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Abstract

Variance reduction has always been a central issue in Monte Carlo experiments.
Population Monte Carlo can be used to this effect, in that a mixture of importance
functions, called a D-kernel, can be iteratively optimised to achieve the minimum
asymptotic variance for a function of interest among all possible mixtures. The
implementation of this iterative scheme is illustrated for the computation of the
price of a European option in the Cox-Ingersoll-Ross model,
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1 Introduction

The main bulk of the literature on Monte Carlo methods concentrates on the approxima-
tion of integrals

π(h) =

∫

Ω

h(x)π(x) µ(dx) ,

where µ is a measure on Ω, π a density and h a π-measurable function on the same
set Ω. In particular, the focus of many studies is to reduce the variance of estimators
of π(h), whether locally, that is, for a given model and a given function, or globally,
as in for instance Rao–Blackwellisation, control and antithetic variate or quasi-random
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techniques (see, e.g., Rubinstein, 1981, Robert and Casella, 2004). An illustration of this
focus is provided in mathematical Finance by the numerous improvements brought upon
the computation of option prices (see, e.g., Lapeyre et al., 1998, Glasserman, 2003, Jackel,
2002).

In the particular case of importance sampling estimators, that is,

π̂IS
g,N(h) = N−1

N∑

i=1

h(xi)π(xi)/g(xi) , x1, . . . , xN
iid∼ g ,

where g is a distribution dominating π (with density denoted by g), the variance is equal
to

g
[
(hπ/g − π(h))2

]
/N ,

if π(h2π/g) < ∞. A puzzling feature of this class of estimators is the well-known opti-
mality of the importance distribution

g⋆(x) = |h(x)|π(x)
/∫

|h(y)|π(y) µ(dy)

when aiming at minimising the variance of π̂IS
g,N . This result (Rubinstein, 1981) is para-

doxical in that it produces a zero variance estimator when h is either positive or negative
(indeed, in both cases, π̂IS

g⋆,N = π(h)). The paradox is only superficial, though, in that it
points out the fact that, in Monte Carlo settings, there is no ultimate importance func-
tion when there is no restriction on the choice of these functions (and when the costs of
constructing and simulating these distributions are not taken into account). In particular,
g⋆ cannot be used in practice because it depends on the integral

∫
|h(y)|π(y) µ(dy). This

result is thus rather understood as providing a goal for choosing a importance function g
tailored for the approximation of π(h).

If the normalizing constants of either the target distribution π or the importance
function g are unknown, an alternative to π̂IS

g,N is the self-normalised importance sampling
estimator, that is

π̂SNIS
g,N (h) =

N∑

i=1

h(xi)π(xi)/g(xi)

/ N∑

i=1

π(xi)/g(xi) . x1, . . . , xN
iid∼ g ,

where the sum of the weights normalises the weighted sum. If g ((1 + h2)(π/g)2) < ∞,
the asymptotic variance of π̂SNIS

g,N (h) is given by π [(h − π(h))2π/g]. In this case, g⋆ is no
longer the best choice: rather,

g♯(x) = |h(x) − π(h)|π(x)

/∫
|h(y) − π(h)|π(y) µ(dy)

minimizes (in g) the asymptotic variance of π̂SNIS
g,N (h). This second optimum is not avail-

able either, because it still depends on π(h).
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The formal aspect of this optimality result may explain why there is little in the
literature besides general recommendations that the support of g should be the support
of |h(x)|π(x) or of |h(y) − π(h)|π(y), or yet that the tails of g should be at least as
thick as those of |h(x)|π(x). Note however that a recent reference is the cross-entropy
method of Rubinstein and Kroese (2004) where the parameter of a family of proposals
is optimised, either directly or by an iterative process, to reach minimal variance or
maximal entropy against the target |h(x)|π(x), the function h being of the specific rare
event shape h(x) = I(S(x) ≤ γ). The population Monte Carlo methodology studied in
this paper encompasses cross-entropy as a special case.

The current paper establishes that the population Monte Carlo (PMC) technique of
Cappé et al. (2004) and Douc et al. (2005) can easily be adapted to this purpose and can
result in considerable variance reduction. We recall that Cappé et al. (2004) introduced
this method, following the denomination of Iba (2000), to advertise the availability of
universal adaptive sampling machines that do not encounter the formidable difficulties of
designing adaptive MCMC algorithms. Douc et al. (2005) showed in addition that those
PMC algorithms can accomodate a progressive adaption to a given target distribution
with a diminishing Kullback divergence. We now explain why this is also the case for
variance diminution and optimal importance function approximation.

In Section 2, we recall the main features of the PMC algorithm, including the expres-
sions for the asymptotic variances of the unnormalised and self-normalised versions of the
PMC estimator. In Section 3, we establish that our updating scheme for the mixture
weights in the PMC algorithm does induce a decrease in the asymptotic variance at each
step. Section 4 provides an additional improvement through the cumulated estimation of
π(h). In Section 5, we illustrate the variance reduction for a toy example before launching
into the evaluation of a European option price for the Cox-Ingersoll-Ross model.

2 Population Monte Carlo

2.1 Monte Carlo setting

We suppose that the target distribution π is at least known up to a normalizing constant,
π(x) ∝ π̃(x) with π̃ known. For the importance sampling estimation of π(h), the quality of
both the unnormalised and the self-normalised approximations to π(h) strongly depends
on the choice of the proposal distribution g, a choice that is quite delicate for complex
distributions like those that occur in high dimensional problems.

We first recall that sampling importance resampling (SIR) (Rubin, 1987, 1988) can be
used to reset a given weighted sample from g to a sample from the target distribution π.
Once the importance weights are derived, ωi ∝ π(xi)/g(xi), a (non-iid) sample from π,
x̃1, . . . , x̃M can be derived from the instrumental sample x1, . . . , xN by resampling using
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the importance weights in {x1, . . . , xN}, that is,

x̃i = xJi
, 1 ≤ i ≤ M ,

where the random variables J1, . . . , JM are distributed as

P [Jl = i|x1, . . . , xN ] =

(
N∑

j=1

π(xj)

g(xj)

)−1

π(xi)

g(xi)

(see, e.g., Robert and Casella, 2004, Section 14.3.5). Multinomial sampling is a possible
implementation of the SIR methodology but more efficient alternatives that reduce the
variance of the resulting estimators are also available. However, to keep the description
of the algorithms as simple as possible, we will use multinomial sampling in the following.

The Population Monte Carlo (PMC) method introduced in Cappé et al. (2004) intrin-
sically is a form of iterated sampling importance resampling with dynamically adapted
importance functions. We refer to Cappé et al. (2004), and to Robert and Casella (2004,
Chap. 14) for details on the motivations and foundations of this method, and we simply
recall the essential feature of the method: At iteration t of the PMC algorithm, N values
are simulated from a proposal distribution and this proposal distribution is based on the
N × (t − 1) past realizations, with basically no constraint on the form of dependence on
the past.

If we define renormalized importance weights associated with weights ωj,t (1 ≤ j ≤ N)
as

ωi,t = ωi,t

/ N∑

j=1

ωj,t ,

the generic PMC algorithm reads as follows:

–Generic PMC algorithm–
At time 0,

a) Generate (xi,0)1≤i≤N
iid∼ g0 and compute ωi,0 = π(xi,0)/g0(xi,0);

b) Generate (Ji,0)1≤i≤N
iid∼ M(1, (ωi,0)1≤i≤N) and set x̃i,0 = xJi,0,0 (1 ≤ i ≤ N).

At time 1 ≤ t ≤ T

a) Conditionally on past xi,j’s and x̃i,j ’s, generate independently xi,t ∼ gi,t and compute
ωi,t = π(xi,t)/gi,t(xi,t);

b) Generate (Ji,t)1≤i≤N
iid∼ M(1, (ωi,t)1≤i≤N ) and set x̃i,t = xJi,t,t (1 ≤ i ≤ N).
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Obviously, the quasi-total freedom in the construction of the above gi,t’s has drawbacks,
namely that some proposals do not necessarily lead to improvements in terms of variance
reduction or target approximation. Therefore, we now restrict the family of proposals
from which to select the new gi,t’s to mixture of fixed proposals and we establish in the
next section that variance improvement does occur within this family. This particular
type of algorithm was already shown in Douc et al. (2005) to lead to a reduction in the
asymptotic Kullback-Leibler distance between the target and the proposal, for a correct
update in the mixture weights.

2.2 D-kernel PMC

We assume from now on that we use in parallel D fixed kernels Qd(·, ·) with densities qd

and that the proposal is a mixture of those kernels

gi,t(x) =
D∑

d=1

αt,N
d qd(x̃i,t−1, x) ,

∑

d

αt,N
d = 1 ,

where the weights αt,N
d > 0 can be modified at each iteration. The amount of adaptivity

we allow in this version of PMC is thus restricted to a possible modification of the weights
αt,N

d . The importance weight associated with this mixture proposal is

π(xi,t)

/ D∑

d=1

αt,N
d qd(x̃i,t−1, xi,t)

while simulation from gi,t can be decomposed in the two usual mixture steps: first pick
the component d then simulate from the corresponding kernel Qd:

–Generic D-kernel PMC algorithm–
At time 0, produce the sample (x̃i,0, Ji,0)1≤i≤N and set α1,N

d = 1/D for all 1 ≤ d ≤ D.
At time 1 ≤ t ≤ T

a) Conditionally on the αt,N
d ’s, generate

(Ki,t)1≤i≤N
iid∼ M(1, (αt,N

d )1≤d≤D)

b) Conditionally on (x̃i,t−1, Ki,t)1≤i≤N , generate independently

(xi,t)1≤i≤N ∼ QKi,t
(x̃i,t−1, ·)

and set ωi,t = π(xi,t)

/ D∑

d=1

αt,N
d qd(x̃i,t−1, xi,t);
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c) Conditionally on (x̃i,t−1, Ki,t, xi,t)1≤i≤N , generate

(Ji,t)1≤i≤N
iid∼ M(1, (ωi,t)1≤i≤N )

and set (1 ≤ i ≤ N , 1 ≤ d ≤ D)

x̃i,t = xJi,t,t , αt+1,N
d = Ψd ((x̃i,t−1, xi,t, Ki,t)1≤i≤N )

such that
∑D

d=1 αt+1,N
d = 1 .

In the above algorithm, Ψd (1 ≤ d ≤ D) denotes an update function that depends
upon the past iteration. We assume that the individual kernel importance weights are
almost surely finite, that is,

∀d ∈ {1, . . . , D}, π {qd(x, x′) = 0} = 0, (A1)

where π = π ⊗ π. Under (A1), Douc et al. (2005) proved that the updates Ψd of the
mixture weights given by

αt+1,N
d =

N∑

i=1

ωi,tId(Ki,t)

garantee a systematic decrease of the Kullback-Leibler distance between the target and
the D-kernel mixture, a long-term run of the algorithm providing the mixture that is
(entropy-) closest to the target. Moreover, Theorem 5.1 of Douc et al. (2005) leads to
a LLN (in the number of simulations at a given iteration) for the output of the generic
D-kernel PMC algorithm.

Theorem 2.1. Under (A1), for any function h in L1
π and for all t ≥ 0, both the unnor-

malised and the self-normalized PMC estimators are convergent,

π̂PMC
t,N (h) =

1

N

N∑

i=1

ωi,th(xi,t)
N→∞−→P π(h) and π̂SPMC

t,N (h) =

N∑

i=1

ωi,th(xi,t)
N→∞−→P π(h) .

As noted earlier, the unnormalised PMC estimator can only be used when π is com-
pletely known and even in those instances it is not necessarily improving upon the self-
normalized PMC estimator.

A CLT can also be established in this setting, under the additional following integra-
bility condition

π

{
(1 + h2(x′))

π(x′)

qd(x, x′)

}
< ∞ for a d ∈ {1, . . . , D}. (A2)
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Note that this condition must hold only for one 1 ≤ d ≤ D rather than for all d’s.
Theorem 5.2 of Douc et al. (2005) then provides a CLT for the generic D-kernel PMC
algorithm.

Theorem 2.2. Under (A1) and (A2), if for all t ≥ 1,

∀1 ≤ d ≤ D, αt,N
d

N→∞−→P αt
d > 0 ,

then both

√
N

(
N∑

i=1

ωi,th(xi,t) − π(h)

)
and

√
N

(
1

N

N∑

i=1

ωi,th(xi,t) − π(h)

)
(1)

converge in distribution as n goes to infinity to normal distributions with variances

σ2
1,t = π

(

(h(x′) − π(h))2 π(x′)
∑D

d=1 αt
dqd(x, x′)

)

and

σ2
2,t = π






(
π(x′)

∑D
d=1 αt

dqd(x, x′)
h(x′) − π(h)

)2 ∑D
d=1 αt

dqd(x, x′)

π(x′)




 .

The additional condition in Theorem 2.2 is necessary to ensure a stabilisation of the
weights as the number of simulations increases. It is garanteed in cases like those of Douc
et al. (2005) updating scheme and we will show below that it also holds for our updating
scheme. The quantities σ2

1,t and σ2
2,t exhibited in this result are thus associated with the

limiting set of weights (αt
1, . . . , α

t
D), defined on the simplex set of R

D,

SD =

{

α = (α1, . . . , αD); ∀d ∈ {1, . . . , D}, αd ≥ 0 and

D∑

d=1

αd = 1

}

.

We now proceed to exhibit an updating scheme on the weights αt
d such that the asymptotic

variances σ2
1,t and σ2

2,t are decreasing at each iteration of the D-kernel PMC algorithm.

3 PMC as variance reduction scheme

3.1 Self-normalized PMC estimator

For the estimator
∑N

i=1 ωi,th(xi,t), we first introduce notations that simplify the study of
its asymptotic variance. If νh denotes the measure on Ω × Ω defined by

νh(dx, dx′) = π(x′) (h(x′) − π(h))
2
π(dx)π(dx′) , (2)
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which naturally appears in σ2
1,t, we define two functions σ2

1 and F1 on SD such that

σ2
1(α) = νh

(

1

/ D∑

d=1

αdqd(x, x′)

)

and F1(α) =

(

νh

(
αdqd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)
/
σ2

1(α)

)

1≤d≤D

Clearly, σ2
1 is then the asymptotic variance associated with a given set of weights, while

F1 takes its values in SD and is thus a transform (or update) of the weights. The central
result of this paper is that this particular choice of update induces a reduction of the
asymptotic variance at each step of the PMC algorithm:

Proposition 3.1. Under (A1), for all α ∈ SD, we have

σ2
1(F1(α)) ≤ σ2

1(α) .

Proof. We have

σ2
1(F1(α)) = νh



 1
∑D

d=1 αdqd(y, y′)νh

(
qd(x,x′)

(
PD

l=1 αlql(x,x′))2

)



 σ2
1(α)

= νh



 1
∑D

l=1 αlql(y, y′)

1
∑D

d=1
αdqd(y,y′)

PD
l=1 αlql(y,y′)

νh

(
qd(x,x′)

(
PD

l=1 αlql(x,x′))2

)



 σ2
1(α)

≤ νh



 1
∑D

l=1 αlql(y, y′)

D∑

d=1

αdqd(y, y′)
∑D

l=1 αlql(y, y′)

1

νh

(
qd(x,x′)

(
PD

l=1 αlql(x,x′))2

)



 σ2
1(α)

=
D∑

d=1

αdνh



 qd(y, y′)/(
∑D

l=1 αlql(y, y′))2

νh

(
qd(x, x′)/(

∑D
l=1 αlql(x, x′))2

)



 σ2
1(α) = σ2

1(α) ,

the inequality following from Jensen’s inequality.

We thus take advantage of the diminution of the asymptotic variance to construct a
sequence on SD such that

{
α1,1 = (1/D, . . . , 1/D)

α1,t+1 = F1(α
1,t) for t ≥ 1 .

(3)

At each step of the PMC algorithm, the asymptotic variance is therefore decreasing. Since
σ2

1 is a convex function on the connected compact set SD, it admits a unique minimum.
If we denote by

α1,min = arg min
α∈SD

σ2
1(α)

this minimum, we then have the convergence result for this updating mechanism (whose
proof is given in Appendix 6.1).
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Proposition 3.2. Under (A1),

lim
t→∞

α1,t = α1,min.

Propositions 3.1 and 3.2 together establish the convergence to the minimal variance
solution of the ideal algorithm, that is, the one using the update mechanism α1,t+1 =
F1(α

1,t). To complete the validation of a practical algorithm, we now have to replace
the ideal updating with a practical updating and to show that the substitution does
not jeopardize convergence. In other words, we need to establish the convergence of the
mixture weights to the α1,t’s and this is sufficient for Theorem 2.2 to apply, i.e., for the
asymptotic variance to be a valid assessment of our algorithm.

We thus define, as a substitute to F1, the following update of the mixture weights

αt+1,N
d =

N∑

i=1

ω2
i,t

(
h(xi,t) −

N∑

j=1

ωj,th(xj,t)

)2

Id(Ki,t)

N∑

i=1

ω2
i,t

(
h(xi,t) −

N∑

j=1

ωj,th(xj,t)

)2 , (4)

which also holds when ω2
i,t is replaced with ω2

i,t in both the numerator and the denominator
and is thus independent of the normalising constant to some extent. The convergence of
this updating scheme is then ensured by the following result, whose proof is defered to
Appendix 6.2

Proposition 3.3. Under (A1), for all t ≥ 1 and ∀1 ≤ d ≤ D,

αt,N
d

N→∞−→P αt
d (5)

where the αt,N
d ’s are defined by equation (4) and the αt

d’s are given in (3).

Note that in the proof of Proposition 3.2 (see Appendix 6.2), we have shown that

σ̂2
1,t = N

N∑

i=1

ω2
i,t

(
h(xi,t) −

N∑

j=1

ωj,th(xj,t)

)2

(6)

is a consistent estimator of σ2
1,t(α

t).

3.2 Unnormalised PMC estimator

The same sequence of results holds for the estimator 1
N

∑N
i=1 ωi,th(xi,t). We first define

the measure on Ω × Ω

ρh(dx, dx′) = π(x′) h(x′)2π(dx)π(dx′) ,
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which relates to σ2
2,t since

σ2
2,t = π

(
h2(x′)

π(x′)
∑D

d=1 αt
dqd(x, x′)

)
− 2π(h) + π(h)2 .

We also consider two functions σ2
2 and F2 on SD as

σ2
2(α) = ρh

(
1

/ D∑

d=1

αdqd(x, x′)

)
− 2π(h) + π(h)2

and

F2(α) =

{

ρh

(
αdqd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)
/
σ2

2(α)

}

1≤d≤D

.

Then we can use the same steps as in Section 3.1 and derive convergence from the results
there. First, as a corollary to Proposition 3.1, we can derive the decrease in the asymptotic
variance for the ideal weights:

Proposition 3.4. Under (A1), for all α ∈ SD, we have

σ2
2(F2(α)) ≤ σ2

2(α)

Second, if we set the sequence of ideal weights as
{

α2,1 = (1/D, . . . , 1/D)

α2,t+1 = F2(α
2,t) for t ≥ 1

(7)

then we deduce from Proposition 3.2 that this ideal sequence converges to the optimal set
of weights since, as σ2

2 is convex on SD, it thus admits a unique minimum

α2,min = arg min
α∈SD

σ2
2(α) .

Proposition 3.5. Under (A1),

lim
t→∞

α2,t = α2,min.

Third, we now exhibit the empirical version of the updating scheme which ensures
that the practical version of the algorithm also converges, by virtue of Theorem 2.2 and
Propositions 3.4 and 3.5. In the unnormalised case, it is now given by

αt+1,N
d =

N∑

i=1

ω2
i,th

2(xi,t)Id(Ki,t)

/ N∑

i=1

ω2
i,th

2(xi,t) . (8)

Finally, as a corollary to Proposition 3.3, we then have the overall convergence guarantee:
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Proposition 3.6. Under (A1), for all t ≥ 1 and ∀1 ≤ d ≤ D,

αt,N
d

N→∞−→P αt
d (9)

where the αt,N
d ’s and the αt

d’s are defined by equations (8) and (7), respectively.

Note also that

1

N

N∑

i=1

(
ωi,th(xi,t) − N−1

N∑

j=1

ωj,th(xj,t)

)2

is a consistent estimator of σ2
2,t.

4 A cumulated estimator

While each iteration of the PMC algorithm leads to a decrease in the variance of the PMC
estimator compared with the previous iteration estimator, provided updates (4) or (8) are
used, ealier iterations can further be taken into account by constructing a weighted cumu-
lated estimator of the PMC estimators over iterations. Since, as noted in Theorem 2.2,
each PMC sample is asymptotically independent of the others, the asymptotic variance
of the weighted estimator is simply the sum of the cumulated weighted variance and the
weights in this cumulated estimator can thus be directly optimised.

Quite naturally, the cumulated self-normalized PMC estimator, π̂CSN
β (h), of π(h) is

chosen as

π̂CSN
β (h) =

T∑

t=0

βt

(
N∑

i=1

ωi,th(xi,t)

)
, with β ∈ ST+1 .

Under assumptions (A1-2), Theorem 2.2, implies that

√
N
{
π̂CSN

β (h) − π(h)
} N→∞−→L N

(

0,

T∑

t=0

β2
t σ

2
1,t

)

.

With respect to this asymptotic variance, we can then derive the optimal choice of β,
namely (1 ≤ t ≤ T )

βmin
t = σ−2

1,t

/
(

T∑

t=0

σ−2
1,t ) and

T∑

t=0

(βmin
t )2σ2

1,t =

(
T∑

t=0

σ−2
1,t

)−1

Furthermore, this optimal βmin
t can be consistently estimated by

β̂min
t =

σ̂−2
1,t∑T

t=0 σ̂−2
1,t

, (10)

where σ̂2
1,t is defined in (6). Therefore,
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Proposition 4.1. For an arbitrary h in L1
π, for any T ,.

(i) Under (A1), π̂CSN
β̂min

(h)
N→∞−→P π(h);

(ii) Under (A1-2),
√

N
{
π̂CSN

β̂min
(h) − π(h)

}
N→∞−→L N

{
0,
(∑T

t=0 σ−2
1,t

)−1
}

.

Note that a corresponding result also holds for the unnormalized PMC estimator.

5 Applications

5.1 A normal toy example

We first consider a toy example where the optimal solution is known: using the N (0, 1)
density and h(x) = x, the optimal importance distribution which minimises the variance
of the unnormalised importance sampling estimator is g∗(x) ∝ |x| exp−x2/2. It actually
corresponds to the distribution of the root of an exponential E (1/2) random variable
with random sign, that is, (−1)s

√
E (1/2) where s ∼ B(0.5), a Bernoulli distribution

with parameter 1/2. We then choose g∗ as one of D = 3 independent kernels, the other
kernels being the N (0, 1) and the C (0, 1) (Cauchy) distributions. Note that the fact
that the proposals are independent does not modify the validity of the above results.
In particular, conditions (A1-2) do hold in that case. (The only modification in the
algorithm is that the resampling step is no longer necessary.)

Table 5.1 presents the results of the variance D-kernel PMC scheme with N = 100, 000
and T = 20. At each iteration, the (esatimated) asymptotic variance of the self-normalized
PMC estimator decreases and the weights of the mixture proposal correctly concentrate
around the correct optimal kernel. The optimal standard deviation in that case is equal
to 2/

√
2π = 0.7979. Figure 1 represents the convergence to this optimal value over 50

iterations.

5.2 The Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985) is a diffusion process used to model
interest rate changes. The fundamental stochastic differential equation of the CIR model
is

drt = (η − krt)dt + σ
√

rtdWt , (11)

where (Wt)[0,T ] is a Brownian motion under the risk neutral measure P. In the financial
application, (rt)[0,T ] represents the short term rate over the measurement period. A quan-
tity of interest is the so-called European caplet option, which is an option written on the
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t π̂PMC
t,N (x) αt+1,N

1 αt+1,N
2 αt+1,N

3 σ1,t

1 0.0000 0.1000 0.8000 0.1000 0.9524
2 -0.0030 0.1144 0.7116 0.1740 0.9192
3 -0.0017 0.1191 0.6033 0.2776 0.8912
4 -0.0006 0.1189 0.4733 0.4078 0.8608
5 -0.0035 0.1084 0.3545 0.5371 0.8394
6 0.0005 0.0956 0.2546 0.6498 0.8241
7 -0.0007 0.0822 0.1786 0.7392 0.8163
8 -0.0029 0.0696 0.1257 0.8047 0.8107
9 -0.0044 0.0594 0.0887 0.8519 0.8036
10 0.0065 0.0519 0.0622 0.8859 0.8016
11 -0.0030 0.0454 0.0450 0.9096 0.8018
12 -0.0051 0.0405 0.0329 0.9266 0.8000
13 -0.0008 0.0352 0.0236 0.9412 0.7996
14 0.0034 0.0329 0.0175 0.9496 0.7993
15 0.0033 0.0305 0.0136 0.9559 0.7987
16 -0.0025 0.0277 0.0102 0.9621 0.7988
17 0.0007 0.0277 0.0102 0.9621 0.7987
18 0.0026 0.0239 0.0062 0.9699 0.7985
19 0.0018 0.0223 0.0051 0.9726 0.7984
20 -0.0042 0.0204 0.0041 0.9755 0.7984

Table 1: Estimation of E[X] = 0 for a normal variate using the D-kernel PMC algorithm
with D = 3, N = 100, 000 and normal, Cauchy and transformed Gamma independent ker-
nels: evolution of the PMC estimates, kernel weights and asymptotic standard deviation
estimates over 20 iterations.
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Figure 1: Estimation of E[X] = 0 for a normal variate: decrease of the standard deviation
to its optimal value

interest rate with the following payoff function at deadline (or maturity) T :

M max(rT − K, 0) ,

where K is called the strike rate and M the nominee amount. The actualised price of the
caplet at time 0 is therefore given by

EP

[
exp

(
−
∫ T

0

rtdt

)
M max(rT − K, 0)

]
. (12)

The explicit calculation of (12) is obviously intractable even though the transition density
of the diffusion is available (Cox et al., 1985).

The standard approach to processing diffusions is to use a Euler approximation scheme,
which consists in discretising the time interval [0, T ] into n steps and in studying instead
the discrete time process (rn

pT/n)0≤p≤n with rn
0 = r0 and

rn
(p+1)T/n = rn

pT/n + (η − krn
pT/n)

T

n
+ σ
√

rn
pT/n

(
W(p+1)T/n − WpT/n

)
, (13)

since the differences W(p+1)T/n − WpT/n are iid N (0, T/n). The quantity of interest (12)
is then approximated by

P = E

[
exp

{
−(T/n)

(
(rn

0 + rn
N)/2 +

n−2∑

i=1

rn
(p+1)T/n

)}
M max(rn

T − K, 0)

]
, (14)

where rn
(p+1)T/n ∼ N

(
rn
pT/n + (T/n)(η − krn

pT/n), (T/n)σ2rn
pT/n

)
. Details on the Euler ap-

proximation can be found in Glasserman (2003), Jackel (2002) as well as Talay and Tubaro
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(1990) and Bally and Talay (1996a,b). (See also Beskos et al., 2005 for a novel approach
on the true distribution of (rn

pT/n)0≤p≤n that does not require the Euler scheme.)
Even when using the Euler approximation, the explicit derivation of P is impossible

and we need to use Monte Carlo simulation to approximate (14). Some importance
sampling techniques have already been proposed by Arouna (2003, 2004), Su and Fu
(2002) and we now study the behaviour of our D-kernel PMC scheme. While the exact
distribution in (13) can be used in the Monte Carlo approximation, it seems rather natural
to force the process to end up as much as possible above K for rT − K to be positive.

Our alternatives to the Euler distribution in (13) are based on the introduction of
a location drift on the Brownian motion (Wt)t. More precisely, for θ ∈ R, we define
the family of all equivalent probability measures Q(θ) with respect to P that follow from
introducing a drift of θ in (Wt). By Girsanov’s theorem, we know that, under the measure
Q(θ),

drt = (η − krt + θσ
√

rt)dt + σ
√

rtdW̃t ,

where
(
W̃t

)

[0,T ]
is a Brownian motion and the change of measure process is given by

dP

dQ(θ)
= exp

(
−θWT − 0.5θ2T

)
. (15)

Reverting to the Euler approximation, we can then define (and simulate) the associated
process

rn
(p+1)T/n = rn

pT/n + (η − krn
pT/n + θσ

√
rn
pT/n)

T

n
+ σ
√

rn
pT/nǫp , (16)

where the ǫ′ps are iid N (0, 1), and compute the importance sampling weight associated
with the simulation. (In the discrete case, the change of measure is the same as (15).)
Obviously, the importance weights are based on the comparison between (13) and (16)
and do not take into account the Euler approximation. Note that the idea of a location
drift is already present in the literature (see, e.g., Arouna, 2003, 2004, Su and Fu, 2002),
with Su and Fu (2002) deriving optimal choices of θ towards variance minimising. As in
the toy example, we are thus using independent proposals and thus do not require the
resampling step in the algorithm.

The choice of θ being open, a D-kernel scheme can be used to select efficient values
of θ towards the approximation of (14). Let us stress once more that the underlying idea
is to force rn

T to be larger than K in order to decrease the variance of the Monte Carlo
estimator and so positive values of θ are called for. Note that the case θ = 0 corresponds
to a crude Monte Carlo approximation. Figure 2 compares the range of the proposed
processes rn

(p+1)T/n with the range of 1, 000 resampled processes using the importance
weights. While the range of the proposed values is obviously larger, the decrease in
the range due to resampling is quite limited, which shows a good fit between the target
distribution and the optimised mixture.
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Figure 2: Cox-Ingersoll-Ross European option: range of the simulated process rn
(p+1)T/n

(lighter background) compared with the resampled process r̃n
(p+1)T/n (darker background)

for K = 0.09, using a D-kernel PMC algorithm with θ = 0, θ = 1 and θ = 2, T = 10
iterations and N = 10, 000 simulations.

We thus ran a simulation experiment with the following parameters: η = 0.016, k =
0.2, σ = 0.02, M = 1000, r0 = 0.08, T = 1 and n = 299, For simplicity’s sake, we
only took three values of θ, θ = 0, 1, 2, the value θ = 0 acting as a stabilising factor
in the importance weight (since it ensures that assumptions (A1-2) hold). Obviously,
a finer grid of values of θ with D larger than 3 could also have been chosen as well.
Tables 2, 3 and 4 present the results of this experiment over N = 100, 000 simulations
and T = 10 iterations of the weight update for K = 0.7, K = 0.8 and K = 0.9. The
larger the bound K, the larger the weight on the larger value of θ. In the three cases, the
decrease in variance from the equaly weighted D-kernel proposal is quite appreciable. (A
phenomenon that is quite common is the quick decrease of the variance in the very first
iterations, followed by a much slower decline.)

The gain compared with the naive Monte Carlo approximation to P is quite important:
for K = 0.7, K = 0.8 and K = 0.9, the variances are 21.59, 7.914 and 0.1937, respectively.
Note that Su and Fu (2002) derived optimal values for θ in exactly the same setting,
obtaining θ = 0.487, θ = 1.077 and θ = 1.234 in the three cases, respectively. An
interesting remark is that, while θ = 0.487 does lead to a smaller variance when K = 0.7,
2.318, compared with 6.88, the second case leads to almost the same variance, 1.126 versus
0.9939, when K = 0.8 since the optimal value is θ = 1.077, and, surprisingly, the case
K = 0.9 produces a much smaller variance, 0.0037 versus 0.0112, the reason being that
Su and Fu (2002) then ran a fixed number of iterations of their optimisation algorithm,
rather than to wait for the minimum: θ = 2 then produces a much smaller variance than
the proposed value θ = 1.234.
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t P̂PMC
t,N αt,N

1 αt,N
2 αt,N

3 σ2
1,t

1 9.2635 0.3333 0.3333 0.3334 27.0664
2 9.2344 0.4748 0.3703 0.1549 13.4474
3 9.2785 0.5393 0.3771 0.0836 9.7458
4 9.2495 0.5672 0.3835 0.0493 8.5258
5 9.2444 0.5764 0.3924 0.0312 7.8595
6 9.2400 0.5780 0.4014 0.0206 7.5471
7 9.2621 0.5765 0.4098 0.0137 7.2214
8 9.2435 0.5727 0.4183 0.0090 7.1354
9 9.2553 0.5682 0.4260 0.0058 7.0289
10 9.2602 0.5645 0.4320 0.0035 6.8854

Table 2: Cox-Ingersoll-Ross European option: approximation of the price P for K = 0.07
using a D-kernel PMC algorithm with θ = 0, θ = 1 and θ = 2

t P̂PMC
t,N αt,N

1 αt,N
2 αt,N

3 σ2
1,t

1 1.8784 0.3333 0.3333 0.3334 2.1781
2 1.8791 0.2458 0.4187 0.3355 1.9287
3 1.8793 0.1797 0.5078 0.3125 1.7329
4 1.8848 0.1279 0.5924 0.2797 1.5670
5 1.8877 0.0878 0.6704 0.2418 1.4374
6 1.8881 0.0589 0.7340 0.2071 1.3303
7 1.8892 0.0359 0.7873 0.1768 1.2530
8 1.8853 0.0229 0.8275 0.1496 1.2010
9 1.8860 0.0137 0.8613 0.1250 1.1593
10 1.8879 0.0079 0.8883 0.1038 1.1262

Table 3: Same table as Table 2 for K = 0.08
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t P̂PMC
t,N αt,N

1 αt,N
2 αt,N

3 σ2
1,t

1 0.0555 0.3333 0.3333 0.3334 0.0114
2 0.0559 0.0333 0.2474 0.7193 0.0053
3 0.0554 0.0026 0.1108 0.8866 0.0043
4 0.0558 0.0001 0.0443 0.9556 0.0039
5 0.0557 0.0000 0.0164 0.9836 0.0038
6 0.0559 0.0000 0.0059 0.9941 0.0038
7 0.0559 0.0000 0.0028 0.9972 0.0038
8 0.0555 0.0000 0.0010 0.9990 0.0038
9 0.0558 0.0000 0.0003 0.9997 0.0038
10 0.0556 0.0000 0.0002 0.9998 0.0037

Table 4: Same table as Table 2 for K = 0.09
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6 Proofs

6.1 Proof of Proposition 3.2

The proof of this result follows the same lines as the proof of Proposition 4.3 in Douc et al.
(2005). The only condition to check is the equivalent of Proposition 4.2 in Douc et al. (2005).
For every α ∈ SD, α 6= α1,min, we now show that there exists a neighborhood Vα of α such that
if αt0 ∈ Vα then (αt)t≥t0 leaves Vα within a finite time. Then, by continuity of σ2

1(α), there
exists ǫ > 0 such that

−ǫσ2
1(α) ≥ σ2

1(α
1,min) − σ2

1(α) = νh

(
1

∑D
d=1 α1,min

d qd(x, x′)
− 1
∑D

d=1 αdqd(x, x′)

)

≥ νh

(∑D
d=1(αd − α1,min

d )qd(x, x′)

(
∑D

d=1 αdqd(x, x′))2

)

=

D∑

d=1

α1,min
d

[

σ2
1(α) − νh

(
qd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)]

Thus, there exists 1 ≤ d ≤ D such that

νh

(
qd(x, x′)

(
∑D

l=1 αlql(x, x′))2

)
≥ (1 + ǫ)σ2

1(α)

which implies that [F1(α)]d ≥ (1 + ǫ)αd. Since 0 ≤ αd ≤ 1, it follows that if αt0 ∈ Vα then
(αt)t≥t0 = (F t−t0

1 (αt0))t≥t0 will leave Vα within a finite time. The proof is completed.
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6.2 Proof of Proposition 3.3

The case t = 1 is obvious. Now, assume (5) holds for some t ≥ 1. Recall that νh is defined in
(2). We now prove that the following convergence results

1

N

N∑

i=1

ω2
i,t



h(xi,t) −
N∑

j=1

ωj,th(xj,t)




2

Id(Ki,t)
N→∞−→P νh

(
αt

dqd(x, x′)

(
∑D

l=1 αt
lql(x, x′))2

)

, (17)

1

N

N∑

i=1

ω2
i,t



h(xi,t) −
N∑

j=1

ωj,th(xj,t)




2

N→∞−→P σ2
1(α

t). (18)

Only the first convergence needs be considered since the latter can be easily deduced from the
former by summing over d. To prove Eq. (17), we will show that

1

N

N∑

i=1

ω2
i,tH(xi,t)Id(Ki,t)

N→∞−→P νH

(
αt

dqd(x, x′)

(
∑D

l=1 αt
lql(x, x′))2

)

for any function H satisfying π(H) = 0 and

π
{
(1 + H(x′))π(x′)/qd(x, x′)

}
< ∞ for some d ∈ {1, . . . ,D}. (19)

We apply Theorem A.1 of Douc et al. (2005) with

GN = σ
(
(x̃i,t−1)1≤i≤N , (αt,N

d )1≤d≤D

)
and UN,i = N−1ω2

i,tH(xi,t)Id(Ki,t).

Conditionally on GN , (Ki,t, xi,t)1≤i≤N are independent and for all (d,A) in {1, . . . ,D} × A,

P (Ki,t = d, xi,t ∈ A| GN ) = αt,N
d Qd(x̃i,t−1, A)

To apply Theorem A.1 of Douc et al. (2005), we just need to check condition (iii). We have

E

(
N∑

i=1

ω2
i,tH(xi,t)Id(Ki,t)

N
I{ω2

i,tH(xi,t)Id(Ki,t)>C}

∣∣∣∣∣GN

)

≤
D∑

j=1

1

N

N∑

i=1

∫
π(dx)

π(x)H(x)αt,N
d qd(x̃i,t−1, x)

(
∑D

l=1 αt,N
l ql(x̃i,t−1, x))2

I(

π(x)2H(x)

D−2q2
j
(x̃i,t−1,x)

>C

)

≤
D∑

j=1

1

N

N∑

i=1

∫
π(dx)

π(x)H(x)

αt,N

d
qd(x̃i,t−1, x)

I(

π(x)2H(x)

D−2q2
j
(x̃i,t−1,x)

>C

)

N→∞−→P

D∑

j=1

∫
π(dx′)π(dx)

π(x)H(x)

αt
d
qd(x

′, x)
I(

π(x)2H(x)

D−2q2
j
(x′,x)

>C

)
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by the LLN stated in Theorem 2.1 and since the induction assumption implies that αt,N
d

N→∞−→P αt
d

which is positive by the updating formula of αt
d. The rhs converges to 0 as C gets to infinity

using (19) and π{H(x′) = ∞ or qj(x, x′) = 0} = 1. Thus, Theorem A.1 of Douc et al. (2005)
applies and

1

N

N∑

i=1

ω2
i,tH(xi,t)Id(Ki,t) − E

(
1

N

N∑

i=1

ω2
i,tH(xi,t)Id(Ki,t)

∣∣∣∣∣GN

)
N→∞−→P 0.

To complete the proof, it remains to show that

E

(
1

N

N∑

i=1

ω2
i,tH(xi,t)Id(Ki,t)

∣∣∣∣∣GN

)

=
1

N

N∑

i=1

∫
π(dx)

π(x)H(x)αt,N
d qd(x̃i,t−1, x)

(
∑D

l=1 αt,N
l ql(x̃i,t−1, x))2

N→∞−→P νH

(
αt

dqd(x, x′)

(
∑D

l=1 αt
lql(x, x′))2

)

(20)

Using again the LLN stated in Theorem 2.1,

1

N

N∑

i=1

∫
π(dx)

π(x)H(x)αt
dqd(x̃i,t−1, x)

(
∑D

l=1 αt
lql(x̃i,t−1, x))2

N→∞−→P νH

(
αt

dqd(x, x′)

(
∑D

l=1 αt
lql(x, x′))2

)
(21)

Thus, to prove (20), we use (21) and check that the difference between both terms con-
verges to 0 in probability. To see this, first note that for all t ≥ 1, for all d in {1, . . . , D},
αt

d > 0 and thus, by the induction assumption, for all d in {1, . . . , D}, αt,N

d
−αt

d

αt
d

N→∞−→P 0. It

has been shown in Douc et al. (2005) that
∣∣∣∣∣

αt,N
d qd(x̃i,t−1, x)

∑D
l=1 αt,N

l ql(x̃i,t−1, x)
− αt

dqd(x̃i,t−1, x)
∑D

l=1 αt
lql(x̃i,t−1, x)

∣∣∣∣∣ ≤ 2 sup
l∈{1,...,D}

∣∣∣∣∣
αt,N

l − αt
l

αt
l

∣∣∣∣∣ .

Combining with
∣∣ A
B2 − C

D2

∣∣ ≤
∣∣A
B

∣∣ ∣∣D−B
BD

∣∣ +
∣∣ 1
D

∣∣ ∣∣A
B
− C

D

∣∣ yields by straightforward algebra,

∣∣∣∣∣
αt,N

d qd(x̃i,t−1, x)

(
∑D

l=1 αt,N
l ql(x̃i,t−1, x))2

− αt
dqd(x̃i,t−1, x)

(
∑D

l=1 αt
lql(x̃i,t−1, x))2

∣∣∣∣∣

≤ 1
∑D

l=1 αt,N
l ql(x̃i,t−1, x)

(
sup

l∈{1,...,D}

∣∣∣∣∣
αt,N

l − αt
l

αt
l

∣∣∣∣∣

)

+
1

∑D
l=1 αt

lql(x̃i,t−1, x)

(

2 sup
l∈{1,...,D}

∣∣∣∣∣
αt,N

d − αt
d

αt
d

∣∣∣∣∣

)

≤
(

1

αt,N

d

+
2

αt
d

)
1

qd(x̃i,t−1, x)

(

sup
l∈{1,...,D}

∣∣∣∣∣
αt,N

l − αt
l

αt
l

∣∣∣∣∣

)

.
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The proof follows from
αt,N

d
−αt

d

αt
d

N→∞−→P 0 and

1

N

N∑

i=1

∫
π(dx)

π(x)H(x)

qd(x̃i,t−1, x))

N→∞−→P π

{
H(x′)π(x′)

qd(x, x′)

}
.
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