of 

distributed sparse arrays for SHM.   

This study is organized as follows.  A brief background on 

the problem is presented, followed by the experimental 

setup and specific techniques used to calibrate the 

propagation velocity and perform guided wave imaging.  

Results are shown and discussed, and conclusions are 

drawn. 

2. Background 

Tomographic, time-of-flight (ToF), and elliptical imaging 

algorithms have all been previously applied to damage 

localization using a distributed array of sensors.  This 

section provides a brief synopsis of these methods and 

their application to anisotropic media.   

Several variations of tomographic imaging techniques 

have been shown to successfully detect and localize 

delaminations and corrosion in anisotropic media.  These 

techniques rely on the assumption that damage causes a 

change in arrival time of a specific propagating mode.  

They vary based on the sensor pattern [9-11], signal 

features used to quantify velocity changes [12], diffraction 

assumptions [13], and image generation method [14,15].  

Although tomographic techniques can be used with a small 

number of sensors, imaging quality is highly dependent on 

the number of recorded signals and reported results are 

often shown with the input of thousands of signals, which 

is orders of magnitude more than would be available with 

envisioned sparse arrays.  Techniques such as the 

reconstruction algorithm for probabilistic inspection of 

damage (RAPID) method [16] have been used successfully 

with far fewer sensors than traditional tomographic 

methods by employing signal comparisons relative to 

baseline, or damage-free signals, and spatially distributing 

the corresponding signal difference coefficients.   

ToF techniques typically use a small number of sensors 

and generate damage maps based on the assumption that 

scattering and possibly mode conversion occur when a 

guided wave interacts with damage (e.g., an incident S0 

mode scatters a portion of the incident energy as an SH0 

mode [17]).  The difference in the time-of-arrival between 

the direct arrival and scattered signal, which can be 

measured by several different techniques [18,19], is used 

to estimate the scattered signal’s propagation distance.  

The estimated propagation distances are then used in a 

localization algorithm to identify the scattering location 

[20-23].  Although these techniques have been 

successfully employed under laboratory conditions, the 

measurement of discrete arrival times is a non-trivial task.  

The measurement can be complicated, or even prohibited, 

by the overlap between the direct arrival and scattered 

signals, interference from geometric reflections, and 

dispersive effects. 

An alternative to the above approaches is the use of 

elliptical or hyperbola imaging algorithms.  These methods 

use the relationship between back-propagated signals to 

construct an image of the interrogation area, and typically 

operate on differenced signals (i.e., baseline signals from 

the damage-free condition are subtracted from current 

signals).  Back-propagation can either be performed in 

non-dispersive media as a simple time shift, or in 
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dispersive media with dispersion compensation [24,25].  

Elliptical techniques construct images using signals from 

transmitter-receiver transducer pairs to localize damage 

along an ellipse with the transducers located at the foci of 

the ellipse [2,3].  Alternatively, the hyperbola 

technique [4,5] uses triplets of a transmitter and two 

receivers to localize damage along a hyperbolic curve 

based on the location of the two receivers.   Note that for 

anisotropic media, the elliptical and hyperbolic 

nomenclature is somewhat misleading since the direction-

dependent propagation velocities result in non-elliptical 

and non-hyperbolic loci.  For the purposes of this paper, 

however, the quasi-isotropic nature of the material allows 

it to be treated as isotropic without undue performance 

degradation.   

One variation of elliptical imaging, MVDR imaging [6-8], 

incorporates Minimum Variance Distortionless Response 

(MVDR) [26], also known as Capon’s method [27], into 

the pixel calculation to minimize undesired artifacts.  This 

technique expands the utility of traditional elliptical 

techniques by improving robustness to the complexities of 

the guided waves and providing better imaging 

performance with a small number of transducers [6-8]. 

3. Experiment 

Experiments were performed using an aerospace-quality 

CFRP composite panel provided by TenCate [28] to 

demonstrate the proposed imaging algorithm.  The quasi-

isotropic layup was [0/90/-45/45]2 of carbon fiber. 

An array of six piezoelectric transducers (PZT) was 

attached to the composite plate with household super-glue 

in an arbitrary pattern as shown in figure 1.  Baseline 

signals were collected from the 15 unique transmitter-

receiver pairs prior to the introduction of any damage.  For 

each transmitter-receiver pair, the transmitter was excited 

by a spike pulse generated by an Olympus® Panametrics 

5072PR pulser-receiver and recorded with a LeCroy 

WaveRunner 64Xi oscilloscope.  The use of a spike pulse 

provides additional flexibility when working with 

experimental data in that both narrowband and broadband 

signals with arbitrary bandwidths and center frequencies 

can be isolated during post-processing.  Post-processing 

and imaging were performed with a PC running the 

MathWorks MATLAB® software package.  A waterfall 

plot of the baseline signals after low pass filtering is shown 

in figure 2.  Note that the vertical axis is the separation 

     

 (a)  (b) 

Figure 1.  (a) Diagram of the CFRP panel showing the pattern of permanently attached PZTs and the location of simulated 

damage.  (b) Photograph of the experimental setup. 

 

Figure 2. Waterfall plot of filtered baseline signals recorded 

from the sparse array.  Two propagating modes can be 
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distance between the transmitter and receiver 

corresponding to each recorded signal. 

After recording the baseline signals, simulated damage 

was introduced in the form of a 5 mm diameter through-

hole at the location depicted in figure 1.  Although the 

imaging algorithm is compatible with any type of defect, a 

through-hole was selected as simulated damage because of 

the ability to describe the scattering behavior using low-

order approximations [29].  Test signals were then 

recorded from each of the 15 transmitter-receiver pairs on 

the damaged plate. 

4. Algorithm 

This section describes the proposed imaging algorithm as 

applied to a quasi-isotropic CFRP panel.  The overall 

approach is first introduced and details about velocity 

calibration and MVDR imaging are then provided. 

Two propagating modes can be clearly observed in figure 

2.  The first mode arrives between 25 and 50 s and, based 

on the measured propagation velocity, is believed to 

correspond to the fundamental symmetric mode, S0, while 

the second mode, believed to correspond to the 

fundamental antisymmetric mode, A0, arrives between 75 

and 200 s.  Unfiltered, the signal amplitudes of each 

mode are approximately equal.  A low-pass filter with a 

cutoff frequency of 100 kHz is applied to both the baseline 

and test signals to maximize the amplitude ratio between 

the A0 and S0 modes.  Unfortunately, since the two modes 

have overlapping spectral content, they cannot be 

completely separated from one another by filtering.  It 

should be noted that figure 2 is a plot of the received 

signals after filtering. 

The A0 mode shown in figure 2 is dispersive and thus 

changes shape as it propagates over distance.  Since the 

medium is anisotropic, the dispersive nature of the signals 

is expected to be direction-dependent.  To check this 

assumption, dispersion was estimated along five different 

directions at 45o increments using data recorded by a laser 

vibrometer and the model-based parameter estimation 

method described in [30].  Figure 3 illustrates that, as 

expected, the phase velocity and wavenumber are 

dependent on propagation direction.  Because these 

measurements were made at 45o increments on a [0/90/-

45/45]2 quasi-isotropic layup, the maximum directional 

variations present in the plate may exceed those shown in 

the figure.  Since the slope of the wavenumber is similar 

for each direction, the group velocities are expected to be 

similar for all directions.  The group velocity used for 

guided wave imaging is obtained from the array data using 

a calibration technique discussed in Section 4.1. 

Prior to performing MVDR imaging, the filtered baseline 

signals are subtracted from the filtered test signals to 

isolate the scattered signals caused by damage.  These 

baseline-subtracted signals are referred to as differenced 

signals throughout this paper.  Ideally, if no damage is 

present, then the test signals are identical to the baseline 

signals and the differenced signals are identically zero.  

MVDR imaging is performed with these differenced 

signals.  The details of MVDR imaging are discussed in 

Section 4.2. 

  

 (a) (b)  

Figure 3. Dispersion measurements for five different directions of propagation of the A0 mode shown as (a) wavenumber vs. 

frequency and (b) phase velocity vs frequency.  Similar wavenumber slopes imply a similar group velocity for each direction.   
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4.1 Group Velocity Calibration 

Calibration is performed with the filtered baseline signals 

to obtain an estimate of the group velocity at the time of 

testing.  The calibration technique consists of shifting each 

of the received signals to the left, or back-propagating the 

signals, an amount of time calculated as the measured 

propagation distance divided by the group velocity.  The 

group velocity that allows for the maximum agreement 

between back-propagated signals is chosen for use in the 

imaging algorithm.  In other words, the group velocity, cg, 

is selected to maximize 

 2

1
1

arg max ,
M

t m
mg t

c m

d
c b t dt

c

   
 

   (1) 

where M is the number of unique transmitter-receiver 

pairs,  mb t is the analytic representation, or complex 

envelope, of the mth filtered, baseline signal, and dm is the 

distance from the transmitter to receiver for the mth 

transmitter-receiver pair.  The absolute value of the 

complex envelope of the signal, or the envelope of the 

signal, is used during calibration to minimize the effects of 

dispersion since the changing shape of the signal prevents 

agreement between back-propagated signals.  The 

integration period is selected to correspond to the 

excitation window, which corresponds to 0-25 s.   The 

optimal group velocities are found to be 5.2 mm/s for the 

faster S0 mode and 1.4 mm/s for the slower A0 mode. 

Figure 4 illustrates the back-propagated direct arrival 

signals for the A0 mode using a group velocity of 1.4 

mm/s.  Figure 4(a), highlights the level of complexity 

present in the received signals due to dispersion and 

geometric reflections from the S0 and A0 modes.  Figure 

4(b) shows the improved signal agreement obtained by 

using the envelope of the signals. 

 

4.2 MVDR Imaging 

MVDR imaging calculates each pixel value separately 

using the filtered, differenced signals.  In Hall and 

Michaels [6], the pixel intensity for pixel location (x,y) is 

calculated as: 

 
H

,xy xyxy xyP w R w
 

 (2) 

where the superscript “H” represents the conjugate 

transpose, xyw


 is a vector of weights, and Rxy is a 

correlation matrix of the envelope of the differenced and 

back-propagated signals, 

    2

1
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In the above equation, t1 and t2 correspond to a fixed 

integration interval that is common to all pixel values, and 

the  xy tr


 vector is constructed as: 

  
T

1
1 ,

xy Mxy
xy M
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where dmxy is the total distance from the transmitter to pixel 

location (x,y) to receiver for the mth transmitter-receiver 

   

 (a) (b)  

Figure 4. Back-propagated signals using a time shift based on a frequency- and direction-independent group velocity.  The filtered 

signals are shown in (a) and the envelope of the filtered signals in (b). 
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pair,  mr t  is the complex envelope of the mth differenced 

signal, and cg is the propagation velocity determined 

during calibration.  Since reflected waves in a differenced 

signal are dispersive, the envelopes of the differenced 

signals are used in the imaging algorithm to minimize the 

effects of the changing signal shape, allowing the imaging 

algorithm to handle the signals as though they were non-

dispersive.  Note that the time-shift applied to each 

element of  xy tr


 is specific to both the transducer-

receiver pair and the pixel location. 

If damage is present at location (x,y), then each of the 

back-propagated signals in the  xy tr


 vector are aligned in 

time and vary in magnitude based on the scattering 

characteristics of the reflector and the inverse square-root 

of the propagation distance product, meaning that: 

   1

* *
1

,

T

xy Mxy
xy

xy Mxy

t
d d

  
 
 
 

r


   (5) 

where *
mxyd  is the product of the distances from the 

transmitter to pixel location and from pixel location to 

receiver for the mth transmitter receiver pair, and mxy is a 

scattering coefficient that characterizes the amount of 

energy scattered by a defect at location (x,y) for the mth 

transmitter-receiver pair.  The distance product is 

appropriate to account for the geometric spreading that 

results from a point-like scatterer at the pixel location.  As 

a starting point, energy is assumed to be reflected 

uniformly at point (x,y), so the mxy values can be set to 1.  

Notice that if  xy tr


 has the relationship described in (5), 

then the pixel value in (2) is maximized when the weight 

vector, xyw


, is proportional to  xy tr


.   

For conventional elliptical imaging as implemented here, 

the weight vector of (2) is a unit-norm vector selected to 

maximize the pixel value: 
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In contrast, MVDR imaging selects the weight vector, 
MV
xyw


, that minimizes the pixel value subject to a 

constraint that maximizes the pixel value at damage 

locations.  Specifically, the weights are selected to satisfy 

the following constrained optimization problem: 

 
MV H H

arg min    such that 1,xy xyxy 
w

w w R w w e

    
 (7) 

where xye


 is a unit-length vector, referred to as the 

steering vector, that describes the anticipated relationship 

between signals.  For example, for the case where the 

relationship between signals can be described as in (5), the 

xye


 vector is identical to the delay-and-sum weight vector, 

DS
xyw


, defined in (6).  Note that, as with the back-

propagated signal vector,  xy tr


, the xye


 vector is specific 

to the pixel location.  

The weights that satisfy (7) can be found using a Lagrange 

multiplier [31]: 
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   (8) 

In Hall and Michaels [6], it is shown that this method for 

selecting the weight values is effective for reducing 

imaging artifacts because all pixel values are minimized 

unless  xy tr


 behaves according to ,xye


in which case the 

pixel value is maximized.  Since the xye


 vector describes 

the relationship of the signals only if damage is present at 

pixel location (x,y), the pixel value is maximized only at 

locations corresponding to damage. 

Previous work [6] has found that since the non-real-time 

nature of SHM data collection allows noise levels to be 

reduced by signal averaging, imaging performance is 

maximized when the integration interval is minimized.  

Therefore, the integration period is reduced to a single 

point in time that corresponds to when the back-

propagated signals have the greatest amplitude.  Based on 

figure 4, the time is selected to be 12 μs.  As a 

consequence of reducing the integration window to an 

instantaneous point in time, the inversion of the correlation 

matrix, Rxy, becomes ill-posed and requires regularization.  

As was done in [6], the regularization is achieved with 

diagonal loading using a weight of 0.1 times the squared 

norm of  xy r


, where  = 12 μs. 

Figure 5 provides a side-by-side comparison of 

conventional elliptical imaging and MVDR imaging 
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for the CFRP plate and a 5 mm diameter through-hole.  

The images are color-coded according to a 20-dB scale 

relative to the peak pixel amplitude.  The pixel values for 

each image were calculated using (2).  The difference 

between the images is that the weight vector, xyw


, for 

figure 5(a) was calculated using (6), while the weight 

vector was calculated for figure 5(b) using (8). 

5. Discussion 

Figure 5 demonstrates the robustness of MVDR imaging 

using minimal a priori information.  The images were 

generated using the 15 recorded signals from each of the 

unique transmitter-receiver pairs and a set of basic 

assumptions, all of which are inaccurate to some degree.  

The assumptions are that (1) there is a single propagating 

mode, (2) damage behaves as a uniform point-like 

scatterer (i.e., scatters equally in all directions), and (3) the 

medium is non-dispersive and isotropic.   

Even in the presence of these inaccurate assumptions, the 5 

mm diameter through-hole can be clearly observed in 

figure 5.  The defect size is less than 1/5 of the signal 

wavelength ( = 28 mm for cg = 1.4 mm/s and f = 50 

kHz), which demonstrates the algorithm’s ability to detect 

sub-wavelength features.  The imaging algorithm is 

expected to be sensitive to progressively smaller defect 

sizes with the use of higher frequencies and more accurate 

assumptions.   

Figure 2 demonstrates that there are at least two 

propagating modes present in the recorded signals.  

Beyond the filtering applied prior to constructing figure 2, 

no additional methods were used to address the presence 

of the S0 mode.  Therefore, any and all energy present in 

the S0 mode is manifested as coherent noise in the imaging 

algorithm. 

The assumption that potential damage scatters energy 

uniformly in each direction is also inaccurate.  The 

   

 (a) (b)  

Figure 5. Guided wave imaging of CFRP panel with 5 mm diameter through-hole on a 20 dB scale.  The ‘o’ symbols indicate the 

location of the six PZT transducers and the ‘+’ symbol designates the simulated damage location (symbol colors selected for best 

contrast).  Images were generated using (a) conventional delay-and-sum imaging and (b) MVDR imaging.   

 

Figure 6. Two scattering fields.  The “simple” scattering field 

is based upon a low-order approximation [29].  The 

“experimental” scattering field was generated using measured 

data and selected to maximize the pixel value at the known 

damage location. 
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amplitude and phase of scattered signals are dependent on 

incident angle, scattered angle, and frequency.  Even for a 

simple scatterer such as a through-hole, the scattering 

pattern in an anisotropic medium is specific to all three 

variables.  An asymmetrical scatterer such as a crack may 

have an even more pronounced directional dependence.  

The discrepancy between assumed and actual behavior is 

minimized by the use of the envelope of the signal.  Since 

both blocked and scattered energy results in a positive 

envelope value of the differenced signal, the imaging 

algorithm is sensitive to any scatterer, although imaging 

improvement is expected with a more accurate knowledge 

of the scattering behavior. 

Although a realistic scattering field for this CFRP panel is 

dependent on three variables (incident angle, scattered 

angle, and frequency), it makes intuitive sense that a 

simplistic, frequency-independent scattering field based 

only on the difference between incident and scattered 

angle may be able to improve imaging performance.  

Figure 6 depicts two such scattering fields.  The “simple” 

scattering field was generated analytically using low-order 

approximations for a homogeneous, isotropic medium 

[29].  The “experimental” scattering field is based on the 

measured data and was chosen to maximize the pixel value 

at the damage location.  Note that the “experimental” field 

demonstrates the optimal imaging performance for this 

type of simplistic scatterer and is based on a priori 

knowledge of the damage location.  Figure 7 shows the 

images generated using the scattering fields of figure 6.  

Noticeable improvement in imaging performance can be 

observed between figure 5(b) and figure 7(a), and also 

between figures 7(a) and 7(b).  The improvement results 

from the fact that the steering vector, xye


, is in closer 

agreement to the back-propagated signals in figure 7(a), 

and exactly matches the back-propagated signals at the 

damage location for figure 7(b).  The imaging performance 

of figure 7(b) suggests that if theoretical scattering fields 

are unavailable, experimental characterization of scatterers 

may present a potential alternative. 

Finally, the mismatch between the isotropic assumption 

and the direction-dependent dispersive nature of the 

material is addressed by working with the envelope of the 

signals and calibrating for the optimal propagation 

velocity. The envelope masks the effects of changing 

phase, and the calibration obtains a propagation velocity 

that avoids inaccuracies in a priori assumptions. 

It should also be pointed out that the robustness to 

inaccurate assumptions obtained through the use of the 

signal envelope comes at the expense of imaging 

resolution.  Hall and Michaels [6] demonstrated that the 

inclusion of phase information in the imaging algorithm 

can significantly improve imaging performance.  However, 

MVDR imaging with phase information requires 

accounting for all factors affecting the phase of the signal, 

which includes dispersion, transducer-specific transfer 

functions, and scattering characteristics.  The lack of 

scattering information was found to be the limiting factor 

here, since there are currently no phase specific models for 

the frequency and direction dependent scattering behavior 

   

 (a) (b)  

Figure 7. MVDR imaging of the CFRP panel assuming (a) the “simple” scattering field, and (b) the “experimental” scattering field 

(both shown in figure 6). 
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of through-holes in this specific material.  Although a 

simplistic scattering field was used to describe the 

magnitude response of the through-hole, this field does not 

adequately describe the phase response.  Therefore, 

additional work on modeling the scattering behavior of 

defects in CFRP panels is required before MVDR imaging 

with phase information can be performed on these 

materials. 

6. Conclusion 

Imaging in anisotropic CFRP panels can be successfully 

performed with minimal a priori information combined 

with minimum variance imaging, known as MVDR 

imaging.  This paper summarizes the calibration technique 

and MVDR imaging algorithm used to detect and localize 

damage in an aerospace-quality CFRP panel with a [0/90/-

45/45]2 layup.  As presented, the imaging algorithm 

inherently assumes the presence of a single, non-dispersive 

propagating mode with a uniform scattering field in an 

isotropic medium.  By using the envelope of the signal to 

mask phase changes and MVDR imaging to reduce 

artifacts, the imaging algorithm was shown to be robust to 

the simultaneous presence of multiple propagating modes, 

a complicated scattering field, dispersion, and slight 

anisotropy. Imaging performance was shown to improve 

with the incorporation of a low-order approximation of 

scattering behavior.  Further improvements can be 

expected with the incorporation of more accurate 

scattering behavior and phase information.  At this time, 

the lack of quantitative scattering information for this 

material precludes the use of phase information.  Future 

work should be directed towards characterizing the 

scattering field for defects of interest in CFRP material, 

incorporation of these scattering fields and phase 

information into the MVDR imaging algorithm, and 

application of guided wave imaging techniques with 

MVDR to more complicated structures, including 

materials with inhomogeneities and higher levels of 

anisotropy. 
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