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Abstract.—We define the minimum viable metapopulation (MVM) size as the minimum number
of interacting local populations necessary for long-term persistence of a metapopulation in a
balance between local extinctions and recolonizations. The minimum amount of suitable habitat
(MASH) is defined as the minimum density (or number) of suitable habitat patches necessary
for metapopulation persistence. Levins’s metapopulation model suggests that MASH can be
estimated by the fraction of empty patches in a network in which the metapopulation occurs at
a stochastic steady state. We discuss three reasons why this rule of thumb is likely to give an
underestimate, and possibly a severe underestimate, of MASH: the rescue effect, colonization-
extinction stochasticity, and nonequilibrium (transient) metapopulation dynamics. The assump-
tion that metapopulations occur at a steady state, common to many models, may be frequently
violated because of the high rate of habitat loss and fragmentation in many landscapes. Scores
of rare and endangered species may already be *‘living dead,” committed to extinction because
extinction is the equilibrium toward which their metapopulations are moving in the present
fragmented landscapes. To conserve these species we should reverse the process of habitat loss
and fragmentation.

Many empirical studies have shown that the expected lifetime of a population
increases with its current size (Williamson 1981; Diamond 1984; Schoener and
Spiller 1987). Provided that the environment does not change greatly (unrealistic
as this assumption may be), very large populations are expected to last for so
long that no conservation measures are called for, whereas very small populations
are likely to become extinct rapidly. The minimum viable population (MVP) size
is intended to be an estimate of the minimum number of individuals in a popula-
tion that has a good chance of surviving for some relatively long period of time,
for instance, a 95% chance of surviving for at least 100 yr (Soulé 1980). Although
difficult to apply in practice (Soulé¢ 1987; Lande 1988), MVP is a useful concept
in highlighting the need for a quantitative analysis of the risk of population ex-
tinction.

In the case of metapopulations consisting entirely of small and, hence, extinc-
tion-prone local populations (Hanski and Gilpin 1991), a somewhat analogous
concept, minimum viable metapopulation (MVM) size, may be defined as the
minimum number of interacting local populations necessary for the long-term
persistence of the metapopulation. In addition, it is useful to consider the mini-
mum amount of suitable habitat (MASH) necessary for metapopulation persis-
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tence, because not all suitable habitat is generally simultaneously occupied by a
metapopulation persisting in a balance between local extinctions and recoloniza-
tions. In the metapopulation context, one has to ask questions about extinction
due to permanent loss of habitat (the **declining-population paradigm’’ in Caugh-
ley 1994), whereas the concept of MVP is often applied to (small) local popula-
tions threatened by extinction for reasons other than systematic environmental
change (the ‘*small-population paradigm’’ in Caughley 1994).

The classical metapopulation scenario (Levins 1969) assumes a large network
of small habitat patches inhabited by a set of local populations with a substantial
risk of stochastic local extinction. The Levins metapopulation survives in a bal-
ance between local extinctions and recolonizations of empty but suitable habitat
patches. Denoting by p the fraction of currently occupied patches, the well-
known Levins model (Levins 1969, 1970) gives the instantaneous rate of change
in p as

A i
dt—mp( - p)—ep, ¢))

where the parameters m and e set the rates of colonization and extinction, respec-
tively.

To model habitat loss, assume that a fraction 1 — & of the patches is perma-
nently destroyed. The colonization rate thereby becomes lowered, because the
density of empty but suitable patches available for colonization is decreased from
1 — pto h — p, and the model becomes (May 1991; Nee and May 1992; Lawton
et al. 1994; Nee 1994; Moilanen and Hanski 1995)

B _ oth 2
E-mp( —p)—ep. (2

At equilibrium, the fraction of empty patches (out of all patches, including the
destroyed ones) is given by
—pr =X

h—p*= '’ 3
where p* is the fraction of occupied patches at steady state. Thus, the fraction
(and the number in some given area) of empty patches out of all patches remains
constant as long as the metapopulation does not become extinct, which happens
when h < e/m (fig. 1A). This is a seemingly very useful result, because it leads
to the following rule of thumb, which we name here the Levins rule: A necessary
and sufficient condition for metapopulation survival is that the remaining number
of habitat patches following a reduction in patch number exceeds the number of
empty but suitable patches prior to patch destruction.

The Levins rule is attractive because it gives an estimate of MASH from the
very limited information of the number of empty patches in a landscape in which
the metapopulation survives; no detailed knowledge of metapopulation dynamics
is required (Nee 1994). In practice, though, the Levins rule is liable to yield an
underestimate, and possibly a severe underestimate, of the critical patch number.
One should be aware of this bias so as not to endorse the preservation of too

Copryright © 1996. All rights reserved.



MINIMUM VIABLE METAPOPULATION SIZE 529

a b
‘a
1
= B <
s
B
2 1 X J
>
a
&
w - -~ - -’
e/m (1-Fi/G
amount of habitat. h amount of habitat. h

Fic. 1.—A, A schematic illustration of the Levins rule (eq. [3]) that gives the relationship
between the fraction of empty patches at equilibrium (h ~ p*) and the fraction of suitabla
patches. B, The analogous result for the discrete-time model (eq. [S]) with rescue effect
(r=1.

little habitat. Here, we describe and discuss three reasons why the Levins rule
will probably underestimate MASH: the rescue effect, colonization-extinction
stochasticity, and nonequilibrium metapopulation dynamics. By examining these
three processes, we highlight partial answers to the twin questions about MVM
and MASH.

THE RESCUE EFFECT

The Levins model (eq. [1]) gives the instantaneous rate of change in the fraction
of occupied habitat patches. For mathematical convenience, changes in the sizes
of local populations (local dynamics) are ignored, and newly established popula-
tions are assumed to grow instantaneously to the local carrying capacity. There-
fore, the Levins model best applies to metapopulations inhabiting relatively small
and isolated habitat fragments, because then local dynamics occur relatively fast
in comparison with metapopulation dynamics. Although there are good examples
of such metapopulations (Hanski and Hammond 1995; Hanski et al. 1995a), the
assumption of distinct timescales of local and metapopulation dynamics is vio-
lated by the majority of metapopulations that have been studied by ecologists.

To see why this matters, let us consider the following discrete-time version of
the Levins model:

Py = Fp,+ Gp,lh - (1 - np,—rFp,, “)

where p, is the fraction of occupied patches at time ¢, F is the probability of a
population surviving one time interval, G is the probability of recolonization given
that p, = 1, and r is a parameter giving the strength of the rescue effect (Brown
and Kodric-Brown 1977). By the rescue effect we refer here to decreased proba-
bility of extinction between time instants ¢ and # + 1 due to *‘simultanecus”
recolonization before ¢ + 1. We envision that, in practice, the rescue effect is
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observed extinction probability

calculated extinction probability

FiG. 2.—The relationships between the observed probability of local extinction (Ey; verti-
cal axis) and the calculated extinction probability without the rescue effect (E;,; circles) and
the product E;, (1 — C) (asterisks, where C is the probability of recolonization of an empty
patch). Note that E,, = E;,(1 — C), which suggests that r = 1 in equation (4). These results
are for the Glanville fritillary, Melitaea cinxia, living in a large network of habitat patches
(Hanski et al. 19954; I. Hanski, unpublished data). The broken line indicates equality of the
extinction rates.

generated by immigration increasing population sizes and thereby decreasing the
risk of extinction. The term in brackets in equation (4) is the fraction of patches
available for colonization, including the fraction that went extinct between ¢ and
t + 1([1 — F]p,) but may become rescued as specified by the value of r. If there
is no rescue (r = 0), the model given by equation (4) has the same dynamic
properties as the Levins model (eq. [1]), and the Levins rule remains valid.
However, whenever the rate of migration is high, it may be assumed, as a first
approximation, that the probability of rescue in this model equals the probability
of establishment of a new population in a patch that was empty at time #, in which
caser = 1.

Figure 2 gives an empirical example of the rescue effect from a well-studied
butterfly metapopulation (Hanski et al. 1994, 19954, 1996). The observed extinc-
tion probability, E ., was estimated for each extant population in 1993 (n = 524)
by fitting a logistic regression model to data on population extinction from 1993
until 1994 (256 extinctions). The independent variables were population size in
1993, patch area, a measure of the numbers of butterflies in the neighboring
populations (S,3, calculated as explained in eq. [S] of Hanski 1994a), and a
measure of the change in the sizes of the neighboring populations between 1993

Copryright © 1996. All rights reserved.



MINIMUM VIABLE METAPOPULATION SIZE 531

and 1994 (log[S 554/ S1993])- The observed extinction probability includes any pos-
sible rescue effect. An estimate of the extinction probability without the rescue
effect, E;,, was then calculated by setting, in the logistic regression, the number
of butterflies in the neighboring populations (S |493) to zero. The probability E;,,
is often much greater than the observed probability E (fig. 2). Finally, we note
that the observed extinction probability E . is roughly matched by E, (1 — C)
(fig. 2), where C is the estimated probability of recolonization of an empty patch
(estimated with another logistic regression). These results suggest that, in this
system, r = 1.
If r = 1, the Levins rule (eq. [3]) is replaced by

h-—p*=l;,—F(—C1;—h>. 5

Clearly, the fraction of empty patches is not independent of & but grows with
decreasing /i (fig. 1B). As in the Levins model, the metapopulation goes extinct
if h < (1 — F)/G. The important point is that, unlike in the Levins model, the
fraction of empty patches cannot be used to estimate the amount of habitat neces-
sary for metapopulation survival.

We emphasize that the difference between equations (3) and (5) is no* due
to a difference between a continuous and discrete model. In a continuous-time
structured metapopulation model (Gyllenberg and Hanski 1992), which includes
an explicit description of local dynamics and migration and therefore mechanisti-
cally accounts for the rescuc effect, the fraction of empty patches increases with
increasing habitat destruction, just as in the above discrete-time model (M. Gyl-
lenberg and 1. Hanski, unpublished manuscript). The difference between equa-
tions (3) and (5) is due to the rescue effect, which cannot be naturally incorporated
into the continuous-time Levins model (but see Hanski 1991).

We draw the following conclusion. The Levins rule remains valid for metapop-
ulations with low turnover rate and a very low rate of habitat destruction, because
then the rescue effect is of little importance and the metapopulation has time to
closely track the changing environment in spite of a low colonization rate (recall
that the Levins rule applies to a metapopulation at equilibrium). Unfortunately,
this is not the kind of scenario that conservation biologists are presently worried
about. In reality, turnover rate is often high, the rescue effect should not be
ignored (fig. 2), and the rate of environmental change is fast (see Nonequilibrium
Metapopulation Dynamics below). The discrete-time model and the result (eq.
[S]) derived from it apply to these situations, with the caveat that the metapop-
ulation may not turn over fast enough to justify the equilibrium assumption. We
return to this point below.

COLONIZATION-EXTINCTION STOCHASTICITY

The models discussed so far are meant to apply to large networks of habitat
patches with many local populations. In practice, the number of patches and local
populations is often small, and a metapopulation that is predicted to persist by
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equations (1) and (4) may nonetheless go extinct owing to chance variation in the
number of extant populations. Such colonization-extinction stochasticity (Hanski
1991) is analogous to demographic stochasticity (May 1973) in the dynamics of
small local populations.

Gurney and Nisbet (1978; summarized in Nisbet and Gurney 1982) have ana-
lyzed a stochastic version of the Levins model. Their analysis yielded the follow-
ing approximation for the expected time to metapopulation extinction, Ty,

TM = TLer'-IZ(l—p‘) , (6)

where T is the expected time to local extinction and H is the number of suitable
habitat patches. If one defines long-term metapopulation persistence as Ty ex-
ceeding 100 times T, equation (6) leads to the following condition for a reason-
ably large value for H (Gurney and Nisbet 1978):

p*VH=3, 0

For example, if there are 50 habitat patches, equation (7) says that the coloniza-
tion and extinction rates must be such that p* > 0.42 for the metapopulation to
persist for longer than 100 times 7.

These results were derived from a stochastic Levins model with identical habi-
tat patches, no spatial structure, and no rescue effect. We shall explore below,
numerically, the validity of equation (7) in a spatially realistic metapopulation
model, the incidence function model (Hanski 19944), in which these restrictions
can be relaxed. The incidence function model relates the stationary probability
of patch occupancy to patch size, to isolation from existing populations, and
possibly to other patch attributes. We first assumed a hypothetical network of
100 equally large patches located randomly in a square area. Colonization proba-
bility was modeled either as an exponential or sigmoid function of the expected
number of migrants arriving at a patch. The former assumption corresponds more
closely with the assumptions of the Levins model, but the latter is often more
realistic (Hanski 1994a). We assumed. the rescue effect, as in equation (4), and
assumed that migration was either of island type as in the Levins model or spa-
tially restricted. In a second set of simulations, we used the incidence function
model to iterate the dynamics of the Glanville fritillary, Melitaea cinxia, in real
networks of habitat patches using parameter values estimated from field data
(Hanski et al. 1995a, 1996). To examine the effect of the number of patches on
metapopulation survival, we created smaller patch networks by deleting patches
in the periphery of the more extensive network, thus keeping patch density rela-
tively constant (details of these simulations are described in the appendix).

The results in figure 34 and B demonstrate that equation (7) gives a reasonably
good approximation in the case of exponential colonization probability, regardless
of whether migration is of island type or restricted to nearby patches. The spatial
extent of migration makes no great difference, at equilibrium, when all patches
have statistically similar degrees of connection to other patches (this would be
violated if patches were strongly aggregated). With sigmoid colonization probabil-
ity there is more variation in the results (fig. 3C), apparently because with sigmoid
colonization probability there is somewhat more variation in the fraction of occu-
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Fi6. 3.—The relationship between the median time to metapopulation extinction and the
product p* VH in the model results described in the text and in the appendix (median Ty
= 3.3 in these examples). A, Hypothetical network with island-type migration (not dependent
on distance). B, Hypothetical network with distance-dependent migration and patches equal
in size to those in A. Both A and B assume exponentially increasing probability of coloniza-
tion with the number of immigrants arriving at an empty patch. C, Hypothetical network
with sigmoid colonization probability (eq. [3] in Hanski 1994a) and restricted migration.
D, Hypothetical network with spatially correlated environmental stochasticity (completely
correlated stochastic variation in the sizes of local populations).

pied patches at stochastic steady state. Variance in p is greatly increased by
adding regional stochasticity (spatially correlated environmental stochasticity),
which substantially shortens metapopulation lifetime (fig. 3D). (Increased vari-
ance in p also increases the error with which its value is determined from erapiri-
cal data [Hanski et al. 1996].)

In the case of the butterfly example, with large variance in patch areas (Hanski
et al. 1995a), metapopulations tended to survive for a long time when, roughly,
p* VH > 2 (fig. 4A). The reason for the enhanced survival in comparison with
the examples in figure 3 appears to be the variance in patch areas and, hence, in
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Fic. 4.—A, The relationship between median time to metapopulation extinction and the
product p* VH in model results using networks of real habitat patches inhabited by the
Glanville fritillary, Melitaea cinxia. See the appendix for details. B, The median time to
metapopulation extinction as a function of the expected number of extant populations. C,
The median time to metapopulation extinction as a function of the number of habitat patches
in the network.

local population sizes: metapopulation lifetime is increased by the low risk of
extinction of the largest local populations (extinction probability was here =~ 0.3
for median-sized patches compared with <0.01 for the largest ones).

It should be noted that the characteristics of the species and the patch network
as reflected in the value of p* are combined with the size of the patch network
in equation (7). Rearranging equation (7) in the form p* H > 3 V'H suggests that
MVM is roughly given, in this model, by 3 VH. Because MVM is a function of
H, the theory says that MVM and MASH cannot be evaluated independently. In
practice, though, the number of extant populations at equilibrium (p* H) should
be a much better predictor of metapopulation persistence than the number of
habitat patches, because differences in the properties of patch networks (other
than H) and in the properties of species are integrated in the value of p*. This
view is supported by the results in figure 4B and C for the butterfly example. To
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take another example, consider modifying a particular patch network by kezping
patch number constant but reducing patch density by increasing their average
isolation. Assuming that migration is spatially restricted, reduced patch density
will lower colonization rate and thereby decrease the value of p* and, hence,
reduce the chances of metapopulation survival for a given H. Even a very large
number of habitat patches is not sufficient for metapopulation persistence if these
patches are spread thinly across a large area. Much of the scatter in figure 4C
can be explained by variation in the average isolation and average size of the
patches in the 14 networks that were used to generate these results (see the
appendix).

NONEQUILIBRIUM METAPOPULATION DYNAMICS

The Levins rule assumes that the metapopulation that we observe is at a sto-
chastic steady state. This may not be so. Habitat fragmentation has occurred
rapidly in many landscapes, and it is likely that many metapopulations are pres-
ently approaching a new equilibrium from above, with ‘‘too many’’ patches cur-
rently occupied (Hanski 1994b; Tilman et al. 1994). If one estimates the minimum
patch number necessary for metapopulation persistence using observations from
such nonequilibrium metapopulations, one will necessarily underestimate MASH.

We illustrate nonequilibrium metapopulation dynamics with an example from
our research on the dynamics of the Glanville fritillary, Melitaea cinxia, on the
Aland islands in Finland (Hanski et al. 1994, 1995a, 1996). Frank Hering (personal
communication) has recently surveyed an area of approximately 25 km? with 42
extant habitat patches (dry meadows) suitable for this butterfly. Using 15-20-yr-
old aerial photographs and ground surveys of the vegetation, Hering arrived at
the result shown in figure 5 about the extent of suitable habitat approximately 20
yr ago and today. During this period, the total area of suitable habitat declined
to 33% of its original extent, and the number of patches declined from 55 to 42,
largely owing to decreased grazing pressure on the habitat patches.

In the absence of more detailed information, we used the following assumptions
about the decline in patch areas during the past 20 yr. For each patch that lost
some area (fig. 5), we assumed that the loss occurred linearly over a period of T
years, where T is a random variate uniformly distributed between 1 and 20 yr.
We then calculated with the parameterized incidence function model (Hanski
1994a; Hanski et al. 1996) the fraction of occupied patches p during and following
the 20-yr period of habitat destruction, as well as the equilibrium value of p. The
difference between the two reflects the delay in metapopulation dynamics in a
declining patch network.

The result in figure 6A suggests that this butterfly metapopulation has tracked
the amount of suitable habitat with only a small delay. The inferred changes in
metapopulation size are largely due to fast turnover in small populations. How-
ever, one should not draw the conclusion that the same result would necessarily
apply to all scenarios of habitat loss even in this species. The following example
makes this point forcefully. Let us assume that each of the present patches would
lose a further 50% of its area in another 20 yr. Figure 6B shows that such further
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FiG. 5.—A map of the study area (ca. 25 km?) on Aland Island, Finland, showing the
presumed extent of the habitat patches suitable for the Glanville fritillary, Melitaea cinxia,
approximately 20 yr ago and today (shaded) (F. Hering, pérsonal communication).

loss of habitat area would soon lead to a patch network smaller than MASH for
this species. But.in this case, the actual metapopulation. extinction is predicted
to take tens or even hundreds of years (fig. 6B). The inevitable decline to extinc-
tion may become temporarily halted for long periods, with the number of occu-
pied patches fluctuating without any obvious trend (fig. 7). The final decline to
extinction is slow because the last populations to go are typically the largest ones
with the smallest risk of extinction. The delay would be smaller if the dynamics
were greatly affected by regional stochasticity (spatially correlated environmental
stochasticity).

DISCUSSION AND CONCLUSIONS

We have described three reasons why the Levins rule may give an underesti-
mate of the minimum amount of suitable habitat necessary for long-term metapo-
pulation persistence. The level of underestimation may be severe, and we con-
clude that, although the rule has some heuristic value, it should not be used to
justify further loss of habitat.

The Levins rule fails in metapopulations with substantial migration among local
populations leading to strong rescue effect. More complex metapopulation models
incorporating the effect of migration on local dynamics illustrate another possible
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F16. 6.—A, Metapopulation size of the Glanville fritillary, Melitaea cinxia, as measured
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obtained with the incidence function model (Hanski 1994a) with parameter values estimated
from data collected in 1993. The model iteration was started by assuming the patch network
20 yr ago (fig. 5). During a period of 20 yr (from year 300 to 320), the network was reduced
to its present size (fig. 5) as described in the text. The broken line gives the equilib-jum
metapopulation size, whereas the continuous line gives the expected metapopulation size in
the declining network. The lines give the average value of p in 200 replicate simulations.
The middle panel gives the difference between the actual and equilibrium metapopulation
sizes, and the lower panel gives the numbers of metapopulation extinctions at different points
in time (no extinctions in this case). B, The metapopulation size as in A but starting with
the current patch network (fig. 5) and halving the area of each patch in 20 yr. Note that the
equilibrium metapopulation size drops to zero, but it takes tens of years for most metapopu-
lations to reach the equilibrium (extinction).
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FiGc. 7.—Three examples of actual metapopulation trajectories from the simulations de-
scribed in fig. 6B. Note the magnitude of oscillations and how two of the three metapopul-
ations settled down to a low value of p for a long time before eventual extinction. Regional
stochasticity would increase the amplitude of oscillations and shorten the time to extinction.

dynamic outcome with implications for conservation and management. Assum-
ing, realistically, that there is some cost to migration (increased mortality) and
propagule size-dependent (sigmoid) probability of colonization of empty patches,
the models demonstrate the possibility of alternative stable equilibria, one of
which is metapopulation extinction (Hanski 1985; Hastings 1991; Gyllenberg and
Hanski 1992; Hanski and Zhang 1992). A metapopulation with alternative stable
equilibria may suddenly collapse to extinction from a large size, with most
patches occupied. Therefore, not all common species are necessarily safe from
extinction even in only slightly degraded environments. Results for the Glanville
fritillary, which we have used repeatedly in this article, strongly suggest the
occurrence of alternative stable equilibria in metapopulation dynamics (Hanski
et al. 1995b). ‘

Stochastic models make the point that metapopulations consisting of a small
number of local populations, each with a high risk of extinction, are not likely to
survive for a long time. Although it would be unwise to draw a general conclusion
from the butterfly example in figure 4, we tentatively suggest that for metapopul-
ations living in networks of small habitat patches, comparable to the system
inhabited by the Glanville fritillary (Hanski et al. 19954, 1996), MVM is of the
order of 10 extant populations (fig. 4B), and the number of suitable patches in
the network should exceed roughly 20 for likely long-term persistence, although
depending on the kind of network, 20 patches may not be sufficient (fig. 4C).
Empirical results (reviewed in Thomas and Hanski 1996) for other species of
butterflies are in broad agreement with these suggestions.

Copryright © 1996. All rights reserved.



MINIMUM VIABLE METAPOPULATION SIZE 539

We conclude by emphasizing three other points. The number of extant popula-
tions Q (where Q = p*H) is perhaps the most useful and practical measure to
assess the viability of metapopulations in stationary environments. In the example
in figure 4, Q predicts metapopulation persistence as well as the quantity p* \%
as suggested by theory. In addition, Q has the advantage of being easier to mea-
sure in practice, as there is no need to count the suitable but empty habitat
patches; Q is a superior measure to the number of suitable patches (fig. 4B, C),
because Q accounts for variation in the spatial configuration and size distribution
of habitat patches. The catch, however, is that assessing metapopulation viability
by the number of extant populations assumes that the metapopulation is at a
stochastic steady state, which may not be the case.

Our second point is that, although these results can legitimately be used to
justify the need for networks of a minimum of 15-20 well-connected patches (fig.
4C), one should not rush to the conclusion that when this requirement cannot be
met, there is no rational basis for protecting the remaining few populations and
habitat patches and undertaking other management measures. The theoretical
result refers to long-term survival of a metapopulation in relation to the expected
lifetime of local populations. Local populations themselves may last for tens of
years (for well-documented butterfly examples, see Warren 1992), and a metapo-
pulation expected to survive for a shorter period of time than *‘long-term” might
nonetheless survive for many decades or even longer. Practically all landscapes
change much faster than that, and indeed, the assumption that metapopulations
occur at equilibrium is dubious for many, although not all, species. Especially
where habitat has been recently destroyed, there is the possibility that the meta-
population has not had time to reach the new equilibrium, which may be extinc-
tion. Just like an old tree left without its pollinators and dispersal agents (Janzen
and Martin 1982), a metapopulation may occur in a fragmented landscape, not
because the landscape structure is adequate for long-term persistence but by
virtue of the slowness of the decline to extinction. This sort of scenario is usually
envisioned in the case of faunal collapse on relict habitats at a large spatial scale,
following, for instance, postglacial climate change and complete isolation of popu-
lations (Harrison 1991), but as the example in figures 5-7 illustrates, the same
sort of events may be rampant all around us. This leads to our third and most
disturbing conclusion for conservation: many rare and endangered species may
already be committed to extinction, unless the loss and fragmentation of their
habitat is reversed.

’

APPENDIX
DESIGN OF THE SIMULATION MODEL

The results in figure 3 were obtained by assuming a hypothetical patch network, which
was generated by randomly placing 100 patches in a square 2 X 2 km2. All patches were
272 m? in size, which equals the median patch size in the Melitaea cinxia metapopulation
(described in Hanski et al. 1995a) used in figure 4. Smaller patch networks (n = 4,7, ...,
100 patches) were created by removing the patches with the greatest distance to the center
of the original network, thus keeping patch density relatively constant. Metapopulation
dynamics were iterated with the incidence function model (Hanski 1994a) with the follow-
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ing field-estimated parameter values: x = 0.952, ¢ = 0.01, and a« = —1.0 (Hanski et al.
1996). Different p* values for a particular patch network were generated by changing the
value of parameter y, which determines colonization probability (Hanski 1994a).

Twenty replicate simulation runs for each combination of n and y were conducted as
follows. All iterations were started with all patches occupied. The results for the first 500
generations were omitted to allow the metapopulation to reach a stochastic steady state.
The observed p* value was calculated as the median of the p values during the next 500
generations. To prevent premature metapopulation extinction, each patch had a small
extra probability of colonization (1% per year) during the first 1,000 generations. Following
the determination of the p* value, the external colonization probability was set to zero,
and the model was iterated until the metapopulation became extinct or 1,000 generations
had elapsed. Finally, the median time to extinction and the average p* value were calcu-
lated for the 20 replicates.

The results in figure 4 were obtained in the same manner as those in figure 3, but with
a different set of patches. Here 14 large patch networks occupied by the Glanville fritillary,
Melitaea cinxia (Hanski et al. 1995a), were iterated with field-estimated parameter values
(table 1 in Hanski et al. 1996). Smaller networks were generated by removing 10 patches
at a time from the periphery of the network until there were fewer than 10 patches left.
The parameter y was kept constant (4.04; Hanski et al. 1996).
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