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ABSTRACT 

Minimizing the modal vibration induced by on-off thrusters is a challenging 

problem for designers of flexible spacecraft. This thesis presents the first study of Pulse- 

Width, Pulse-Frequency (PWPF) modulated thruster control using the method of 

command input shaping. Input shaping for systems with linear actuators has been 

successfully developed to reduce modal vibrations. Recently, this method has been 

extended to systems with on-off actuators to some degree. However, existing approaches 

require complicated non-linear optimization and result in bang-bang control action. Bang- 

bang thruster operation on flexible spacecraft is propellant-intensive and causes frequent 

thruster switches. In this thesis, a new approach integrating command input shaping with 

PWPF-modulated thruster control is developed to minimize residual vibration in 

maneuvers and to reduce propellant consumption. To realize this approach, an in-depth 

analysis of the PWPF modulator is first conducted to recommend parameter settings. 

Next, command input shapers are designed and integrated with the PWPF modulator. 

Simulation verifies the efficacy of this technique in reducing modal vibration. Lastly, 

robustness analyses are performed and demonstrate the method's insensitivity to 

frequency and damping uncertainty. 
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I. INTRODUCTION 

A. BACKGROUND 

State-of-the-art space-based systems employing vibration-sensitive payloads 

demand stringent spacecraft attitude control requirements. Concurrently, launch costs 

have spurred a drive to optimize payload mass fraction by reducing spacecraft structural 

mass. However, mass reductions can increase the influence of the structure's flexible 

modes and complicate pointing performance. As structures get lighter and larger, the 

modal frequencies encroach on controller bandwidths, making control-structure 

interaction a major stability issue. Without some sort of compensation, fine attitude 

control in the presence of flexibility is doubtful. 

Many of these systems use thrusters to accomplish station-keeping (translational) 

maneuvers. Attitude control during such maneuvers must be performed with thrusters 

since momentum wheels can become saturated due to the required control torques. On the 

other hand, flexible spacecraft which use on-off (bang-bang) thrusters are subject to 

modal vibrations which can exceed payload or structural limitations. Additionally, bang- 

bang control uses large amounts of propellant. As structural flexibility increases, 

minimizing modal vibration induced by on-off thrusters becomes more difficult for the 

designer. 

B. MOTIVATION FOR RESEARCH 

1.        Active versus Passive Control 

Numerous approaches for dealing with flexibility have been researched, to 

varying degrees of success. Passive methods such as gain stabilization are used where 

attitude pointing requirements are less stringent than structural loads requirements. Active 

damping systems such as piezoelectric actuators show promise. However, complications 

with sensor/actuator collocation, real-time parameter estimation, and robustness persist. 



2.        Naval Postgraduate School Research Efforts 

Using the Flexible Spacecraft Simulator (FSS) experimental facility, researchers 

at the Naval Postgraduate School Spacecraft Research and Design Center (SRDC) are 

studying vibration suppression during flexible spacecraft slewing maneuvers. One goal of 

this research is to realize a synergistic integration of maneuvering control actuators with 

active vibration control systems. To accomplish this goal, parallel efforts are addressing 

vibration suppression and vibration avoidance. 

Active vibration controllers which work independent from slewing controllers 

focus on end-of-maneuver performance. SRDC researchers have completed several 

experiments in this area. Previous research includes implementations of Linear Quadratic 

Gaussian, Positive Position Feedback (PPF), and velocity feedback controllers with 

piezoceramic actuators bonded to a flexible beam. In order to understand how various 

slewing and vibration suppression techniques interact, SRDC researchers are also 

investigating control-structure interactions. Research effort into this phase concentrates 

on the slewing actuators which are typically a major vibration source. By pursuing a two 

stage strategy, improved solutions to vibration control will likely employ the best 

characteristics of several techniques. Capitalizing on the strengths of different methods 

can greatly ease the demands on each sub-system without incurring excessive complexity. 

For example, an active piezoceramic vibration suppression system integrated with a 

shaped slewing command may virtually eliminate all modal vibrations. 

3.        Potential Impact of Input Shaping Techniques 

Input shaping for systems with linear actuators has been successfully developed to 

act on modal vibrations as they occur. Recently, this method has been extended to 

systems with on-off actuators to some degree. However, existing approaches require 

complicated non-linear optimization and result in bang-bang control action. The principal 

drawbacks stem from an extensive set of optimization constraints which, in the presence 

of multiple, closely spaced modes, are extremely sensitive to initial state, number of 

modes, mode ratio, and move distance. Clearly, an approach which capitalizes on the 

strengths of command input shaping without carrying the drawbacks is preferable. 



C.        SCOPE OF THESIS 

This thesis presents the first study of Pulse-Width, Pulse-Frequency (PWPF) 

modulated thruster control using the method of variable amplitude command input 

shaping. Prior to implementing the input shaping technique, the PWPF modulator is 

studied and design guidelines are listed for the first time. The efficacy of PWPF 

modulated thruster control with variable amplitude input shaping is demonstrated by 

computer simulations. This research provides the requisite analytical framework for 

future vibration control experiments involving the FSS. 

The current FSS model is extended to include piezoceramic sensors and actuators 

mounted on the flexible appendage. After the equations of motion for the model are 

determined, an in-depth analysis of the PWPF modulator is conducted to determine the 

tunable range on modulator parameters. Recommend settings are included. Next, variable 

amplitude command input shapers are designed and integrated with the PWPF modulator. 

Investigations of single-mode performance are extended to multiple-mode cases and 

comparisons made between shaper type and targeted modes. Robustness analyses are then 

performed to ensure viability of the approach with uncertain plant conditions. 

This thesis will show that the integration of a PWPF modulator with input shaping 

techniques provides a simple way of avoiding modal vibrations for flexible spacecraft 

with on-off actuators. Prior research which has shown the superiority of PWPF 

techniques over bang-bang control in terms of thruster cycle and propellant economy will 

be extended to include vibration-free maneuvers. Finally, this thesis is written as a 

reference for future research efforts into the area of modulated thrusters. Since much of 

the information on PWPF resides in corporate technical memoranda and not in the 

published literature, this thesis provides a convenient reference for follow-on researchers. 





II.        FLEXIBLE SPACECRAFT SIMULATOR (FSS) SYSTEM MODEL 

A. EXPERIMENTAL FACILITY 

The FSS experiment at the Naval Postgraduate School was designed to investigate 

the effects of various control schemes on the slewing vibration suppression performance 

of flexible spacecraft. The experimental facility, depicted in Figure 2.1, is a two- 

dimensional model of a typical spacecraft. The FSS consists of a 0.76-meter diameter 

rigid central body (hub) and a flexible, "L"-shaped beam fixed to the hub perimeter. The 

2.22-cm thick central body is restricted from translational motion by means of an air- 

bearing support structure. In order to simulate a frictionless environment, both the central 

body and flexible beam are floated on air pads. The FSS is equipped with a momentum 

wheel and 0.35N cold gas thrusters for executing attitude control maneuvers. Complete 

descriptions of the experiment, including discussions on real-time control and data 

collection, can be found in Watkins (1991), Hailey (1992), and McClelland (1994). 

Figure 2.1 
NPS FSS Experiment 



B.        FSS FLEXIBLE APPENDAGE 

1.        Description 

The flexible appendage, termed the "arm", is used for researching active vibration 

control schemes and is fully reconfigurable. Piezo-ceramic (PZT) sensor/actuator patches 

can be applied to the beam to control vibration and arm shape. Figure 2.2 shows a typical 

flexible appendage configuration with PZT patches at the beam elbow and base. 

Figure 2.2 
Base joint (left) and elbow joint (right) with piezoceramic patches and LED Targets 

The beam used in this analysis consists of two 0.61-m long aluminum strips joined at 

ninety degrees by a bracket. PZT sensors and actuators are included at the base of the arm 

and elbow. Table 2.1 lists the properties of the beam. 

Table 2.1 
FSS Flexible Beam Properties 

Property (units) Value 

Beam thickness, mm 1.58 

Beam height, cm 2.54 

Beam density, kg/m3 
2.80 x 103 

Beam Modulus, N/m2 
7.20 xlO10 

Mass intensifiers, known as "point masses", are placed at various locations along the 

length of the arm in order to reduce the fundamental cantilever frequency to 

approximately 0.18 Hz. Using this setup, large structures with low fundamental 

frequencies can be modeled using a scaled experimental facility. 



2.        Finite Element Model 

An eight element model of the flexible arm as configured for this investigation 

was constructed using MATLAB. All motion was considered to be in-plane bending 

based on a cantilevered mounting. Torsional effects were not included. Structural 

damping was assumed to be 0.4% {C, = 0.004) for all modes. In order to reduce the 

cantilever frequencies, point masses were added at each node as shown in Table 2.2. 

Table 2.2 
Finite Element Model Nodal Mass Distribution 

Node1 Point Mass (kg) Piezo Sensor/Actuator2 

1 0.455 Element 1 

2,3 0.455 none 

4 0.91 none 

5 0.455 Element 5 

6,7 0.455 none 

8 0.91 none 

Notes: (1) The base of the arm is defined as node zero. 
(2) Elements span the listed node and the one prior. 

PZT sensors and actuators are mounted at the elbow and base of the arm. Addition 

of the piezo patches adds beam stiffness and therefore increases the fundamental 

frequency. However, addition of the point masses overcomes this effect and significantly 

lowers the beam natural frequencies. Table 2.3 lists the piezoceramic properties used in 

developing the finite element model. The fundamental cantilever frequency is 1.15 

rad/sec (0.18 Hz). A complete listing of the cantilever modes is included in the following 

section. 



Table 2.3 
Piezoceramic Sensor/Actuator Properties 

PROPERTY SYMBOL VALUE 

Piezo Lateral Strain Coefficient, m/V d3I 1.80 xlO10 

Piezo Modulus, N/m2 

EP 
6.30 xlO10 

Piezo Permittivity, N/V2 

s3 1.50 xlO"8 

Piezo sensor thickness, mm 
tps 0.25 

Piezo actuator thickness, mm 
'p. 

0.50 

Piezo density, kg/m3 

Pp 
7.70 x 103 

C.       EQUATIONS OF MOTION 

The linearized equations of motion for the FSS equipped with thrusters (7,) and 

momentum wheel (Tw) have been developed in Watkins (1991) and Hailey (1992). 

However, addition of piezoceramics to the beam adds the piezo voltage as an additional 

state as well as another independent equation. The equations of motion for the flexible 

spacecraft without piezos are given by: 

= T 4e+/wew 

q^+Dß + Zq. + Xq, =0 

(2.1) 

(2.2) 

(2.3) 

where equation (2.1) represents the rigid-body motion and its coupling to the flexible 

beam and momentum wheel. Equation (2.2) represents the momentum wheel equation 

and shows the wheel coupling to the rigid-body. Equation (2.3) is the flexible beam 

equation showing coupling to the rigid-body mode. The variables and symbols used in 

these equations are defined as follows: 



4, Flexible spacecraft moment of inertia 

Iw Momentum wheel inertia 

0 Central body angular position 

0w Momentum wheel angular deviation 

D; Rigid-elastic coupling vector, comprised of components Dt 

Tc Control torques, Tc = Tw+ Tt 

TD Disturbance torques 

Tw Momentum wheel torque 

qt Flexible arm node displacements 

Z Modal damping matrix, 2^,-Cö,- (diagonal) 

A, Matrix of natural frequencies, (a] (diagonal) 

1.        Rigid-Elastic Coupling Effect 

Equations (2.1) - (2.3) were obtained by writing expressions for the kinetic and 

potential energy of the rigid body and flexible beam. There are three sources of kinetic 

energy due to rigid body slewing: 1) the rigid body rotation, 2) flexible beam cantilever 

motion, and 3) the combined translation and rotation (co x r terms) of the flexible beam. 

The third source of kinetic energy is the means by which the rigid body and flexible 

responses couple. The rigid-elastic coupling vector, D, is a measure of this interaction. D 

has dimension «xl where n is the number of flexible modes. A detailed derivation of the 

rigid-elastic coupling term is presented in Agrawal (1996). The rigid-elastic coupling for 

each vibrational mode is given by 

J>i=l(xFVi-yF^)dm (2.4) 

where xF and yF are the coordinates of each finite element node and the «JK'S are x and y 

displacements, respectively, of each node from the unperturbed position. The integration 

over mass weights the nodes according to the amount of lumped mass at each location. 

Calculating the rigid-elastic coupling using data from a finite element modeling program 

is performed using: 



A-iMf-^fK (2.5) 

where there are N finite element nodes. The lumped mass parameter, mp includes the 

mass from the beam element at each node as well as any point masses mounted at the 

node. The calculations are repeated for each of the n modes. An example calculation of 

the first mode rigid-elastic coupling term, D„ is provided in Appendix A. 

2.        Addition of Piezoceramics to the FSS Model 

Addition of piezo-ceramic sensors and actuators modifies the original equations 

by adding stiffness to the beam and applying reaction torques to beam bending. The 

voltage measured by a piezoceramic sensor is proportional to the amount of tension or 

compression imposed upon the structure. Using the piezoceramic sensor voltage as a 

generalized coordinate and evaluating the system Lagrangian, the operating equation, or 

"sensor equation", for piezo-ceramic actuators is (Meyer & Agrawal, 1996): 

e = ~BTq (2.6) 

The electro-mechanical coupling term, BT, represents the conversion of electrical 

voltage, e, to mechanical displacement, q at each node and is defined as 

2Jr=[z>,    b2    b3    b4] (2.7) 

where y, bt, and e are constants determined by the material properties of the beam and 

the piezoceramic patches. In general, the electrical voltage may correspond to an actuator 

input or a sensor output. Actuator voltages are expressed as ea and sensor voltages as e. 

The voltage is considered constant across the piezoceramic cross-section and is given by 

e = tpE 

Expressions developed in Agrawal (1996) describing the piezoceramic contribution to the 

model are listed here for reference: 
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6, =0 

£2 = -d^E w 
p   p ? + 

2>/ 

0 

£»4  = ^„W, 

(2.8) 

? + 
V 2j 

where the variables are described as follows: 

wp       Width of the piezoceramic patch 

h Height of the piezoceramic patch 

tp Thickness of the piezoceramic patch 

c,        Distance of beam surface from coordinate axis 

The equation of motion for the piezoceramic response to an actuator input is simply 

Mpq + Kpq = -Bea (2.9) 

Eq. (2.9) is of the same form as the flexible beam equation so the piezoceramic elemental 

mass and stiffness matrices may be added directly to the beam elemental matrices prior to 

conversion to global coordinates. The resulting equations of motion for the FSS with 

thrusters, momentum wheel, and piezoceramic sensors/actuators are 

49 +'A+ !>,-£=    TC + TD 
1=1 

/...e+/,e.. =  z„ (2.10) 

qi+DQ + Zqi+Xqi    = -Bea 

ye   =   BTq 
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Note that the piezo actuator voltage term, Bea, can describe a state-feedback 

controller or an externally applied voltage for shape or feedforward vibration control. For 

example, if a velocity feedback control law is implemented with piezoceramic actuators, 

ea can be rewritten in the following form: 

-k 
e

a=-k^s=~-^TA (2.11) 

3.        Model Configuration 

Since this thesis focuses on thruster control, the FSS momentum wheel is not 

utilized. Therefore, 9W and Tw are taken to be zero and the wheel moment of inertia is 

included in the total moment of inertia Im= 4 + 4= 10.49 kg-m2. Disturbance torques 

are neglected in order to isolate the effects of the thruster on the flexible simulator. At 

user discretion, a velocity feedback controller is included to provide piezo actuator 

control torques. The finite element code generates system matrices for all configurations 

and queries the user for the set to be used in the analysis. 

Up to sixteen flexible modes may be selected in the finite element model code. 

Based on the relative frequencies, a maximum of eight modes is used in this thesis 

without significant penalty in computation time or complexity. Using beam configuration 

listed above and the material properties listed in tables 2.1 and 2.3, the piezoelectric 

parameters are 

BT
a=[0   -3.708x10^    0   3.708X10"4] 

B?=[0   -2.628X10-4    0   2.628X10"4] 

ya=1.0033e-007 

ys = 2.0065e-007 

and the rigid-elastic coupling vector, D, is 

D = [-1.687   -1.185    0.174   0.224   0.066   0.144   0.037    0.088]r 

12 



The stiffness and damping matrices X and Z of equation (2.10) are block di 

-2Cifl>i 0 

diagonal: 

and     Z = 

© 

-2£2ü)2 

0 

(2.12) 

-2^»J 

where «,/. are the cantilever frequencies of the flexible arm. Table 2.4 lists the cantilever 

and system natural frequencies. 

Table 2.4 
Flexible Spacecraft Simulator Modal Frequencies 

Mode Cantilever Frequency 

(rad/sec) (Hz) 

1.150 

2.840 

15.20 

0.183 

0.452 

System Frequency 

(rad/sec) (Hz) 

1.34 

3.16 

0.213 

0.504 

26.61 

52.92 

77.18 

2.41 

4.23 

8.42 

15.23 

26.72 

52.94 

2.42 

4.25 

8.42 

12.3 

104.2 

132.0 

16.6 

21.0 

77.31 

104.2 

132.1 

12.3 

16.6 

21.0 

D.        STATE SPACE FORMULATION 

Equations (2.10) can be written directly as a partitioned 
given by 

second order system 

4 
b 

D1 

■ + 

ß\ 

0 

z ■ + 
0 ; X\\ql ■2Be, (2.13) 

where the total rigid body torque TT = Tt + Tw + TD is the sum of 

body and the piezoelectric torque is due to a state feedback 
all torques acting on the 

controller or an externally 

13 



applied voltage. A factor of two is applied to the piezoelectric torque to account for 

actuators placed on each side of the beam. The state space model of the form 

x = Ax + Bu 

y = Cx + Du 

is obtained through a series of state transformations. Setting D (the direct transmission 

matrix) to zero, the resulting modal system is 

hi 0 

A z+z„ 
■ + 

0 
\i     where \i (2.14) 

where Zis defined in Eq. (2.12) above and A, similar in form to X in Eq. (2.12), is the 

block diagonal partition of squared system natural frequencies. Note that the matrix Z can 

be comprised of unaugmented beam modal damping as well as active damping from the 

piezoelectric state feedback controller. 
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III.      PULSE WIDTH, PULSE FREQUENCY MODULATORS 

A.        BACKGROUND 

While PWPF modulators have been in use since the 1960's, little has been 

published concerning their performance or optimization. Considerable effort has been put 

into determining the stability margins of the modulator. However, analyses of varying 

modulator parameters for a given plant and mission are rare. 

B. DESCRIPTION OF PWPF MODULATOR 

The PWPF modulator is designed to provide a thruster output proportional to 

command input. The modulator improves pointing accuracy for all-thruster control and 

results in more efficient propellant use. The modulator, as illustrated in Figure 3.1, 

incorporates a first order lag filter and Schmidt trigger with a feedback loop. The lag filter 

integrates the error between command and actuator state and is tunable to achieve the 

desired system response. Assuming a zero initial condition, the thruster fires once the 

trigger threshold, d, is exceeded. The thruster will continue firing until the Schmidt 

trigger input falls below the off-threshold, h. Addition of a pre-filter input gain, Kp, 

upstream of the summation allows the designer to ensure command inputs will remain in 

the pseudo-linear range as well as to tailor the response as desired. 

um 
d-h    d 

UJt) >\   '(».^«'K Km 

V5+1 
 » \~T Thraster 

System \x   ^ L JJ -IT 
-d   h-d 

Figure 3.1 
PWPF Modulator 
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Nomenclature for the PWPF modulator parameters shown in Figure 3.1 are listed below: 

r(t) input command 
um(t) modulator output, magnitude of Um 

e(t) command error signal, r(t)- Um(t) 

f(t) filter output signal to thruster 
d thruster on-threshold, also termed "Em" 
h thruster off-threshold, also termed "E0f 
d-h hysteresis parameter 
Km modulator gain 

KP 
pre-filter gain 

*m pre-filter time constant 

1.        Motivation for PWPF Modulated Slewing 

PWPF modulated thrusters allow acceptable slew performance with less vibration 

than a simple bang-bang control (McLelland, 1994). The superior performance of the 

PWPF modulated control to the other systems is a combination of three factors. 

First, the PWPF modulator approximates a linear actuator by varying both pulse 

width and frequency with time. Operation in this linear range, known as "pseudo-linear" 

operation, gives the designer a response which is analogous to that of a linear actuator 

such as a momentum wheel. 

Second, because the controller has the option to vary the pulse size and timing, 

the PWPF modulator is more fuel efficient than the bang-bang controller, especially in 

the presence of flexibility. Because the bang-bang controller is unable to produce a linear 

output, thruster firings often excite flexible modes which then couple back in to the rigid 

body motion. The result is a limit cycle with continuous thruster switching and propellant 

waste. The PWPF controller, besides causing fewer vibrations, can tailor its response to 

reduce the number of thruster firings. 

Finally, the PWPF controller offers flexibility in design and operation. PWPF 

modulator components can be tuned to optimize performance for any given plant 

configuration, for example, when spacecraft moments of inertia change over the course of 

a mission. Because the modulator parameters are independent of the spacecraft 

parameters, no a priori knowledge of the spacecraft dynamics is required for system 
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analysis and performance determination. This characteristic provides the scope for 

implementing adaptive- or fuzzy control schemes. 

2.        Previous Research into PWPF Modulation 

For all of its advantages, few applications of PWPF in conjunction with other 

vibration control schemes have been reported in published literature. Several 

complications caused by the modulator may be the primary reason for its limited 

exposure. The primary disadvantage of the PWPF modulator is its tendency to contribute 

to phase lag at higher frequencies (Wie and Plescia, 1984; McClelland, 1994). 

Additionally, its inherent nonlinear characteristics make precise stability margin 

determinations difficult. Anthony and Wie (1990) attempted to quantify the modulator 

stability margins using various describing functions with limited success. One of the best 

contributions from this research is the PWPF modulator module to NASA's Interactive 

Controls Applications (INCA) software. In general, there is very little that can be 

quantitatively applied across the board to all modulator configurations. Rather, the 

modulator must be tuned for desired response and then checked for stable operation at 

that operating point. In the event a particular set of modulator parameters is unsuitable, 

even a small change in a parameter can dramatically change the stability margins 

(Anthony and Wie, 1990). Advances in computing power and the development of 

improved describing function methods simplify these analyses. 

Complicated nonlinear stability analyses should not deter use of the PWPF 

modulator, however. Complete knowledge of the stability margins for all modulator 

settings is unnecessary. Rather, the designer must determine the specific parameter 

settings needed to attain desired system performance and check the stability of that 

unique case. 

C.        PWPF TIME DOMAIN EQUATIONS 

The equations governing the PWPF modulator provide insight into the effects of 

parameter choice on system performance and limits. All derivations were conducted as 

part of the NPS course AA4900 "Thruster Control of Flexible Spacecraft" (Meyer, 1995). 
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1.        Modulator Time Response 

Referring to Figure 3.1, the error signal is 

e(t) = r(t)-Um(t) 

Or in Laplace form 

e(s) = r(s)-Um(s) 

The filter output is given by 

K f(s) = ^\r(s)-Um(s)] + l T./(0) 

.s + 1 

(3.1a) 

(3.1b) 

(3.2) 

let r(t) be a commanded step input of arbitrary magnitude A, such that 

r(s) = ~ 
s 

The controller output Um(t) is a step function as well: 

Um(s) = 
U„ 

so that the filter output becomes 

f(s) =      K" 
s + \ 

A_Um 

s      s 

KA 

+ 
^5 + 1 

KmUm      +T./(0) 
s(zms + l)      s(xms + l)    xms + l 

Partial fraction expansion of the first two terms yields 

(3.3a) 

(3.3b) 

(3.4) 

/(*) = 
KmA    KmAxm 

S T„5 + l 

KmUm     KmUxm 

S T„.S + 1 

or 

m=KmA 
1_ 1_ 
s    s + 1/x. 

-KM. 
s    s + 1/x. 

(3.5) 



such that the system time response is given by 

f{t) = KmA{\ - e"^ ) - KmUm{\ - e-'^ ) 

or 

(3.7) 

f(t) = Km(A-Um)[l-e"^] (3.6) 

The initial condition response is obtained in a similar fashion: 

T    f(0) -'/ 

xms + l 

The total system response is given by: 

f{f) = Km(A- t/m)[l-e-V»] + /(0) e^ (3.8) 

2.        System Operating Equations 

The equations which express the behavior of the controller can be derived by 

analyzing the time domain equation between the values for the Eon, defined as "d\ and 

Eqff, defined as "d-h", thresholds. When the Schmidt trigger is off, Um(t)=0. With a zero 

initial output state, a reference step causes the filter output f(t) to increase as a first order 

exponential. Once f(t) reaches a value of d, the thruster fires with a magnitude U (t) and 

reduces/(If) as a first order exponential. The thruster is secured when f(t) reaches d-h. The 

on-time, Tc, is the interval during which the thruster is activated (Um non-zero). TD, the 

off-time, is the interval between firings. As shown in Figure 3.2, the initial on-time and 

cycling on-time may differ, depending on the selection of Schmidt trigger parameters. 
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d 

h 

d-h 

t=0 
reference Tc TD 

Figure 3.2 
PWPF Lag Filter Time Response 

a. On-time, Tc 

The system response, Eq. (3.8), can be rewritten as: 

/(0 =/(0) + (*m^ -/(0))[l - e-'^ (3.9) 

From point A to point B,f(0)=d and Um(t)=Um. Referring to Figure 3.2, 

the difference in the filter output between off-on and on-off = d-h. 

VoAt) = d + [Km(A-Um)-d]l-e-TclX" = d-h 

Solving for Tc 

or 

-T IX £     cl    m 
_[Km(A-Um)-d]-h 

[Km{A-Um)-d] 

T=  -x„ln 1 + 
h 

[Km(A-Um)-d\_ 

(3.10) 

(3.11) 
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b. Off-time, TD 

From point B to point C,f(0)=d-h and Um(t)=0. Referring once again to 

Figure 3.2, 

Af(t) = [(d-h) + (Km(A-Uu)-(d-h 1-e 
-TD/z m (d-h) = h       (3.12) 

Solving for TD, 

or 

[TDßm)^-[Km(A-Um)-(d-h)] 

-[Km(A-Um)-(d-h)] 

TD=  -xwln 1- 
Km(A-Um)-(d-h) 

(3.13) 

(3.14) 

c. Output frequency 

The filter output frequency is defined as the inverse of the total period 

/ = 
1 1 

* total *C + *D 

(3.15) 

Substituting for Tc and TD, 

/ = — 

-T„ In 1 + 
h 

Km{A-Um)-d, 
+ ln 1- 

Km(A-Um)-{d-h\ 

(3.16) 

d.        Modulation Factor 

The modulation factor, also termed the duty cycle, is defined by the ratio 

of on-time to total period. 

Tr 1 
MF = - 

TC + TD     l + TD/Tc 

or in terms of the design parameters, 

(3.17) 
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MF = 

-Tcln 

1 J. 

1- 
h 

{Km(A-Um)-{d-h)) 

li             *           1 iD in 

.     Km(A-Uu)-d_ 

(3.18) 

e. Minimum and Maximum Input Levels 

The minimum input value, Amin, for which Tc>0 is defined as the effective 

deadband of the modulator. Inputs smaller than the effective deadband will not trigger the 

relay, resulting in zero modulation factor. The minimum input for the relay to be on is 

fmiii=d-h = Km(A-Um) 
(3.19) 

which can be arranged as the fraction of modulation a given input represents as 

KA-d 

KJJ_ - h 
= %MF (3.20) 

For an input Amin, equation (3.20) is identically zero, and the value of Amin is given by 

Ama = ~7T~ = me effective deadband 
(3.21) 

In the event a pre-filter gain, Kp, is utilized, the gain term in the 

denominator of equation (3.21) must be expressed as the product of the two gains, KJK^. 

Similarly, the maximum value of input A for which the modulator remains in pseudo- 

linear operation is found by setting equation (3.20) = 1 and solving for Amax. 

KmAma ~ d 

m     m 

= 1 

Aiax ~Um 
+ 

d-h (3.22) 
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/ Minimum Pulse Width 

By definition, the on-time is the pulse width. Thus the minimum pulse 

width is the minimum on-time and is a function of Km, h, and im. Recall the on-time is 

Tc=  -cmln 1 + - (3.23) 
[Km(A-Um)-d]_ 

Referenced to the turn-on time when f(t)>=fmin (d/Km), the minimum pulse width 

becomes 

A=   -T   In 1- 
\KmUm] 

(3.24) 

Note that the minimum pulse width is a function of the hysteresis, the time 

constant, and filter gain (for a given set of command and thruster amplitudes). The time 

constant has a direct impact on phase lag of the system and as such should be a small as 

practically possible. However, as the time constant is reduced, the internal deadband is 

increased, resulting in declining performance. Hardware specifications will determine the 

minimum time constant as a function of the sampling period. If the equipment limitations 

preclude small enough hysteresis and/or xm, excessively large gains may be required in 

order to achieve the desired pulse width. If pulse width is excessively short, the controller 

will be driven beyond the linear range as the modulation factor approaches unity. 

D.        PWPF MODULATOR DESIGN ANALYSIS 

Static and dynamic analyses of the PWPF modulator were conducted to define a 

set of design parameters which would provide the best all-around performance for use in 

slewing maneuvers of the flexible spacecraft. The principal objectives of the simulations 

were to verify the pseudo-linear operation, identify the tunable range of modulator 

parameters, and to justify parameter selections for the model. Prior to conducting the 

simulations, the PWPF time domain system equations were studied to determine the 

qualitative impact of varying design parameters. These observations were then 

quantitatively validated by simulating the response of the modulator to static inputs as 
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well as rigid body slewing commands. Simulations were run in batches, with sequentially 

varying PWPF parameters including: time constant, modulator gain, on-threshold, off- 

threshold, and pre-filter gain. The s-function "Schmidt.m" used to implement the Schmidt 

trigger in the SIMULINK system models is included in appendix B. Table 3.1 shows the 

range of parameters tested. 

Table 3.1 
PWPF Simulation Parameters 

Parameter Range 

Modulator Gain, Km 1.5 - 20 

Pre-filter Gain, Kp 1.0 - 30 

Time Constant, xm 0.01-   1.0 

on-threshold, d 0.0  -   1.0 

off-threshold, h 0.0J - l.Od 

1. Static Analysis 

a. Schmidt trigger parameters 

The Schmidt trigger is designed to reduce the number of thruster firings 

and total on-time through use of hysteresis and a deadband. Variation of the Schmidt 

trigger configuration can dramatically alter the system output. Prior to analyzing the 

operation of the modulator, a brief description of the Schmidt trigger parameters is in 

order. 

(1) Off-threshold, h. This parameter sets the hysteresis value for a 

given deadband by defining the decreasing error signal amplitude for thruster cutoff. For 

a given on-threshold, d, increasing h decreases the hysteresis value while increasing the 

deadband. The impact is a decrease in frequency and an increase in minimum pulse 

width, resulting in a reduction in modulation factor. 

(2) On-threshold, d. The trigger threshold sets the modulator 

deadband by defining the minimum error signal (fixed gain) which will result in thruster 

actuation. The modulator deadband is directly proportional to the value of d. Increasing 
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the on-threshold value increases the deadband and minimum pulse width, but does not 

impact the modulation factor or frequency. 

(3) Controller output magnitude, Um. Feedback of the modulator 

output reduces the error signal in order to control on and off operation of the thrusters. 

Increasing the modulator output level has an effect similar to reducing the modulator 

gain. As Um increases, more time is required to reach both the on and off thresholds. The 

result is a decrease in frequency, an increase in minimum pulse width and a reduction in 

modulation factor. The internal deadband is unaffected by the modulator output level. 

b.        Pseudo-linear operation 

One of the major advantages of the PWPF modulator is its characteristic 

pseudo-linear operation. Inspection of equation (3.18) reveals that for certain hysteresis 

values, modulator linearity is degraded for modulation factors close to unity and zero. 

The maximum acceptable input level for a given modulator configuration is given in 

equation (3.22) and repeated here for convenience. 

K„Am„ -d    . d-h m    max -t   , TT      . 

KUm-h max m ^ 
mm m 

To simplify the analysis, two design parameters can be defined. Let 

B = KmA
™ " d    and    b =  (3.25a,b) 

KmUm-h KmUm-h V        '; 
mm mm 

B is the fraction of the range of modulation and b is the fraction of hysteresis to the 

modulation range. Recasting the time domain equations in terms of B and b, the on- and 

off-time expressions are rewritten as 

T>T„ln c m 1 +  
^     \-B> 

(3.26a,b) 

r„=x  In 1 + - 
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Similarly, the frequency and modulation factor can be rewritten, yielding 

1 
f = 

T_ln«l + 
\-BJ 

1 + — 
B 

MF = 

1 + 

In 1 + • 
B 

(3.27a,b) 

In 1 + 
b 

1-5 

Equation 3.27b is plotted as a function of b and B in Figure 3.3. Note the 

variations in linearity of modulation factor for a given fraction B as b varies from zero. In 

the limit as b tends to 0, the modulation factor is perfectly linear. In practice this cannot 

be realized without eliminating the hysteresis altogether. As b increases, the linearity 

breaks down in the regions of unity and zero MF. Note also that the off-threshold must 

always be smaller than the on-threshold. The design goal, therefore, is to select the largest 

non-zero off-threshold value, h, which allows linear operation while meeting hardware 

and performance limitations. The modulator time constant, xm, does not significantly 

impact the modulation factor or the pseudo-linear characteristics. 

MF 

Figure 3.3 
Impact of Modulator Parameters on Modulation Factor 
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c.        Impact of design parameters on pseudo-linear operation. 

Keeping this design guidance in mind, simulations were run to determine 

the modulation factor, thruster firing frequency, thruster cycles, and total thruster on-time 

for varying magnitude of the off-threshold as a function of on-threshold. Figures 3.4-3.7 

show three trends. 

(1) Zero hysteresis. As the off-threshold approaches the on- 

threshold value (hysteresis value -»0), the number of thruster firings increases 

dramatically. At low modulator gains (< 6.0), the on-time is reduced despite the increase 

in firings, suggesting that each thruster cycle is extremely short in duration. In addition to 

non-linear operation, this situation will very likely violate hardware limitations and is 

undesirable due to the excessive cycles imposed over the life of the system. This 

condition is avoided by ensuring that the off-threshold is no more than approximately 

80% of the on-threshold (h < O.Sd). 

(2) Zero deadband. At the other extreme, Figure 3.6 shows that for 

modulator gain values above approximately Km =4, a very low on-threshold (<0.1) with 

zero off-threshold results in rapidly increasing output frequency. For any combination of 

d and h, excessive gain exacerbates this effect and corresponds to eliminating the 

effective deadband from the system. Since this is counter to the design philosophy 

embodied in the Schmidt trigger, the effect is to put an upper bound on modulator gain 

and a lower bound on the on-threshold. There is very little change in the output frequency 

with varying on- and off-thresholds. In order to ensure there is sufficient deadband in the 

system, the lowest practical modulator gain (Km) should be selected and the on-threshold 

should ensure pseudo-linear operation (d > 0.3 and Km < 6). This combination of gain 

and on-threshold is a compromise between minimum gain requirements and modulator 

linearity. It results in an effective deadband of 0.05, which is well within the typical 

attitude control requirements of 0.1 degrees. 
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Figure 3.4 
Variation of Thruster Cycles with Trigger Threshold 
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Figure 3.5 
Variation of Thruster On-time with Trigger Threshold 
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Figure 3.6 
Variation of Thrusting Frequency with Trigger Threshold 
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Figure 3.7 
Variation of Modulation Factor with Trigger Threshold 
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(3) Limiting case for tailoring d and h. Figures 3.8 and 3.9 give 

further perspective on the relationship between the modulator gain and varying on- and 

off-thresholds. 

MF 

Figure 3.8 
Impact of Trigger Thresholds on Modulation Factor 

MF 

Figure 3.9 
Variation of Modulation Factor with Modulator Gain, Km 
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At low gain values, the modulation factor varies slightly with varying d and h. Operation 

in this area is still pseudo-linear. As Km increases to approximately 6.0, choices of d and h 

have much less impact on the modulation factor. This limiting value is easily verified 

using equation 3.27b. The trend is echoed in Figure 3.10. Thus, at low modulator gain 

values, the hysteresis value can be tailored to effect changes in modulation factor. At Km 

above approximately 4.0, hysteresis value has little impact on the modulation factor 

compared to Km and modulator output level, Um. The conclusion is that operation at low 

gain values is not as linear as at higher values, but that prudent selection of d and h allows 

pseudo-linear operation throughout the range of gains. 

0  0 

Km=10 Km=12 

0  0 

Figure 3.10 
Variation of Modulation Fraction, b, with Trigger Thresholds 
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d. Effect of modulator gain, Km 

A large gain value may be desirable for noise and disturbance rejection, 

but must be tempered based on system response. As shown in Figure 3.9 (effect of Km), at 

very low gain, the dead band decreases from 0.2 to 0.1 very quickly. Gain values greater 

than approximately 6.0 result in only small reductions in the deadband, but reduce the 

minimum pulse width and dramatically increase the output frequency. The number of 

thruster cycles becomes excessive. The approximate lower bound on Km is a function of 

the slew requirements and the number of thruster cycles required to complete the 

maneuver, as shown in the discussion on slewing maneuvers. 

e. Effect ofpre-filter gain, Kp 

More than any other PWPF modulator parameter, a pre-filter gain is very 

effective in tailoring the system response. Kp values greater than unity increase any input 

signal to the PWPF modulator such that the deadband is reached sooner. For a given 

modulation factor vs. input level curve such as Figure 3.9, the pre-filter gain can be used 

to selectively boost small error signals r(t) above the deadband so that fine control can be 

applied without an excessive increase in filter output frequency. Figures 3.1 la and 3.1 lb 

show the effects of varying Kp on thruster firings on thruster on-time during simulated 

slew maneuvers. In contrast to increasing Km, increases in the pre-filter gain up to 

approximately 10 do not result in excessive thruster firings. This characteristic suggests 

use of a tunable pre-filter gain which can be optimized over time to tailor the system 

response. The models discussed in subsequent chapters will utilize this method. 

/ Summary of design parameters 

Based on the modulator static analysis, the guidelines outlined in Table 

3.2 apply to any PWPF modulator design used in on-off thruster applications. 
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Table 3.2 
PWPF Modulator Static Analysis Results 

Parameter Recommended Setting 

Modulator Gain, Km <6.0 

On-threshold, d >0.3 

Off-threshold, h <0.Sd 

Pre-filter Gain, Kp <15 

Firing Time, s 

0.5 

0    0 Time Constant 

(a) Total Thruster On-Time 

Input Gain, Kp 0    0 

(b) Thruster Cycles 

Time Constant 

Figure 3.11 
Variation in Thruster Frequency and Firing Time, Km = 4.5 
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2.        Dynamic Analysis 

The PWPF modulator dynamic response was analyzed in order to quantify the 

phase lag characteristics for the anticipated range of inputs. Additional information of 

interest was the relative number of thruster cycles and total on-time. The simulation was 

conducted by applying unity magnitude sinusoidal inputs ranging from 1 to 150 rad/sec 

to the PWPF modulator while for various time constant values (0.01 to 0.4). Fixed 

modulator parameters are shown in Table 3.3 and correspond to the design criteria listed 

in Table 3.2 above. No pre-filter gain was used. 

Table 3.3 
PWPF Dynamic Simulation Parameters 

Parameter Simulation Value 

Ka 4.5 

d 0.45 

h 0.15 

um 1.0 

a. Thruster activity 

Figures 3.12 (a) and (b) show the impact of input frequency on thruster 

activity. For a given time constant, when input frequency increases above a certain value, 

the firing time is zero. Figure 3.13 shows this trend more distinctly. Figure 3.12 (a) the 

number of firings is reducing as frequency increases. As opposed to the static analysis, 

very low values of xm resulted in a large total on-times without increasing the number of 

firings for most cases. The number of firings also increased for low time constants at low 

frequency. Analysis of Figure 3.12b suggests that the lack of thruster activity at high 

frequencies is due to loop gain reduction (roll-off). Based on the analysis of thruster 

activity, a minimum time constant value of 0.1 should be maintained. 
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(b) Thruster On-Time 

Figure 3.12 
Impact of Input Frequency on Thruster Activity 

b.        Phase lag 

Previous research on the PWPF modulator revealed large phase lags which 

were capable of driving the modulator to an unstable condition, resulting in limit cycle 

oscillations. The results of the dynamic analysis are shown in Figure 3.13 and reveal 

some design guidelines. The phase lag, displayed on the vertical axis, is expressed as a 

fraction of the input phase. For example, an indication of 0 on the vertical scale indicates 

no phase lag. A value of 1 indicates phase shift on the order of a period. 
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2j 
% Phase Shift 

Input frequency 

Figure 3.13 
Phase Lag Variation with Input Frequency & Modulator Time Constant 

Note that for %m smaller than 0.2, there is little phase lag for all input frequencies. The 

plateau shown by a phase of 4 indicates the region of zero modulation factor. In this area, 

the time constant is too large for the modulator to react to the high frequency input. Note 

that for xm greater than approximately 0.2, the phase lag increases monotonically at low 

frequency. This characteristic is further reason to maintain xm between 0.1 and 0.2 for all 

applications. 

c.        PSD comparison 

The PWPF modulator, while operating in a pseudolinear fashion, can not 

exactly replicate a linear signal input. The modulator time constant plays a key role in 

determining the frequency response and the modulator's ability to track an input of a 

given frequency. The mission impact of this limitation is manifested in the system 

response when performing slew maneuvers. Figure 3.14 illustrates the input and PWPF 

modulator output frequency response for varied time constant and frequency settings. 

Note the energy distribution for small time constant. Increasing the time constant distorts 

the signal until finally the modulator output is zero. This situation corresponds to an 

excessive time constant and indicates that the PWPF filter output never reaches the on- 

threshold. Figure 3.13 was an equivalent representation of this characteristic. These 
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observations are consistent with the phase lag analysis in that they would suggest a time 

constant on the order of 0.2 or less. 
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Figure 3.14 
Input Signal, Modulator Output Power Spectral Density Comparison 

3.        Impact of Modulator Parameters on FSS Slewing Performance 

Slewing performance of the FSS model with PWPF modulator was analyzed for 

10, 20, and 30 degree maneuvers. The slewing commands were issued as unit steps scaled 

to the appropriate slewing magnitude. Based on the static analysis, Km, d, h, and Um were 

fixed. Pre-filter gains (Kp) from 1 to 30 and modulator time constants (TJ from 0.02 to 

0.9 were studied. The results of the simulations are illustrated in figures 3.15-3.16 (rigid- 

body performance) and 3.17-3.18 (flexible mode response). One additional run with a 

modulator gain of K„=1.5 was conducted and confirmed the relationship between Km, Kp, 

and the modulator impact on the slew. 
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a.        Effect of varying modulator time constant 

As shown in figures 3.15 and 3.17 the modulator time constant directly 

impacts the rigid body (maximum overshoot and settling time) and flexible responses. 

That is, for xm < 0.2 the rigid body and flexible body responses are nominal. As xm 

increases, interaction between rigid and flexible modes increases, resulting in degraded 

maneuver performance and increasing residual vibration. For values of 0.8 or greater, the 

rigid body overshoot is on the order of magnitude of the command and the flexible 

vibration becomes extreme. 

In terms of the lower bound on xm, Figure 3.17 shows that for TB<0.1, a 

dramatic increase in the number of thruster cycles results. However, the total on-time is 

not increased significantly. These characteristics suggest a series of very short duration 

pulses might be used to follow a very high frequency command. The design suggestion is 

to put a lower bound on xm at 0.1, allowing judicious tuning to a value less than 0.1 as 

needed, subject to specific hardware limitations such as thruster minimum on-time. 

b. Effect of modulator gain, Km 

The rigid-body and flexible time responses were unaffected by modulator 

gain changes as long as the product of Kp and Km was larger than approximately 6. At 

values below 6, the rigid body settling time increased but did so without a commensurate 

increase in the overshoot or system vibration. The conclusion once again is that the 

designer should make Km as low as possible based on the rigid body slewing 

requirements. If the restrictions on maneuver time are fairly loose, a minimum gain value 

on the order of 1.5 is acceptable. 
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Figure 3.15 
Rigid Body Slewing Response, Km = 4.5 
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Figure 3.16 
Thruster Activity During Slewing Maneuvers, Km = 4.5 
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Figure 3.17 
Flexible Response to Slewing Maneuvers, Km = 4.5, Modes 1-4 
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Figure 3.18 
Flexible Response to Slewing Maneuvers, Km = 4.5, Modes 5-8 
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c. Effect ofpre-filtergain, Kp 

The pre-filter gain, Kp, biases the input signal r(t) to keep it outside the 

deadband or to limit its maximum value. As discussed in the static analysis, the effective 

deadband is determined by the product ofKm and Kp, so that varying Kp at a fixed value of 

Km tailors the deadband without incurring excessive thruster firings. Note in Figure 3.15 

that Kp has little impact on the rigid body performance as long as the product of Km and 

Kp is sufficiently large to complete the maneuver. Once Kp is increased to the point where 

the signal is beyond the deadband, further increases have little effect on the rigid body 

response. A minimum value of K=2 is sufficient to guarantee desired performance for 

most ranges of Km. 

Figures 3.16a (on-time), 3.17 and 3.18 show that large values of pre-filter 

gain can excite specific flexible modes as a function of modulator time constant. In 

addition, high pre-filter gain values cause an increase in the number and duration of 

thruster firings for a given performance. Minimizing the thruster on-time and number of 

cycles requires imposing a ceiling of 10 on Kp. 

4.        Design Recommendations 

The previous analyses revealed several consistent trends in PWPF characteristics 

which can aid the designer in selecting appropriate modulator parameters. Few of the 

parameters are worth tuning and the tunable range is relatively small. However, even 

small modifications in the pre-filter gain and the time constant can make a significant 

difference in achieving the desired performance. Table 3.4 summarizes the results and 

recommended settings for each parameter. 
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Table 3.4 
Summary of PWPF Analyses 

Modulator 

Parameter 

Analysis Type Design 

Recommendation Static Dynamic Slew 

Km <  6.0 N/A > 1.0 1.0-6.0 

KP <10 N/A >2.0 2.0-10(1) 

im 
N/A 0.1-0.2 0.1-0.2 0.1-0.2 (2) 

d >  0.3 N/A N/A > 0.3 

h <  0.8 d N/A N/A <  0.8 rf 

Notes:   (1) Tuning or dual-staging recommended. 

(2) Judicious use of tm below 0.1 is acceptable 

Selection of the PWPF parameters for the FSS model and input shaping 

simulations followed these guidelines. Table 3.5 lists the selected values, including a 

dual-stage pre-filter gain. The selected configuration resulted in the best system 

performance (rigid-body and flexible response) prior to application of the input shaper. 

Table 3.5 
FSS Model PWPF Modulator Configuration 

Parameter Value 

Km 1.25 

KP 
2.0, input > d/Km 

5.0, input < d/Km 

tm 
0.15 

d 0.45 

h 0.15 
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IV.      INPUT SHAPING TECHNIQUES 

A. BACKGROUND & DESCRIPTION 

The goal of input shaping is to provide a command which results in zero residual 

vibration. The source of these vibrations is arbitrary and may include control commands 

or disturbance torques. As shown in Figure 4.1, a vibration can be eliminated by applying 

impulses of appropriate amplitude and phase such that they exactly cancel the mode. For 

example, the command issued at time t„ in this case an impulse, starts a vibration which 

decays as a function of the modal damping. The second impulse is phased such that it is 

applied at the vibrating mode's half-period point (t2 - t,) = 111 T. The net vibration 

following the second impulse is zero. 

Response from   1" Impulse 

Response from 2"d Impulse 

A mplitude 

Figure 4.1 
Vibration Cancellation due to Input Shaping 

Input shaping uses this technique to modify either open- or closed-loop system 

commands. In general, shaper pulse trains will consist of an initial pulse and some 

number of additional impulses designed to exactly cancel vibration in a pre-determined 

number of flexible modes. The initial pulse, which is always applied at the command 

time, t„ has unity magnitude. As such, the initial impulse will always be coincident with 

the command which begins the system vibration. Amplitude and timing of subsequent 

pulses are determined using the designer's knowledge of plant frequency and damping 
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characteristics, subject to uncertainty bounds. Referring to Figure 4.1, the initial pulse at 

t, is coincident with the desired command. The amplitude of the second pulse is based on 

the damping of the mode and the half-period point. 

Modifying a given command to utilize input shaping is very straight-forward. 

Given a known set of plant conditions subject to some prescribed uncertainty, the desired 

command is identified. For example, the command could be an open-loop torque input to 

a control system or a step position command to a state feedback controller. The time 

domain system commands are then convolved using linear systems theory. The 

convolution integral, presented in elementary linear systems texts (Hsu, 1995) as 

-MO 

y(t) = x(t)* h(t) = jx{x)h{t - i)dx (4.1) 

shows that the time response y(t) for any linear time-invariant system is the convolution 

of the arbitrary input x(t) with the impulse response h(t) of the system. The original 

command is scaled by the magnitude of h(t) and delayed in time by an amount x. 

The net effect of applying an input shaper to an arbitrary command signal is to 

scale the torque (open-loop) or position (closed-loop) command by the magnitude of the 

shaper pulse train and to delay each segment of the command by the time xt 

corresponding to the application time of the fth impulse in the train. Figure 4.2 shows the 

result of convolving a four impulse sequence with a step command. 

0.8 

0.6 

Magnitude 

0.4 

0.2 

Time, s 

10 15 20 

Figure 4.2 
Convolution of Impulse Train and Step Command 
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Note that each "step" of the command corresponds to a specific impulse used to form the 

modified command. Thus the resulting input commands accomplish the desired maneuver 

while simultaneously ensuring there is no vibration during the slew. By ensuring that the 

magnitude of the shaper impulse train is unity, no other modification to the original 

command is needed. 

This chapter will introduce input shapers and describe the method of employing 

them to single and multiple mode systems. Solutions will be presented for variable- 

amplitude actuated systems and then extended to constant-amplitude actuator systems. 

B.        ADVANTAGES OF INPUT SHAPING 

Input shaping was first introduced by OJ.M. Smith in the 1950's (Smith, 1958), 

but the application was oriented toward open-loop systems only. Recently, Singer and 

Seering showed the technique's applicability to closed-loop systems (Singer and Seering, 

1990). Subsequently, extensive research has been performed into the robustness and 

multiple-mode suitability of input shaping techniques. 

Two primary advantages of input shaping techniques are ease of implementation 

and superior performance over other vibration suppression strategies. Compared to 

closed-loop time optimal control methods, which require state feedback and are typically 

quite complex, input shaping is in principle and practice an extremely easy technique to 

implement. Depending on the degree of plant uncertainty, various shaping techniques are 

available to ensure minimal vibration during maneuvers. As shown in various research 

papers, these techniques may be applied to either open- or closed-loop systems with equal 

success (Pao and Singhose, 1995a; Singhose and Pao, 1996). As a result, input shapers 

can be seamlessly added to any control system. Modifications to inner loop controllers 

can be performed without altering the input shaper. From a performance standpoint, 

sensitive instruments which suffer degraded performance due to vibration can continue 

operating during maneuvers. Secondly, any residuals which do occur are so small that 

damping them is greatly simplified. 
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C.       DESCRIPTION OF INPUT SHAPERS 

1.        Classification by Actuator 

There are two general categories associated with input shapers. Early research in 

the field was slanted toward linear, variable amplitude actuators such as momentum 

wheels or motors. These actuator types are also referred to as "ideal" or "continuous 

time" actuators. Due to the linear nature of those formulations, the control shapes could 

be obtained analytically. Since then the major thrust of the research has been focused on 

use of unmodulated on-off (or "bang-bang") controllers, which cannot realize variable 

amplitude commands. Shapers used with bang-bang control are termed Constant 

Amplitude Pulse (CAP) shapers. Shapers used with variable amplitude actuators will be 

termed Variable Amplitude (VA) shapers. 

2.        Classification by Impulse Train 

Several shapers are prevalent in the literature and are named for the method used 

to arrive at their solutions. Zero Vibration (ZV), Zero Vibration Zero Derivative (ZVD), 

and Zero Vibration Zero Second Derivative (ZVDD) are all based on driving the impulse 

response equation for a normalized, decoupled system to zero. These shapers are listed in 

order of increasing robustness. (Singer & Seering, 1990). The ZV shaper has been shown 

to lack robustness for even small plant variations. The Extra-Insensitive (El) shaper is 

designed to provide even more robustness by allowing the impulse response equation to 

be non-zero, that is, it allows some small residual vibration. The analyses in this thesis 

are based on the ZVD and ZVDD shapers because the design goal is zero vibration with 

acceptable robustness. 

D.        INPUT SHAPER DESIGN 

Input shaping techniques are based on linear systems theory. If a given system is 

linear it can be described by a set of decoupled modal equations. Vibratory response 

equations for the individual modes are used to develop the input shaper pulse train. 
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Additionally, the system damping and frequency are known to within some tolerance 

value. While not as critical for single-mode cancellation, the tolerances on plant 

uncertainty become extremely important when attempting to cancel multiple mode 

vibrations with either constant- or variable-amplitude actuators. Listed below is a general 

procedure for implementing the input shaper to any open- or closed-loop system. 

Step 1) From system equations of motion, determine system natural frequencies 

and damping information. 

Step 2) Find the impulse sequence which will cancel modal vibration: apply the 

appropriate vibration constraint equations for robustness, actuator type, 

and time optimality. This sequence is the "shaper command". 

Step 3) Identify the desired system command and convolve it with the shaper 

command to obtain the "shaped system command". 

The equations presented below are common in the current literature. Solution of 

the shaper equations will be discussed first from the standpoint of variable amplitude 

actuators and then extended to constant amplitude pulse (CAP) actuators. The complete 

derivations can be found in Singer (1988). 

1.        Vibration and Robustness Constraint Equations 

For a system which utilizes a variable amplitude actuator, the shaped command 

which eliminates residual vibration in the flexible mode also corresponds to the time 

optimal command (Pao, 1995b). In this case, the input shaping solution is easily found 

using vibration constraints alone. The rigid body equations are unnecessary because 

output levels can be scaled to ensure desired move distances are reached. The number of 

impulses and shaper type is determined by the robustness and performance requirements. 

a.        Zero Vibration (ZV) shaper equations 

Each mode of an uncoupled, linear vibratory system of arbitrary order is 

characterized by an impulse response given by 
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y(t) = 
CO. ,-*).('-'.) 

A/1-0-^
2 

sin(co0Vl.O-^2(r-ro)j (4.2) 

where ,4 is the amplitude of the impulse, co0 is the undamped system natural frequency, C, 

is the damping ratio for each of the modes, and t0 is the time of the impulse input. The 

amplitude of the vibration due to a sequence of impulses is given by 

A     = 
amp 

where 

N \ ( N ^ 

Vy=i J      V;=i 

(4.3) 

^ = co /(l-C2Vy      and    BJ=-JM=e^"'-^ 

where A} is the amplitude of theyth impulse, co is the system natural frequency, tN is the 

time of the final impulse, and t} is the time of they'th impulse. In order to ensure there is 

zero vibration at the end of the impulse train, each coefficient Bj in Eq. (4.3) must be 

identically zero, resulting in two simultaneous "Zero Vibration (ZV)" equations 

y=i v ' 

(4.4) 

Note that these equations are written in terms of multiple impulses to 

cancel a single vibrational mode. The shortest pulse train which can cancel a single 

vibrational mode consists of a two-impulse sequence initiated at /=0 with a unity 

magnitude initial pulse. The amplitude and timing of the second pulse are obtained by 

solving Eqs. (4.4) simultaneously. Figure 4.3 shows the resulting impulse train. Note that 

the impulse train amplitudes have been normalized to unity gain. This procedure is 

necessary to ensure that the shaper does not scale the original command. Otherwise, the 

input shaper would lose its ability to function with open- and closed-loop systems. 
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Figure 4.3 
Two Impulse ZV Sequence 

The pulse train parameters are given by 

AT = 
% 

CO ,^-? 
(4.5) 

Z>. Zero Vibration Derivative (ZVD) equations 

While the ZV shaper provides the shortest impulse trains, it requires very 

good knowledge of the plant. Singer and Seering (1990) showed that the ZV shaper was 

robust for only small variations (±5%) in modal frequency. In order to enhance the 

shaper's robustness, an additional set of constraint equations can be obtained by 

differentiating Eq. (4.4) with respect to natural frequency, co: 

fjAjtje
<<t^s\r{tp^C) = Q 

7=1 

N 

(4.6) 

Satisfying the additional set of constraints requires two additional 

variables in the form of an additional impulse (A3 and t3). Solving the set of equations 

yields the impulse train illustrated in Figure 4.4 and quantified by Eq. (4.5) above. 
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Figure 4.4 
ZVD Impulse Train 

This technique has been shown to provide robustness for up to ± 20% variations in 

frequency (Singer & Seering, 1990). 

c.        Zero Vibration Derivative Derivative (ZVDD) shaper equations 

If the vibration equations are differentiated once again, the resulting 

vibration will be zero for a range of frequencies above and below the system natural 

frequency. The effect is to improve robustness dramatically. As noted by various authors, 

the ZVDD shaper allows plant uncertainties on the order of ± 40% while retaining the 

zero vibration characteristic (Pao 1996). The additional constraint equations are obtained 

by differentiating Eq. (4.6) with respect to ro and setting it to zero: 

I^K*
(
'*~'M'W^ 

=
 
0 

7=1 

N (4.7) 

Once again, the additional set of equations requires two more unknowns, A4 and t4, so that 

a total of four impulses are needed in the train to cancel the single vibrational mode. 

Figure 4.5 illustrates the impulse train for a ZVDD shaper. 
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2.        Constant Amplitude Pulse (CAP) Shaper Constraints 

a.        Amplitude constraints 

Because CAP actuators may only assume discrete values dependent on the 

input level, they place different constraints on the system than the variable amplitude 

case. CAP shapers can be implemented with ZV, ZVD, or ZVDD impulse trains. The net 

effect of bang-bang control on input shaping comes in the form of an additional constraint 

equation which must be solved in obtaining the nominal pulse train. A typical impulse 

profile for a multiple switch bang-bang slew is of the form 

(4.8) 

Once again, the default initiation time is P=0 and each A} switch toggles the 

thruster output from positive to negative. For a thruster level of+1, 0, or -1 the impulse 

amplitudes listed in Eq. (4.8) satisfy the constraint 

AJ 
1 -2   2 -2 r 

{J. 
0 t2     t3 ',-i *„_ 

Z4 
7=1 

= lor0 (4.9) 

In sum, the above constraints dictate the fashion in which residual vibration is canceled 

for a given actuator type. 
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b.        Rigid-body constraints 

An important observation must be made regarding CAP shapers. Because 

the command amplitude is fixed, the switching profile and command length are functions 

of the move distance. Accordingly, CAP constraints cannot be applied independently of 

the rigid body equations like the variable amplitude case was. CAP-shaping a command 

without regard to the rigid body equations would result in an end-state other than desired. 

The rigid body equation of motion for FSS slewing maneuvers is given by 

L 
I. ö = — (4.10) 

where 9 is the angular displacement of the rigid body, Tt is the total torque applied, and IB 

is the total moment of inertia. For any desired velocity during the profile or for spin-up 

maneuvers to a desired velocity Qd, integrating Eq. (4.10) yields 

T. M'f -dt (4.11) 

where the applied torque Tt is a function of time and the lower limit of integration can be 

taken to be identically zero. When a rest-to-rest slew is performed, Eqs. (4.10-4.11) are 

identically zero at the beginning and end of the maneuver, yielding the constraint 

equation for slewing distance. Integrating Eq. (4.11), the desired slew distance, 9d is 

T 
Qä = \\j-dtdt (4.12) 

t 22 

c. Time-optimality constraint 

For a given move distance and system configuration, there exists a unique 

solution which is time-optimal. However, because the number and timing of the impulses 

vary with move distance, there are many sub-optimal solutions to the zero-vibration 

slewing problem (Singhose, et al., 1996). Whereas the variable amplitude actuator case 

allowed almost trivial solution to the time-optimal problem, the additional constraints 

imposed by the bang-bang case constitute a set of non-linear optimization criteria which 
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cannot be solved analytically. For a switching profile such as Eq. (4.7), the time 

optimality constraint is expressed as 

min(^) where t„ is the time of the final switch (4.13) 

3.        Extension to Multiple Modes 

In principle, extending the vibration equations to cancel n modes is just a matter 

of writing the constraint equations for each mode and solving them simultaneously to 

obtain the pulse train. However, there are some serious complications. The accuracy and 

ease of the solution depends on the number of modes, the mode ratio (defined as the 

frequency of each mode as compared to the fundamental), and the move distance in the 

case of bang-bang commands (Crain, 1996). If the modes are tightly spaced (one 

extreme) or are widely separated in frequency (the other), the number and timing of 

impulses vary greatly. Even with variable amplitude shapers, vibration levels in multiple 

modes are difficult to eliminate. Use of CAP shapers exacerbates the effect due to the 

high frequency content typical in most bang-bang controllers. As noted in Pao (1995a), 

the decrease in vibration was no more than 45% for ZVD-CAP shapers and 70% for 

ZVD-VA shapers. In addition, extreme vibration of higher modes was entrained by the 

CAP shaper. In general, there is no efficient method to find a multiple mode CAP shaper. 

E.        SUMMARY 

VA shapers and CAP shapers have merits and disadvantages. The VA equations 

are easy to solve and do not require imposition of the rigid body constraints. However, 

VA actuators cannot be directly used for on-off thrusters. On the other hand, design of the 

CAP shaper is much more complicated, even for few flexible modes. Additionally, CAP 

shapers tend to entrain large values of higher mode vibration. The goal of this research, 

therefore, is to identify a shaper-controller combination which is as easily designed as the 

VA shaper but that allows performance associated with on-off thrusters. Pulse-width, 

pulse-frequency modulation holds the key to this challenge. 
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V. SHAPED SLEW MANEUVERS USING LINEAR ACTUATORS 

A. APPROACH 

The effects of VA shapers are determined in order to establish a performance 

baseline against which maneuvers executed with a PWPF modulator can be compared. A 

variable amplitude actuator such as a momentum wheel was used to execute the VA 

shaper commands in the FSS SIMULINK model. In order to demonstrate the shaper's 

portability, the simulations were performed open-loop and then repeated for a closed loop 

system with PD control. Open-loop simulations included both step and smoothed torque 

commands. The open-loop command represents a constant torque input. Initially, only a 

single flexible mode was included, so that the shaper command generation and 

application can be more easily understood. The investigation was then repeated for the 

FSS with eight flexible modes. 

B. FSS WITH SINGLE FLEXIBLE MODE 

1.        Generation of Shaper Commands 

The state space equations of motion for the FSS developed in Chapter II apply. 

Using a single flexible mode, the equations reduce to 

"4 A" 
(
ä
l+ LA l J UJ 

0 0 

\% 

0 0 

H» X 
0 - 25,(0 J UJ L° -<l UJ _0_ 

(5.1) 

where the momentum wheel command is given by Tt and the system parameters are as 

follows: 

Dj = -1.6872 
£,=  0.004 
©,= 1.33 rad/s (0.213 Hz) 
4=10.49kg-m2 
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a.        ZVD Shaper commands 

Using Eqs. (4.3 and 4.5) to target zero residual vibration in the single 

flexible mode, the ZVD shaper equations are solved using N= 3: 

7=1 V ' 

fJAje
<<t»-thos(tjG>^) = 0 

7=1 V / 

I^v^('"-^sinUvrr^) = o 
7=1 V ' 

tAjtje-*^ Costco^C) = 0 
7=1 V ' 

Recall that the first impulse has unity magnitude at time t, = 0. As a result 

there are four equations with four unknowns A2, t2, A3, and t3. The resulting ZVD shaper 

sequence is comprised of three impulses, normalized to unity as shown in Figure 5.1: 

2K 

1 1 + 2K + K2       K< 

1 + 2K + K2 1 + 2K + K2 

0 Ar 2A Time 

&t 

K = e^ AT = 
71 

CO o^-C 

Figure 5.1 
Single-mode ZVD Shaper for FSS 
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b.        ZVDD Shaper commands 

Similarly, equations (4.3, 4.5, and 4.6) are used to find the ZVDD input 

shaper command. In this case, a total of four impulses is required to solve the shaper 

constraint equations. Again, the pulse train is unity normalized. The ZVDD shaper pulse 

train is shown in Figure 5.2: 

3K 

l + 3K + 3K2+K3 3K2 

1 

\ + 3K + 3K2+K3 

1 + 3K + 3K2+K3 

K3 

l + 3K + 3K2+K3 

0 AT 2A 3A 
-Time 

Figure 5.2 
Single Mode ZVDD Shaper Pulse Train 

c. Comparison of shaped and unshaped commands 

Convolving the shaper pulse trains with a step position command yields 

the shaped command profiles for applying to the open- or closed-loop systems. Figure 5.3 

illustrates the difference in command profiles. 

Time, s 

Figure 5.3 
Comparison of ZVD, ZVDD, and Unshaped Command Profiles 

61 



2.        Open Loop System Response 

Two cases are studied. In the first simulation, the open-loop response to a step 

command is obtained as a worst-case condition. In the second, a smoothed torque 

command is used as a performance baseline corresponding to an ideal linear actuator. The 

SIMULINK block diagram of the open-loop system is shown in Figure 5.4: 

"^ 

■ ■ 

x' = Ax+Bu 
y=Cx+Du 

■                 ■ 

states _y w 

output 
Command 
Generator FSS Model 

State-Space 

Figure 5.4 
Smoothed Torque Command (open-loop) Simulation 

a.        Response to step command 

Inputting an open-loop step command results in a steady state angular 

velocity and large values of vibration in the flexible mode. Figure 5.5a shows the 

difference between the shaped and unshaped step inputs. The first mode has a non-zero 

mean displacement due to the static input. Applying a ZVD- or ZVDD-shaped command 

completely eliminates the modal vibration. After the vibration is canceled, the flexible 

appendage has a static displacement which is proportional to the slew rate. Figure 5.5b 

illustrates the impact of the input shaper. Using a linear actuator allows exact cancellation 

of the vibration, since there are no unwanted frequencies included in the actuator output. 
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Figure 5.5 
Open-loop Step Command Response 
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b.        Response to smoothed torque command 

Applying a step command without having any closed loop control is 

illustrative but not realistic. Therefore, response to a more typical smoothed torque 

command is analyzed to provide a comparison to the shaper control. This type of 

command is also known as a "pre-computed torque" profile. In contrast to a step input, 

which has infinite jerk, the smoothed command applies the acceleration slowly and 

causes less modal vibration. The smoothed command used in this simulation is generated 

by using a fifth-order polynomial curve to join a zero command level to a unity command 

level in a user-defined time period. 

Figure 5.6a shows the smoothed input command and the rigid body 

response. Figure 5.6b shows the flexible mode response to the smoothed command. Note 

that there is still some residual vibration, despite the smooth start and finish on the torque 

command. In fact, the "rounded edges" on the command serve to avoid exciting high 

frequency modes but do not eliminate low frequency vibration. Thus, smooth torque 

profiles are more effective for multiple mode systems than they are for single mode 

systems. 
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Figure 5.6 
Smoothed Input Command, System Response 
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3.        Closed Loop Slew Maneuvers 

Adding a PD controller as illustrated in Figure 5.7 allows closed-loop attitude 

control for the FSS. Simulations for slewing maneuvers of 10, 20, and 30 degrees using 

PD gains of kp = -10 and kd = -20 were analyzed. Command profiles included unshaped 

step, ZVD, and ZVDD shaped inputs as depicted in Figure 5.3 previously. 
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Sum   PD Controller 
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Figure 5.7 
Closed loop Slewing System using PD controller 

The rigid-body and flexible mode responses to each command type are presented 

in figures 5.8a and 5.8b. Note that the unshaped slew is characterized by considerable 

modal vibration. Both the ZVD and ZVDD shapers eliminate the vibration almost 

immediately, but the rigid body settling times differ by the additional length of the 

ZVDD shaper pulse train. 
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Figure 5.8 
Closed Loop Responses to Shaped & Unshaped Commands 
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These simulations show that input shaping is highly effective for single mode 

operation when the plant is known. Even in the presence of frequency uncertainty, the 

ZVD and ZVDD controllers can perform well. Figure 5.9 compares robustness of ZVD 

and ZVDD shapers for frequency uncertainties up to 20%. The decision to use the ZVDD 

shaper over the ZVD shaper is based on a trade-off between maneuver time and 

robustness. Only if the plant is well-known or non-varying will the ZVD shaper provide 

better response time while ensuring residual vibrations are eliminated. 
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(b) Single Mode ZVDD Shaper 

Figure 5.9 
Effects of ± 20% Plant Uncertainty on Residual Vibration 
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C.        FSS WITH MULTIPLE FLEXIBLE MODES 

Including multiple modes in the FSS model results in the state space formulation 

developed in Chapter II. The damping ratio for all modes was set at 0.004 for these 

simulations in order to give a worst case vibration environment. Control torques were 

applied only to the rigid body. Table 5.1 lists the system natural frequencies for 

convenience. Up to five modes will be targeted for cancellation in the simulations. 

Table 5.1 
FSS System Modal Frequencies 

Mode 
Frequency 

(rad/sec)              (Hz) 
Period 
(sec) 

1 1.34 0.213 4.69 

2 3.16 0.504 1.98 

3 15.23 2.42 0.446 

4 26.71 4.25 0.235 

5 52.94 8.43 0.119 

6 77.31 12.30 0.081 

7 104.2 16.58 0.060 

8 132.1 21.02 0.047 

1.        Target Mode Selection 

Determining the number and mix of modes to cancel is a design issue which is not 

easily resolved a priori. From a practical standpoint, targeting higher modes requires 

increasingly narrow pulse widths which may test the response time of an actuator or the 

minimum impulse bit of a thruster. Table 5.1 shows how tightly the periods are spaced at 

the FSS model's higher frequencies. For systems with even lower fundamental 

frequencies than the FSS, the crowding occurs progressively sooner. 

A more insidious complication in applying input shaping to multiple mode 

systems is the relationship between the flexible modes. In some cases, cancellation of a 

lower mode may actually excite the higher mode(s). Pao et. al. (1995) found that as 

additional modes are targeted, more and more high frequency vibrations are entrained. 
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Note that the mode ratios r of the FSS model, defined as the ratio of a given frequency to 

the fundamental, are all greater than ten, with the exception of the second mode. This will 

prove to be an obstacle to minimizing vibration. The simulations included in this section 

will demonstrate these difficulties and suggest a strategy for achieving the best results. 

In order to show the effectiveness of the various input shapers and the impact of 

the target mode selection, several cases were selected for this investigation. Table 5.2 lists 

the targeted modes and the shaper type used in each case. ZVD shapers were less 

successful than the ZVDD shapers at targeting more than three modes. Only the ZVDD 

shaper simulations are included for these cases. 

Table 5.2 
Multiple Mode Input Shaper Targets 

Number of Modes Targeted Modes Shaper Type 

2 1,3 ZVD 

3 1,2,3 ZVD 

4 1,2,3,4 ZVDD 

5 1,2,3,4,5 ZVDD 

2. Generation of Shaper Commands 

Suppose we desire to target n-modes for cancellation. We have two options for 

constructing the shaper. The vibration and constraint equations may be solved directly, 

which results in the shortest possible impulse sequence. This has been shown to be the 

time-optimal response in the presence of flexibility (Pao, 1995). A simpler approach is to 

identify the n pulse trains needed to cancel the individual modes and convolve them. 

While simpler, convolved shaper commands consist of more impulses than direct shaper 

commands. On the other hand, Crain (1996) showed that as the number of targeted modes 

and mode ratio increase beyond three the efficiency of convolved shapers approaches that 

of direct shapers. Due to the large number of modes included in the FSS and large mode 

ratios, convolved shaper commands are used in this research. Shaper commands to cancel 

multiple modes are generated as follows: 
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Step 1. Identify the modal frequencies targeted for cancellation. 

Step 2. Using the vibration and robustness equations, find the ZVD or ZVDD 

shaper pulse trains required to cancel the individual modes. 

Step 3. Convolve pulse trains for each mode to obtain the shaper command. 

Step 4. Convolve the shaper command with the desired system command to 

obtain the zero-vibration system command. 

a. ZVD shaper commands 

Equations (4.3) and (4.5) are used to obtain the ZVD shaper pulse trains 

for each of the targeted modes. The general form of the ZVD shaper for each mode is 

Mode i: 

where     K = e 

X, 

«* 

ii<2 

1    2K    K2' 

0   Ar   2AJ 

and     AT = 
71 

.Vi3? G) 

(5.2) 

The sequences are unity normalized by   XD=l + 2K + K2 resulting in the ZVD shaper 

impulses for modes 1-5 of the FSS: 

Mode 1: 

Mode 2: 

Mode 3: 

Mode 4: 

Mode 5: 

\Ai "0.2532 0.5 0.2469" 

L'j. 0 1.9563 3.913 

h~ "0.2532 0.5 0.2469 

Jj\ 0 0.8273 1.655 

hi "02532 0.5 0.2469" 

jj. 0 0.1719 0.3437 

hi 
r0.2532 0.5 0.2469 

jj. 0 0.0980 0.1960 

hi "0.2532 0.5 0.2469" 

jj. 
0 0.0495 0.0989 

(5.3) 
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b.        ZVDD shaper commands 

Similarly, equations (4.3), (4.5), and (4.6) are used to find the pulse trains 

for the ZVDD shaper. The resulting four impulse sequence for each mode is given by 

Mode i: 4 
X DD 

1    3K   3K2     K3' 

0   AT   2AT   3AT 
(5.4) 

where K and AT are defined in 6.1 and the sequence is unity normalized by 

XDD=l + 3K + 3K2+K3 

The resulting ZVDD pulse trains for modes 1-5 of the FSS are 

Mode 1: 

Mode 2: 

Mode 3: 

Mode 4: 

Mode 5: 

h~ "0.1274 03773 0.3726 0.1227" 

Jj. 0 1.9563 3.9127 5.8690 

h~ "0.1274 0.3773 0.3726 0.1227" 

jj. 0 0.8273 1.6547 2.8420 

hi "0.1274 0.3773 0.3726 0.1227" 

jj. 0 0.1719 03437 0.5156 

hi "0.1274 03773 0.3726 0.1227 

jj. 0 0.0980 0.1960 0.2940 

hi "0.1274 0.3773 0.3726 0.1227" 

jj. 
0 0.0495 0.0989 0.1484_ 

(5.5) 

c. Comparison of shaped and unshaped commands 

Once the impulse trains are defined, the user may choose how many 

modes to target and convolve only those of interest together with the system command. 

The length of the resulting input shaper sequence is 3" for the ZVD shaper and 4" for the 

ZVDD shaper. Figure 5.10 illustrates a generic two-mode ZVD shaper (nine impulses) 

which could be convolved with a system command to complete the desired maneuver 

with zero vibration in modes one and two. 
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Time Time Time 

Figure 5.10 
Two-mode ZVD Shaper Pulse Train 

Clearly, targeting more than three or four modes results in a tightly spaced 

command pulse train. In the limit as the impulses ->0, the resulting shaped system 

command is identical to the smoothed torque profile discussed above. For illustration, 

Figure 5.11 shows the shaped system commands for a three mode ZVD shaper, a five 

mode ZVDD shaper, and an unshaped step system command. The five mode ZVDD 

shaper, with 1024 elements, has the character of the smoothed torque profile but retains 

enough impulse character to target the residual vibration of lower modes. 

Unshaped Step 

3-Mode ZVD 

5 Mode ZVDD 

Time, s 

15 20 

Figure 5.11 
Comparison of Shaped and unshaped commands 
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3.        Open Loop System Response 

Open loop simulations involving multiple modes of the FSS were conducted in 

order to make single-to-multiple mode and linear-PWPF control comparisons. Both 

shaped and unshaped step commands were applied to the system. Smoothed commands 

were then applied as a more typical open loop type of command. Note that the open loop 

commands were not full rest-to-rest commands. 

a.        Response to step command 

As shown in Figure 5.12, the 4-Mode ZVDD shaper performs admirably 

in canceling all four of the targeted modes. Essentially no additional vibration is 

entrained in the higher modes. In sum, these results were anticipated. The PWPF 

modulated simulation will reveal telling differences in the robustness and vibration 

suppression capability between linear and PWPF modulated cases. 

Amplitude 

xlO -3     Mode 1 

A    A    A 
M     i\     M 

i / 

W    \i    \f   \l 

xlO -5     Mode 3 

Amplitude 2 

Time, s 

XlO 
-4     Mode 2 

xlO •6     Mode 4 

Time, s 

Figure 5.12 
Flexible Response to Step Commands (gray = unshaped, black = 4ZVDD) 
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b.        Response to smoothed torque command 

The smoothed torque command is a very realistic command found in most 

control system applications. For the rest-to-rest slew case, the open loop command would 

be both a smooth ramp up in torque followed by a ramp back down. For the purposes of 

this analysis, the end state vibration is less important than the vibration during the slew. 

Therefore, only the first "half of the computed torque profile is used. 
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Amplitude 
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10 

XlO 
-*  Mode 2 

time, s 

time, s 
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-3 
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20 0 

time, s 

time, s 
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Figure 5.13 
Flexible Response to Smoothed Torque Command 

4. Closed Loop Slew Maneuvers 

Using the same PD controller as used in the single flexible mode example, closed 

loop slewing maneuvers were conducted to show the effects of input shaping on the 

residual vibrations of multiple modes. 10-, 20-, and 30-degree slews were performed to 

investigate the effects of move distance. 

D. DISCUSSION 

Input shaping can be used very effectively to cancel single flexible modes or 

widely spaced multiple modes with linear actuators. Because there is no need to use the 

rigid body, bang-bang, and time optimality constraint equations, solutions for shaper 
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pulse trains are very easy to obtain and implement. The technique is portable, integrating 

seamlessly with equal effectiveness for open-loop or closed-loop applications. 

However, there are diminishing returns on the performance gain as the number of 

targeted modes increases. Tightly spaced impulse trains can entrain vibration in the 

higher frequency modes and defeat the original objective. The number and selection of 

targeted modes and the shaper type play crucial roles in this process. Detailed knowledge 

of these effects a priori is unlikely. 

One solution is to utilize a staged approach with a combination of vibration 

suppression schemes. Input shaping works well to eliminate the lower mode vibrations, 

but a different approach should be reserved for the higher modes. For example, a high- 

bandwidth active controller such as a piezo-electric (PZT) velocity feedback system could 

be used without adding significant complexity or mass to the system. However, any 

negative impact of one control type on the other must be identified. For example, a PZT 

controller has the potential to destabilize the system in certain implementations. This and 

other options are ripe for further research efforts. 

Much of the research into input shaping is directed toward bang-bang control 

applications. However, that area is much more complex and less fruitful than shaping for 

linear actuators. If a method existed to use the VA input shapers on a bang-bang system, 

the best of both worlds should be realized. The following chapter will investigate 

applicability of the PWPF modulator to realize this goal. 
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VI.      SHAPED SLEW MANEUVERS USING PWPF MODULATOR 

A.        MOTIVATION 

Previous researchers have used variable amplitude input shaping only with linear 

actuators. This study represents the first application of variable amplitude input shaping 

to a modulated thruster control system. The results will show that this technique is a 

simple and effective means of minimizing residual modal vibration in thruster controlled 

systems. Prior to demonstrating the new approach two common shaping techniques, 

variable amplitude (VA) and constant amplitude pulse (CAP) shapers are reviewed. 

While variable amplitude actuators can produce less vibration in flexible 

spacecraft than bang-bang actuators, they can become saturated during high-torque 

maneuvers. Linear thrusters could provide the required torque levels but have problems 

with valve contamination and leakage. Since most spacecraft must rely on thruster 

systems for attitude control during station-keeping maneuvers, the main focus of current 

research has been on optimizing maneuvers with bang-bang actuators. 

CAP input shapers allow some degree of vibration cancellation in on-off thruster 

actuated systems with multiple flexible modes. Singhose, Pao and Seering (1996) 

reported cancellations ranging from 20-60% using ZVD-CAP shapers. However, there 

are two major drawbacks for CAP shapers. First, CAP shapers can entrain severe higher 

mode vibrations. Modal excitations in excessive of 800% have been reported (Pao and 

Singhose 1995). Second, obtaining CAP shaper pulse trains requires nonlinear 

optimization in the presence of a complicated solution space (Crain, 1996). In light of 

these limitations, a more efficient method for accomplishing vibration reduction in on-off 

thruster actuated systems is needed. 

The integration of PWPF modulation with a VA shaper offers a solution to this 

dilemma. The PWPF modulator itself has two primary advantages: its pseudo-linear 

operation and its capacity for real-time parameter tuning. Unshaped PWPF modulated 

thruster control has been shown to excite fewer modal vibrations than bang-bang 

controllers (McClelland, 1994). A variable amplitude input shaper can take advantage of 

the PWPF pseudo-linear operation. There are several major benefits from this integration. 
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From a practical standpoint, multiple-mode ZVDD VA shaper pulse trains are easily 

obtained. High values of vibration suppression should be available without incurring 

excessive maneuver time penalties. The controller should be robust to frequency 

variations and can be modified real-time in the presence of varying plant conditions. 

Finally, if operation of the PWPF modulator is sufficiently linear, high-frequency 

vibration entrained during the slew maneuvers should be less than that reported for the 

CAP shaped commands. 

B.        INTRODUCTION TO SIMULATIONS 

1.        Shaper Selection 

The proposed implementation uses the VA shaper. Therefore, the sequences 

already determined for the single mode or multiple mode ZVD or ZVDD shapers will 

suffice. The number of modes to target will be chosen a priori and then analyzed to 

determine the suitability of the choice. Based on the discussions in Chapter V, no more 

than five modes of the FSS will be targeted. The shaped system commands, therefore, 

remain as they were in Chapter V. 

The choice to use a ZVD or ZVDD shaper rests primarily in the tradeoff between 

robustness and command length. Comparisons made in Chapter V showed these clearly. 

In the simulations which follow, both types of shapers will be analyzed and any 

significant differences will be discussed. 

2. Simulation Models 

Simulations for both single and multiple mode models were conducted using the 

open- and closed-loop diagrams shown in figures 6.1a and 6.1b. For closed loop 

simulations, the PD controller was varied to obtain a desirable rigid body response 

independent from modal vibration levels. 
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Figure 6.1 
Shaped PWPF Simulation models 

C.        FSS WITH SINGLE FLEXIBLE MODE 

Single mode simulations were performed in order to provide a comparison of the 

PWPF modulated response to the ideal, linear system and to isolate the impact of varying 

the PWPF modulator parameters on vibration cancellation. Performance identical to the 

ideal system indicates almost perfectly linear operation of the modulator. Modulator 

deviation from linearity is indicated by degraded vibration cancellation under the same 

simulation conditions. Variations in PWPF parameters were investigated during the 

single mode analysis to determine if there is a preferred modulator configuration. 

Consistent with the previous simulations, both step and smoothed torque commands were 

applied. The shaped commands remain the same as in Chapter V. 
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1.        Open Loop System Response 

a.        System performance 

Figure 6.2 shows the flexible response to an unshaped step, a ZVD shaped 

step and a ZVDD shaped step command. Without tuning the PWPF modulator 

parameters, there is an immediate improvement of 50-60% in the vibration level. 

Magnitude 

Unshaped Step ZVD ZVDD 

Time, s 

Figure 6.2 
Flexible Mode Response, Shaped, single-mode PWPF 

In contrast to the ideal system, the single mode is not completely 

eliminated. This indicates that the frequency content of PWPF output does not exactly 

match the desired profile. Recalling Figure 3.5, a comparison of the PWPF modulator 

output power spectrum and the commanded spectrum explains the increase in residual 

vibration. The PWPF power spectrum includes additional frequency content which is not 

directed at eliminating the residual vibration. Nevertheless, a large decrease in vibration 

can be realized, giving a hint of the shapers' inherent robustness. Once the shaper has 

been chosen, the vibration reduction might be improved by tuning the modulator 

parameters. 

In Chapter V, a smoothed torque command was used to show a more 

typical open loop command profile. Recall that the smoothed command had the greatest 

impact on high frequency modes as compared to the fundamental. For the single mode 
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case, some reduction in vibration was realized, but the performance did not match the 

shaped input results. In this analysis, the smoothed torque profile is now realized with the 

PWPF modulator. As expected, the shaper is more effective at reducing the single, low- 

frequency mode than is the smoothed command. Figure 6.3 shows the modal responses 

due to the three command types. 

0.14 

0.12 

0.1 

0.08 
Magnitude 

0.06 

0.04 

0.02 

0 

Unshaped Step Smoothed Input       ZVDD 

Time, s 

Figure 6.3 
Comparison of Smoothed and shaped step command responses 

b.        Impact of tuning PWPF parameters 

The vibration reduction obtained in the last two simulations was 

performed with a dual-stage, tuned PWPF modulator. Prior to performing any tuning of 

the modulator, however, the VA shaper was able to reduce vibration to varying degrees. 

Consistent with the design criteria discussed in Chapter III, the modulator gain, pre-filter 

gain, and time constant were then varied against each shaper configuration to determine if 

superior vibration cancellation could be attained. Time constant variations within the 

design range yielded effectively no change in the vibratory response. This is consistent 

with the PWPF analysis in Chapter III. Figure 6.4 shows the general trends in tuning the 

Kp and Km, respectively, from the high-end of the design range to the minimum values. 

Note that for Kp fixed, as Km is varied from 6-»4-»2, the vibration response varies 

considerably. For Km fixed, slight variations from the nominal value of Kp =2 result in 

considerable change in the vibratory response. An additional case for a modulator gain 
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outside the design range (Km=20) was included for completeness. While the increase in 

vibration for Km=20 may not be excessive, the static modulator analysis showed an 

excessive number of thruster cycles. In summary, nominal values can be identified for 

both gain parameters. 

Note: Kf = 2.0 minimum for Modulator Operation 

0.08 
Magnitude 

0.06 

Note: Km = l25 minimum for Modulator Operation 

10 15 

(a) A; Varying 
10 15 

(b)/C Varying 

Figure 6.4 
Effect of varying Km and Kp on Vibration Cancellation 

Two important observations can be made. First, the fact that minor 

variations in the modulator parameters can make significant changes in the response 

suggests that the modulator's tunable range, though seemingly narrow, is sufficient to 

cover various plant configurations. Second, there appears to be a specific pre- 

filter/modulator gain combination which results in minimum vibration. Finally, dual- 

staging the pre-filter gain can have a dramatic impact on the response. Figure 6.4(b) 

suggests that a gain value of Km = 4.5 is preferred over the recommended design value 

(Km=1.5). However, addition of the dual stage pre-filter gain with values as indicated in 

Figure 6.5 clearly shows the advantage of the lower modulator gain. Of note is that the 

threshold setting for dual staging is based on the error signal effective deadband d/Km , 

where d is the Schmidt trigger on-threshold. 
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Figure 6.5 
Impact of Dual-Stage Pre-fllter Gain 

c. ZVD vs. ZVDD shapers 

A single mode in the ideal system can be canceled with any of the ZV, 

ZVD, or ZVDD shapers. Introduction of the PWPF modulator makes the degree of 

vibration reduction a function of shaper type. The additional frequency content resulting 

from the PWPF modulation process is, in effect, a robustness test. As shown in Figure 

6.6, the ZV, ZVD, and ZVDD shapers have varying degrees of success in eliminating the 

single mode. ZVDD, being the most robust, achieves the best results. 
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Figure 6.6 
Comparison of ZV, ZVD, and ZVDD shapers 
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Closed Loop Slew Maneuvers 

a. System response 

Ten, twenty, and thirty degree slewing maneuvers were simulated using 

the closed loop model illustrated in Figure 6.1b. The flexible responses shown in Figure 

6.7 indicate that the vibration level caused by an unshaped input command is a function 

of the move distance. This conclusion is consistent with current research (Singhose, et al, 

1995) into CAP actuators. 

30 degree 

Time, s 

Figure 6.7 
Flexible Mode Response to Unshaped Commands 

In each case, significant vibration reduction can be realized by using the 

PWPF modulator to execute a variable amplitude ZVDD shaped command. The reduced 

vibration can be obtained with little penalty in slewing performance. Figure 6.8 illustrates 

the additional time required and the vibration reduction for each slewing case. 

Unshaped Response ZVDD Response 

5 10 15 

(a) Rigid Body Response 
5 10 15 20 

(b) Flexible Mode Response 

Figure 6.8 
System Response, Shaped vs. Unshaped Slews 
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b.        Impact of tuning PWPFparameters 

Consistent with the observations made in the PWPF analysis and open 

loop analysis, the PWPF parameters are chosen to tailor the rigid-body slewing 

performance while minimizing vibration. The pre-filter gain is dual-staged as described in 

Chapter in so that the error signal going to the modulator can be brought out of the 

deadband when desired. The modulator time constant is selected for the rigid body 

response and the gains are directed toward minimizing vibration. In summary, the 

modulator selections used for the open loop case do not differ significantly from the 

closed loop case. 

3.        Shaper Selection 

As expected, the both the ZVD and ZVDD shapers provide considerable vibration 

elimination. The rigid-body performance costs associated with the ZVDD shaper is 

minimal, but the additional robustness to frequency variations make it the shaper of 

choice for this application. The remaining simulations utilized ZVDD shapers to target 

various flexible modes for cancellation. 

D.        FSS WITH MULTIPLE FLEXIBLE MODES 

Up to this point, simplified simulations have been used to understand the input 

shaping methodology and to identify the most effective configuration of PWPF 

modulator and shaping device. This section will report on effectiveness of the FSS with 

eight flexible modes, a PWPF modulator and multi-mode ZVDD input shaper to perform 

closed-loop slewing maneuvers. This combination of shaper and actuator has not been 

previously researched. Based on the observations in the earlier simulations, there is 

significant potential for this configuration to achieve excellent results. 

1.        Description of Simulations 

The simulations included here validate the use of VA shaper commands to a bang- 

bang actuator controlled by a PWPF modulator and show an improvement in higher mode 

excitations than reported in the current literature. Several cases will be analyzed using 
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ZVDD shapers to cancel the first three, four, and five modes. The PWPF modulator 

settings remain unchanged from the single mode example, but the PD controller gains 

were adjusted as necessary to achieve desired rigid-body responses. 

2.        System Response to Slew Maneuvers 

Figure 6.9 shows the unshaped and ZVDD shaped step commands to be executed 

by the PWPF-controlled system. 

4 Mode ZVDD 

15 
Tinie,s 

20 

Figure 6.9 
Commands and resulting Modal Excitations 

Figure 6.10 shows the lower-mode excitations resulting from a ten degree slew 

maneuver. With modal damping ratios of 0.004, the lower-mode flexible response is 

essentially undamped for the duration of the unshaped step command simulation. Using a 

four-mode ZVDD shaper with the PWPF modulator results in excellent cancellation of 

the targeted modes. Reductions in modal excitations of up to 96% are achieved in the first 

two modes and approximately 50-60% in the third mode. 
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Figure 6.10 
Flexible Response, Modes 1-4 

Modes three and higher become increasingly difficult to eliminate. Figure 6.11 

compares the high frequency responses due to an unshaped step and the four-mode 

ZVDD shaped commands. 
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Figure 6.11 
High Mode Excitation, ZVDD Shaped Slews 

These results are consistent with current research in that there is vibration 

entrainment in the higher modes. However, the key improvement is that there is no 

additional vibration entrained beyond that generated by an unshaped command. Use of 

PWPF to execute VA shaper commands substantially improves performance over the 

CAP shapers reported in current research (Pao, et. al.) without significantly degrading the 

slewing performance. 
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3. Robustness 

a.        Approach 

ZVDD shapers have been shown in current literature to be more robust 

than ZV or ZVD shapers. Pao (1996) reported ZVDD robustness to frequency variations 

between 30 and 40%. ZVD shapers were shown to possess a minimum of 20% frequency 

robustness. ZV shapers, while providing the fastest performance, were the least robust, 

with frequency tolerances on the order of 5% or less. 

In this thesis, several shaper/PWPF modulator combinations were 

analyzed to assess robustness and determine if a ZVD shaper is sufficiently robust to 

justify its use over a ZVDD shaper when implemented with the PWPF modulator. Final 

stage error and flexible mode average absolute displacement were obtained using 

frequency variations from 0.2©„ to 2.0co„ and damping variations of 0.1^ to 2.0£,. Rigid 

body and flexible mode responses for frequency variations of ± 20% were recorded. The 

ZVDD shapers were considerably more robust to frequency uncertainty. The results from 

the ZVDD case are reported here and comparison is made between single- and multi- 

mode ZVDD shaper robustness characteristics. 

b.        Results 

Figures 6.12 and 6.13 show rigid body and flexible mode responses for 

frequency variations of up to 20% from nominal. Using average absolute displacement as 

the performance metric, Figure 6.14 shows the robustness of a four-mode ZVDD shaper 

implemented with the PWPF modulator. Figure 6.15 shows the robustness of a single- 

mode ZVDD shaper. Ideal performance is characterized by an average displacement of 

zero. From these plots, three general conclusions can be made regarding the frequency 

and damping robustness of the ZVDD shapers. 
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ZVDD Shaper Robustness to Frequency Uncertainty 
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4-Mode ZVDD Shaper Robustness 
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I-Mode ZVDD Shaper Robustness 
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First, the rigid body final stage error is adversely impacted by frequency 

errors below the actual modal frequency because the shaper command length grows 

excessively long. A frequency error 50% below the assumed value results in a rapid 

increase in the maneuver error. Figure 6.12 is illustrative. Shown are the rigid body 

responses for a 20% over-estimation, nominal plant, and 20% underestimation of the 

target frequency. As the degree of underestimation increases, the rigid body response 

becomes increasingly sluggish. The large final stage error indicates that the rigid body 

has not reached the commanded value in the simulation time. 

Second, ZVDD shapers are insensitive to variations in damping whether 

single- or multiple-mode. Recall that damping ratio is an important determinant of the 

impulse amplitudes in the shaper pulse train. However, typical flexible spacecraft 

structures are very lightly damped, so a wide range of damping robustness is not required 

as long as the system output remains bounded. 

Third, the multi-mode shaper is more robust at lower frequencies than the 

single-mode shaper but entrains more vibration at higher modes. The single-mode shaper 

retains a significant amount of the step characteristic associated with modal vibrations, 

but frequency errors in the single-mode shaper do not propagate as strongly to the higher 

harmonics. If lower modes must be completely eliminated, the multiple-mode shaper 

does the job at the cost of some entrainment at higher frequencies. With plant uncertainty 

less than approximately 20%, entrainment is minimal compared to an unshaped 

command. However, if higher mode entrainment is to be avoided while reducing, but not 

eliminating, low-mode vibration, a single-mode ZVDD shaper can be quite effective. 

Though there is some higher mode entrainment, Figures 6.14 and 6.15 

document the relative insensitivity of the entrainment to frequency variations. Absent 

from the response is the entrainment on the order of 800% reported in CAP shaper 

research. The reduction in entrainment is a clear improvement over CAP shapers. There 

are diminishing returns to the vibration reduction possible as mode ratios increase and the 

spacing in frequency diminishes. Nevertheless, results with a single-mode VA shaper 

integrated with a PWPF modulator are superior to those of a multi-mode CAP shapers. 

91 



E.        SUMMARY OF RESULTS 

Variable-amplitude actuators have been shown to be superior to bang-bang 

actuators in terms of minimizing modal excitations (Hailey, 1992; McLelland, 1994). 

Taking advantage of the PWPF modulator's pseudo-linear operation, the variable 

amplitude input shaper has been shown to be effective in avoiding residual vibration. 

Actuating shaped thruster commands with a PWPF modulator yields vibration 

suppression levels of a linear controller. The rigid body slewing performance remains 

comparable to that of a bang-bang control. Vibration cancellation is superior to 

maneuvers with CAP shapers. Entrainment of higher mode vibration is also less 

pronounced. Finally, the shaped PWPF commands are robust for a wide range of 

frequency uncertainty. Since current finite element methods can typically identify natural 

frequencies with less than 10% error, the robustness characteristics of the shaped PWPF 

commands can allow for changing plant conditions and mass properties. 

PWPF modulated control has several distinct advantages. It provides design 

options of the various controller types. When integrated with a VA input shaper, it can 

produce slews nearly free of lower mode vibration while using less propellant and fewer 

thruster cycles than a typical bang-bang controller. Additional benefit is gained from 

having a tunable range of PWPF parameters, since the modulator settings can be 

scheduled as a function of plant configuration. Even without modulator tuning, reductions 

of up to 65% are realized. 
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VII.     CONCLUSIONS AND RECOMMENDATIONS 

This thesis presented the first study of PWPF modulated thruster control using the 

technique of input shaping. An analytical model of the FSS with piezoceramic sensors 

and actuators was developed. A detailed analysis of the PWPF modulator was performed 

to determine its suitability to adaptive control. Command input shapers were developed 

and integrated with the PWPF modulator and comparisons made with regard to shaper 

type, targeted modes, and maneuver distance. Robustness analyses were performed to 

show the insensitivity of PWPF modulated input shapers to frequency uncertainty. 

A.        CONCLUSIONS 

The PWPF modulator analyses revealed a narrow but effective tuning range for 

the modulator parameters. Subsequent investigations using a two-stage gain validated the 

usefulness of this technique. Use of the recommended design parameter ranges avoids 

difficulties with excessive phase lag, minimizes thruster cycles and keeps propellant use 

to a minimum. 

Realizing variable amplitude shaped commands with the PWPF modulator is a 

new technique which capitalizes on the strengths of both bang-bang and linear 

controllers. The PWPF modulation of variable amplitude shaper commands is especially 

suited to applications where VA actuators cannot be used. Compared to other methods, 

this new approach has numerous advantages: 

1) Simple implementation. The shaper is portable and can be integrated to many 

flexible systems, whether open- or closed-loop. 

2) Ease of computation. The shaper commands are dependent only on modal 

frequency and damping values and are calculated easily from a few vibration 

constraint equations. Non-linear optimization routines are not required. 

3) Robustness. The shaped PWPF commands are robust to variations in modal 

frequency and damping of up to 50 percent. At least four flexible modes can 

be effectively targeted for cancellation using this method without entraining 

excessive higher mode vibration. 



4) Effectiveness. Vibration reductions of up to 96% in the low modes without 

significant entrainment of higher mode vibration demonstrate the superiority 

of this method over the CAP-shaping method. 

5) Economy. Shaped-PWPF commands produce slews nearly free of lower mode 

vibration while using less propellant than a typical bang-bang controller. 

Numerical simulations performed on an eight-mode model of the Flexible Spacecraft 

Simulator (FSS) in the Spacecraft Research and Design Center (SRDC) at US Naval 

Postgraduate School (NPS) have demonstrated the efficacy of the variable amplitude 

shaped PWPF modulator and will serve as a foundation for experimental verification. 

B.        RECOMMENDATIONS FOR FUTURE RESEARCH 

Now that input shaping has been extended by use of the PWPF modulator, several 

areas for future research remain. In keeping with the design philosophy of the NPS 

Spacecraft Research and Design Center, these recommendations fall into two general 

categories of pre-shaping or feed-forward control and active or state-feedback control. 

1. Remaining Issues in Input Shaping 

While this thesis covers the general theory and shows the simplified design 

procedure, there are remaining issues in shaper robustness and performance tradeoffs, 

especially for systems with many tightly-spaced, low-frequency modes. There appears to 

be a limit on the performance gain realizable with input shaping as the number of targeted 

modes increases. The shaper type as well as the number and selection of targeted modes 

play defining roles in this effect. Obtaining detailed understanding of these effects is an 

area which will require considerable effort. 

2. Integrated PWPF Modulated Shaper with Active Vibration Control 

Input shaping works well to eliminate the lower mode vibrations, but a different 

approach should be reserved for the higher modes. For example, an active controller 

using piezoceramic sensors and actuators with a velocity or positive position feedback 

system could be used without adding significant complexity or mass to the system. 
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However, any negative impact of one control type on the other must be identified. For 

example, a PZT controller has the potential to destabilize the system in certain 

implementations. 

3. Applications for Advanced Control Theory 

Optimal control techniques such as Linear Quadratic Gaussian control can also be 

integrated with the feed-forward methods. Additionally, the shaped-PWPF modulation 

scheme is an attractive application for fuzzy logic or adaptive control. Specific 

investigations might include state estimation and real-time system identification to 

minimize plant uncertainty under dynamic conditions. Design tradeoffs, such as the 

simplicity of a classical control system against the enhanced performance of the advanced 

controller, would be key outputs of these research efforts. 

4. Experimental Validation 

Following a pending upgrade of the Naval Postgraduate School's Flexible 

Spacecraft Simulator, the results shown in this thesis must be experimentally validated. 

Specific tasks include implementing a discrete model, imposing hardware limitations 

such as thruster minimum impulse bit and sampling time restrictions, and analyzing the 

impact of digital filter time delays on system performance. While this thesis has 

presented an excellent approach to the problem of slewing flexible spacecraft, there are 

considerable hurdles to be cleared in real-time implementation. The results of this thesis 

make shaped-PWPF modulator control a strong candidate for experimental study. 
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APPENDIX A 

Recall the form of the rigid-elastic coupling vector using finite element data: 

A=Z(Mf-Jvi>fk- 
;=i 

There is one component 2), for each modal frequency. Each Dt is the summation of N 

terms, where N is the number of nodes (in this case, nine, including the cantilever point). 

Using the node and mode shape listings above, the calculations for Z>, are 

Node Calculation Subtotal 

1 = [(038l)(o) - (o)(o)](o.0085) 0 

2 

(x2tf
2 -y2tfL

2)m2 

= [(0.533)(- 0.0307) - (o)(o)](o.O085 + 0.0085 + 0.455) -7.72e-3 

3 

(x3<j>f3- j3<j>f )m3 

= [(0.686)(- 0.0944) - (o)(o)](o.0085 + 0.0085 + 0.455) -3.056e-2 

4 
= [(0.838)(- 0.1834) - (o)(o)](o.0085 + 0.0085 + 0.455) 

-7.254e-2 

5 

(x5tf
5 - y5ti

s)m5 

= [(0.99l)(- 0.3102) - (o)(o)](o.0085 + 0.0085 + 0.91) -2.85e-l 

6 
[x6tf

6 - y6$*6)m6 

= [(0.99l)(- 03102) - (- 0.152)(- 0.156l)](o.0085 + 0.0085 + 0.455) -1.563e-l 

7 

(x7(j>f7 - y7§f)m7 

= [(0.99l)(- 03102) - (- 0305)(- 0333)](0.0085 + 0.0085 + 0.455) -1.93e-l 

8 
[ZA?* -yA?)m& 

= [(0.99l)(- 0.3102) - (- 0.457)(- 0.5224)](o.0085 + 0.0085 + 0.455) -2.578e-l 

9 

(xgtf9 -y9ti9)m9 

= [(0.99l)(- 0.3102) - (- 0.6l)(- 0.7173)](o.0085 + 0.9l) -6.84e-l 

TOTAL: -1.687 
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APPENDIX B 

All computer codes included in this thesis were written by Naval Postgraduate 
School Space Research and Design Center unless otherwise noted. The code included in 
this appendix is organized along the lines of the thesis. That is, the initial material 
applies to the finite element model and the final material corresponds to the shaped 
PWPF modulator slews and robustness analyses. 

A.     FINITE ELEMENT MODEL 

% FSSmod.m: MAIN MODEL PROGRAM 

% This program determines the system response of the Naval Postgraduate School 
% Flexible Spacecraft Simulator (FSS). This development includes the rigid body hub, 
% the flexible beam, and disturbance torques from the thrusters, piezoceramics, and 
% momentum wheel (option). The form of the system matrix can be found in Hailey's 
% Naval Postgraduate School 1992 Master's Thesis on the FSS. This more complete 
% model includes all the disturbance torques and the piezo equations as forcing 
% functions. The called subroutines include "fem.m", which obtains the cantilever 
% frequencies and mode shapes for the flexible beam of the FSS. Within "fem.m", the 
user is prompted to input the beam parameters and piezoceramic sensor/actuator 
locations, "fem.m" calls "femparam.m" to get the beam info. 

global Amod Bmod Cmod Dmod Amodv  % system matrices 
global tau Um d h Km Kp hys Kt % PWPF parameters 

% Obtain cantilever modal response, if desired 
run=input('Do you need to reenter flexible beam cantilever response (y/n)?'5's'); 
if strcmp(run,'y')=l 
fem 
end 

% DEFINE PARAMETERS 
Izz=10.49; % Izz=Izzw+Izzf+Izzr (same value as Hailey, p. 98) 
zi=004; 
% modal damping factor 
omega=omega(l :mods); 
% only use frequencies of interest 
Tt=[l zeros(l,mods)]'; 
% Thruster input to center hub 

% Flex Beam controller parameters 
%   Truncate the piezo sensor and actuator vectors to the number of beam elements 
desired. 
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Bs=Bs(l :mods); % sensor vector 
Ba=Ba(l :mods); % actuator vector 

% Form the inputs for the System Matrix "A" given on page 12 of Hailey or p.20 of 
Watkins 
%D=zeros(l,mods); %test the rigid body problem, comment out as required 
%omega=zeros(mods, 1);   % rigid body test (cont'd) 
DD=D*D'; 
Izzo=Izz-DD; 
Fi=D.*omega'; 
Gi=Izzo*omega'+D.*Fi; 
Hi=2*zi*omega'.*D; 
Ji=2*zi*omega'*Izzo+D.*Hi; 

% Form the System Matrix "Asys" 

Asys=zeros(2*(mods+l)); 

% upper right partition 
Asys( 1 :mods+1 ,mods+2:2*(mods+l ))=Izzo*eye(mods+1); 

% lower left partition (column 1 is zero). 
All=zeros(mods+1); 
All(l,l:mods+l)=[OFi]; 
All(2:mods+l,2:mods+l)=-[D'*Fi]; 
for c=2:mods+l 
All(c,c)=-Gi(c-1); 
end 
Asys(mods+2:2*(mods+l),l:mods+l)=All; %install partition in Asys 
% lower right partition 
Alr=zeros(mods+l)'; 
Alr(l,l:mods+l)=[OHi]; 
Alr(2:mods+l,2:mods+l)=-[D'*Hi]; 
for c=2:mods+l 
Alr(c,c)=-Ji(c-1); 
end 
Asys(mods+2:2*(mods+l),mods+2:2*(mods+l))=Alr;      %install partition in Asys 

Asys= 1 /Izzo*Asys; % premultiply by inertia factor 
%rprintf('The system matrix is given by Asys-) 
%Asys 
% Form the System Input Matrix "Bsys" 
Bsys=l/Izzo*[zeros(l,mods+l) 1 -D]'; 
%rprintf('The system input matrix is given by Bsys-) 
%Bsys 
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% Form the Observation Matrix "Csys" 
%fprintf(The Observation Matrix is give by Csys-) 
%Csys=[eye(mods)] 

% Form the Transmission Matrix "Dsys" 
%fprintf('The Transmission Matrix "Dsys" is identically zero') 

% Using the control system variation, given on page 13 of Hailey 
Mmod=[Izz D;D' eye(mods)]; 
Zmod=[0 zeros(l,mods);zeros(mods,l) diag(-2*zi*omegarad(l :mods))]; 
Kmod=[0 zeros(l,mods);zeros(mods,l) diag(omega)]; 
[phil,lambdal]=eig(Kmod,Mmod); 
[lambda,phimod,psimod]=eign(Kmod,Mmod);      % system freqs and eigvectors 
% Find the modal matrix, "modmat" by diagonalizing M and calculating 
% modmatrix = eigenmatrix*sqrt((diag M)) 
MM=phil'*Mmod*phil; 
fori=l:mods+l 
forj=l:mods+l 
ifabs(MM(i,j))<0.0001 

MM(i,j)=0; 
end 
end 
end 
modmat=phi 1 *inv(sqrt(MM)); 

AA=[zeros(mods+l) eye(mods+l);inv(Mmod)*Kmod zeros(mods+l)]; 
BB=[zeros(mods+l,l);inv(Mmod)*Tt]; 
Amod=[zeros(mods+l) eye(mods+1 );diag(-lambda) diag(-2*zi*sqrt(lambda))]; 
Amodl=[zeros(mods+l) eye(mods+l);-lambdal -2*zi*sqrt(lambdal)]; 
Bmod=[zeros(mods+1,1); modrnat'*Tt]; 
Cmod=eye(2*mods+2);       % obs. matrix in modal coordinates 
Dmod=zeros(2*mods+2,1); 
% Similarity transform to go from modal observation matrix to physical 
% coordinates is given by C'=modmat* [state vector] 
% Now add damping due to velocity feedback controller 
ans=input('Is Velocity feedback piezo control operating? (y/n)','s'); 
if strcmp(ans,y')^l 

vgain=input('Input the velocity feedback gain'); 
coeff=zeros(mods+1); 
coeff(2:mods+l,2:mods+l)=-2*vgain/ys*Ba*Bs; 
coeff=inv(modmat)*coeff*modmat; 
Zpiezo=[zeros(mods+1) zeros(mods+l);zeros(mods+l) coeffj; 
fprintf('The system matrix with velocity feedback is given by') 
Amodv=Amod+Zpiezo; 

end 
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0 

clear ans 
ans=input('Is the PWPF modulator installed? (y/n)','s'); 
if strcmp(ans,'y')=l 

Kp=input('Enter the input gain, Kp='); 
Km=input('Enter the modulator gain, Km='); 
Kt=input('Enter the Thruster size, Kt='); 
tau=input('Enter the modulator time constant, tau='); 
d=input('Enter the on-threshold, d='); 
h=input('Enter the off-threshold, h='); 
Um=input('Enter the trigger output value, Um='); 
hys=d-h; 

end 
% Clean up the workspace 
clear All Air E beammass bla bis b2a b2s b3a b3s b4a b4s rhop i it c xloc 
clear dMa dMs density dof epsilon height length la Is tpa tps Ka Ma j h 
clear width ya yloc za zs volume Pa Ps Bssize Basize Ki Mi Ks Ms pmass yloc 
clear Ep ans coeff run 
% some others that can be cleared at the end... 
% clear ys point links m K M Ba Bs 
end 

%VoVo%%%VoVoVoV0VoVo%Vo%%%Vo%%VoVo%Vo%%%VoVoVoVo%%Vo0/oVo0/o%V0VoVo% 
% FEM.M: 

% Flexible Beam Finite Element Model with Controllers % 
% LCDR Nick Buck 

Summer 1995 

% This program is called by the mfile "FSSmod.m" and uses a finite element model to 
% determine the cantilever natural frequencies and mode shapes of a flexible, eight 
% element L-shaped beam equipped with piezoelectric sensors on element 2 and 
% actuators on beam element 1. The beam is jointed between elements four and five. 
% The piezos are mounted on the top and bottom surfaces of the beam. 
% Assumptions include: uniform beam density and modulus of elasticity. Moments of 
% inertia for point masses are neglected. Boundary conditions are fixed/free 
% 

% Three controllers are available for analysis: velocity feedback, positive position 
% feedback, and a combination of the two. 
% 

% After calculating the natural frequencies and mode shapes, this file sorts the output 
% and can output the x and y displacements of each node from the undisturbed position. 
% Using the displacement and nodal location data, the routine calculates the rigid- 
% elastic coupling vector, D, for use in the FSS model. The rigid-elastic coupling vector 
% represents the location of any point on the flexible beam, which when crossed with 
% central body rotation rate, yields the kinetic energy "cross-term" due to rotation of 
% the body-fixed coordinate frame in inertial space. 
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%%%% Performance Parameters %%%%%%%%%%%%%%%%%%%%%%%%% 

% obtain beam and piezo parameters if desired 
run=input('Do you need to reenter beam/piezo information (y/n)?','s'); 
if strcmp(run,y)=l 

femparam 
end 

%%%% Undamped (no controller) Cantilever Response %%%%%%%%%%%%%%% 
% Solve the eigenvalue problem using unity modal masses 
[omega,psi,phi]=eign(K,M); 
omegarad=sqrt(omega); 
omegahertz=omegarad/2/pi; 
wa=min(omegarad); % undamped fundamental frequency 
xmodes=pbi(l:2:15,:); 
thetamodes=phi(2:2:16,:); 
w=linspace(l ,300,300); %set for first 500 sees of response 

% Set up output matrices for viewing modes one at a time 

Col=[l zeros(l,31)]; 
Do=[0]; 
Co2=[0 1 zeros(l,30)]; 
Co3=[0 0 1 zeros(l,29)]; 
Co4=[0 0 0 1 zeros(l,28)]; 
Co5=[0000 1zeros(l,27)]; 

% Output the frequencies and mode shapes, if desired 
ans=input('Display unaugmented natural freqs and modes (y/n)?','s'); 
if strcmp(ans,y)==l 

K 
M 
fprintf('The plant (undamped) response is: %f) 
omegahertz=omegarad/2/pi 
xmodes=phi(l :2:15,:) 

end 

% Sort the modal vectors into the y and x displacements, respectively. 
% Maximum number of modes is limited to 16 (8-element model) 
mods=input('How many modal displacements would you like to output (1-16)?'); 

% Form the matrix of y and x displacements, respectively. Every two columns 
correspond to a mode. 
xylocs=zeros(9,mods*2); 
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dis=reshape(xmodes,4,links*4);      % put the xmodes matrix in columns of y and x 
displacements. 
forit=l:2:mods*2 
ymax=dis(4,it); Ymax=[ymax ymax ymax ymax]'; 
xylocs(2:5,it)=dis(l:4,it);xylocs(6:9,it)=Ymax; 
xylocs(6:9,it+l)=dis(l :4,it+l); 
end 

% append the nodal locations x and y respectively, to the front of the displacement 
matrix 
xloc=[.381 .533 .686 .838 .991 .991 .991 .991 .991]'; 
yloc=[0 0 0 0 0 -.152 -.305 -.457 -.610]'; 
xylocs=[xloc yloc xylocs]; 

% Output displacement info if desired 
ans=input('Would you like to list the x & y displacements?',^'); 
if strcmp(ans,'y')=l 

forit=l:mods 
fprintf('Mode: %f,it) 
fprintf(' x',' y') 
xylocs(l :9,2*it+l :2*it+2) 

end 
end 
ans=input('Would you like to list the x & y node locations?','s'); 
if strcmp(ans,'y')=l 

fprintf('Node Locations') 
fprintf('      x*,'        y') 
xylocs(l:9,l:2) 

end 

% Lump the beam and point masses at the nodes (point masses are already there). 
pointj=reshape(point,2,8); 
pointj=[0 pointj(l,:)]; % point masses 
mj=zeros(l ,9); % _ of each element mass goes to the node on either 
side 
for cc=l: links 
mj(cc)=mj(cc)+m/2; 
mj(cc+l)=mj(cc+l)+m/2; 
end 
mj=mj+pointj; % lump beam + point masses 

% Calculate the rigid-elastic coupling vector, D, for use in the FSS model. 

D=[zeros( 1 ,mods)]; 
for it=l :mods % components of D correspond to each mode 
for c=l :9 % nine nodes in the model 
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% Di's =SUM((Xj*PHIy-Yj*PHIx)*mass) 
D(it)=D(it)+(xylocs(c,l)*xylocs(c,2*it+l)-xylocs(c,2)*xylocs(c,2*it+2))*mj(c); 
end 
end 
fprintf('The rigid-elastic coupling vector is given by') 
D 

end 

% FEMPARAM.M %%%%% 
% 

%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%%%%%%%%%%%% 

% LCDR Nick Buck 
% Summer 1995 
% FSS Finite Element Modeling 
%%%%%%%%%%%%%%%%%%%%%%

0
/o%

0
/o%%%%%%%%%%%%%%%%% 

%This subroutine determines the parameters of a beam with piezoelectric actuators 
% & sensors. Output is used in the finite element program fem.m to determine modal 
% response of the beam. The sensor is placed on the beam and the actuator is colocated 
% on top of the sensor. 
clear; 

%%%% Beam Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

length=l .2192; % overall beam length 
links=8; % number of finite elements 
height=0.001575; % beam height 
width=0.0254; % beam width 
density=2.8e3; % beam density 
E=7.2el0; % Young's Modulus 

%% Calculated Beam Quantities %% 

I=width*heightA3/12; % Moment of inertia for beam elements 
volume=length*width*height; 
beammass=density*volume;% total beam mass 
m=beammass/links; % mass of each beam element 
h=length/links; % length of each element 
dof=2*links+2;        % matrix dimensions = degrees of freedom 

%%%% Piezo Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

d=1.8e-10;% piezoelectric charge coefficient 
Ep=6.3el0;% Young's Modulus for material 
epsilon=l .5e-8;        % permittivity of material 
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tps=.25e-3; % sensor thickness 
tpa=0.5e-3; % actuator thickness 
rhop=7.7e3; % density of sensor & actuator material 
zs=height/2; % position of sensor piezo from z-axis 
za=zs+tps;    % position of actuator piezo fin z-axis 
Wp=width; % width of piezos 
Ps=Wp*tps*Ep*(zsA2+zs*tps+tpsA2/3);     % Sensor "Stiffness factor" 
Pa=Wp*tpa*Ep*(zaA2+za*tpa+tpaA2/3);    % Actuator "Stiffness factor" 

%%%% Calculated Piezo Quantities %%%%%%%%%%%%%%%%%%%%%%%% 

%%%% Sensor %%%% 

dMs=Wp*tps*rhop; % sensor mass per unit length, h 
ys=Wp*h/tps*(epsilon-dA2*Ep); % electric potential 

% electro-mechanical coupling coefficients & general coordinates 
bls=0; o/oql 

b2s=-d*Ep*Wp*(zs+tps/2); % q2 
b3s=0; % q3 
b4s=d*Ep*Wp*(zs+tps/2); o/0 q4 
bs=[blsb2sb3sb4s]; 
Bs=zeros(l,dof); % output vector, es=l/ys*Bs*q 
ls=input('specify the piezo sensor location. Element #'); 
Bs(2*ls-1:2*ls+2)=Bs(2*ls-l :2*ls+2)+bs; 
Bs=Bs(3 :dof); % adjust for fixed end BC 
Bssize=max(size(Bs));        % length of Bs 

%%%% Actuator %%%% 

dMa=Wp*tpa*rhop; % actuator mass per unit length, h 
ya=Wp*h/tpa*(epsilon-dA2*Ep);    % electric potential 

% electro-mechanical coupling coefficients & general coordinates 

bla=0; % qi 
b2a=-d*Ep*Wp*(za+tpa/2); % q2 
b3a=0; % q3 
b4a=d*Ep*Wp*(za+tpa/2); % q4 
ba=[blab2ab3ab4a]'; 
Ba=zeros(dof, 1); % forcing function, F=-2*ea*Ba 
la=input('specify the piezo actuator location. Element #'); 
Ba(2*la-1:2*la+2)=Ba(2*la-l :2*la+2)+ba; 
Ba=Ba(3 :dof); % adjust for fixed end BC 

Basize=max(size(Ba)); % length of Ba 
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%%%% Elemental Matrices %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Beam Stiffness 
Ki=(E*I/hA3)*[12   6*h     -12   6*h 

6*h 4*hA2 -6*h   2*hA2 
-12   -6*h   12   -6*h 
6*h 2*hA2-6*h 4*hA2]; 

% Beam Mass 
Mi=(m/420)*[156   22*h      54   -13*h 

22*h  4*hA2 13*h -3*hA2 
54       13*h   156   -22*h 

-13*h -3*hA2 -22*h 4*hA2]; 

% Sensor Stiffness and Mass 
Ks=Ps/hA3*[12    6*h   -12    6*h 

6*h 4*hA2   -6*h   2*hA2 
-12   -6*h     12   -6*h 
6*h 2*hA2   -6*h  4*hA2]; 

Ms=dMs*h/420*[156   22*h    54     -13*h 
22*h  4*hA2   13*h   -3*hA2 
54     13*h    156    -22*h 

-13*h -3*hA2 -22*h  4*hA2]; 

% Actuator Stiffness and Mass 
Ka=Pa/hA3*[12   6*h   -12   6*h 

6*h 4*hA2   -6*h   2*hA2 
-12  -6*h     12   -6*h 
6*h 2*hA2   -6*h  4*hA2]; 

Ma=dMa*h/420*[156    22*h      54    -13*h 
22*h  4*hA2    13*h   -3*hA2 
54     13*h      156   -22*h 

-13*h -3*hA2   -22*h    4*hA2]; 

%%%% Point Mass Input %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ans=input('Are there point masses on the beam (y/n)?Vs'); 

if strcmp(ans,'y')=l 
forc=l:links 

fprintf('For node #%f ,c) 
point(2*c-l)=input('What is the point mass?'); 
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point(2*c)=0; 
end 

pmass=diag(point);    % format to match K,M 
elseif strcmp(ans,,n')=l 

pmass=zeros(2*links); 
end 
end 

%%%% Global Mass and Stifmess Matrices %%%%%%%%%%%%%%%%%%% 
% Setup inputs from first element 

K=zeros(dof,dof); 
M=zeros(dof,dof); 
K(l:4,l:4)=Ki(l:4,l:4); 
M(l:4,l:4)=Mi(l:4,l:4); 

% Add additional elements 
for i=2: links 

K=K+[zeros(2*(i-l),dof) 
zeros(4,2*(i-l)) Ki zeros(4,dof-2*(i-l)-4) 
zeros(dof-2*(i-l)-4,dof)]; 

M=M+[zeros(2*(i-l),dof) 
zeros(4,2*(i-l)) Mi zeros(4,dof-2*(i-l)-4) 
zeros(dof-2*(i-l)-4,dof)]; 

end 

% Remove first two rows/columns to account for fixed end BC 
K=K(3:do£3:dof); 
M=M(3:dof,3:dof); 

% Add the point masses to the mass matrix 
M=M+pmass; 

% Add mass of elbow and associated point masses to node 5 
% due to constraints W6=W7=W8=W9 (elbow is rigid body) 
M(7,7)=M(7,7)+sum(point(links+l:links*2))+4*m; 

% Apply constraints to elbow...W5=W6=W7=W8=W9 
M(7,9:10)=[0 0]; 
M(9:10,7)=[0 0]'; 

% Adjust for elbow U5=W5 (element already accounted for) 
K(7,7:10)=K(7,7:10)-Ki(l, 1:4); 
K(8:10,7)=K(8:10,7)-Ki(2:4,l); 
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% Check for piezo actuators 
ans=input('Are the piezos installed (y/n)?','s'); 
if strcmp(ans,y)==l 

% Add 2 piezo actuators (top & bottom) to element 2 
K(l:4,l:4)=K(l:4,l:4)+2*Ka(l:4,l:4); 
M(l :4,1:4)=M(1:4,1:4)+2*Ma(l :4,1:4); 

% Add 2 piezo sensors (top & bottom) to element 2 
K(l :4,1:4)=K(1:4,1:4)+2*Ks(l :4,1:4); 
M(l :4,1:4)=M(1:4,1:4)+2*Ms(l :4,1:4); 

end 
end 
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B.      SYSTEM MODEL 

% EIGN.M: SOLVES THE EIGENVALUE PROBLEM AND SORTS THE MODAL 
VECTORS 

function [Lambda,Phi,Psi]=eign(A,B) 

%    eign: Solve the generalized eigenvalue problem. 
% Order & normalize the eigenvectors. 
% 

% [Lambda,Phi,Psi]=eign(A,B) 
% 

% A x = [Lambda] B x 
% with the special (' structural') normalizations: 
% Phi(i)'*B*Phi(i) = 1 
% Psi(i)'*B*psi(j) = kronecker delta(ij) 
% where 
% Phi(i) - i-th right eigenvector 
% Psi(i) - i-th left eigenvector 
% '   ~ transpose 
% 

% Caution: real mode - imag(Lambda) < 1 .e-7 
% 

% reference: Junkins & Kim, Dyn. & Ctrl of Structures, ch. 2,4 

% 

% programmed by YoudanKim 
% Dept. of Aerospace Engineering 
% Texas A&M University 
% 

% revised date : May 24, 1989 
% APR. 25,1991 
% Dec. 16,1991 
n=max(size(A)); Lambda=zeros(n,l); Phi=zeros(n); Psi=zeros(n); 
% 

%   Solve Left and Right Eigenvalue Problem 
% 

rVR,DR]=eig(A,B);[VL,DL]=eig(A',B'); 
kr=zeros(n,l); kc=kr; er=kr; ec=kr; 
% 

%    Sort Right Eigenvectors and Eigenvalues 
% 

indr=0; indc=0: 

% 
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for i=l :n; 
if abs(imag(DR(i,i))) <= l.e-7; 

indr=indr+l; kr(indr)=i; er(indr)=DR(i,i); 
elseif imag(DR(i,i)) > l.e-7; 

indc=indc+l; kc(indc)=i; ec(indc)=DR(i,i); 
end 

end 
er=real(er(l:indr)); ec=ec(l:indc); 
ind=l; [lr,krn]=sort(er); [lc,kcn]=sort(imag(ec)); 
for i=l :indr+indc; 

ifi<=indr; 

Phi(:,i)=real(VR(:,kr(km(i)))); 
Lambda(i)=real(DR(kr(krn(i)),kr(krn(i)))); 
ind=ind+l; 

else 
ii=i-indr; 
Phi(:,ind)=VR(:,kc(kcn(ii))); 
Phi(:,ind+l)=conj(Phi(:,ind)); 
Lambda(ind)=DR(kc(kcn(ii)),kc(kcn(ii))); 
Lambda(ind+1 )=conj (Lambda(ind)); 
ind=ind+2; 

end 
end 
% 

%    Sort Left Eigenvectors 
% 

indr=0; indc=0; 
for i=l :n; 

if abs(imag(DL(i,i))) <= l.e-7; 
inclr=indr+l; k^indr)^; er(indr)=DL(i,i); 

elseif imag(DL(i,i)) > l.e-7; 
indc=indc+l; kc(indc)=i; ec(indc)=DL(i,i); 

end 
end 
er=real(er(l :indr)); ec=ec(l :indc); 
ind=l; [lr,krn]=sort(er); [lc,kcn]=sort(imag(ec)); 
fori=l:indr+indc; 

if i <= indr; 
Psi(:,i)-real(VL(:,kr(krn(i)))); 
ind=ind+l; 

else 
ii=i-indr; 
Psi(:,ind)=VL(:,kc(kcn(ii))); 
Psi(:,ind+l)=conj(Psi(:,ind)); 
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ind=ind+2; 
end 

end 
% 

%    Normalize Right and Left Eigenvectors 
% 

fori=l:n; 
xi=Phi(:,i); 
yi=Psi(:,i); 
scl=conj(xi')*B*xi;      Phi(:,i)=Phi(:,i)/sqrt(scl); 
sc2=conj(yi,)*B*Phi(:,i);Psi(:,i)=Psi(:,i)/sc2; 

end 
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C.     PWPF MODULATOR CODES 

SCHMIDT TRIGGER IMPLEMENTATION FOR FSS MODEL 
function [sys,xO] = schmtmf(t,x,u,flag,U,Eon,Eoff) 
% SCHMTMF Implements a Schmidt Trigger, 
%        Control Algorithm 
%        The global variable FLG must be declared 
%        in the work space and initialized to 0 
%        A Zero-Order Hold Module must be placed on the 
%        Output of the Schmidt Trigger and set to the 
%        simulation time step 
global FLG 
ifabs(flag)=l 

sys = []; 
elseifflag = 3 

ifFLG = 0 
if u > Eon 

FLG= l;sys= 1.0*U; 
elseifu<-Eon 

FLG = -l;sys = -1.0*U; 
else 

FLG= 0;sys= 0.0*U; 
end 

elseif FLG = 1 
if u < Eoff & u >= -Eon 

FLG= 0; 
sys= 0.0*U; 

elseif u < Eoff & u < -Eon 
FLG = -1; 
sys = -1.0*U; 

else 
FLG= 1; 
sys= 1.0*U; 

end 
elseif FLG = -1 

if u > -Eoff & u <= Eon 
FLG= 0; 
sys= 0.0*U; 

elseif u > -Eoff & u > Eon 
FLG= 1; 
sys= 1.0*U; 

else 
FLG = -1; 
sys = -1.0*U; 

end 
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else 
FLG= 0; 
sys= 0.0*U; 

end 
elseifflag = 0 

FLG = 0; 
sys = [0,0,1,1,0,1]; 

else 
sys = []; 

end 

%%%%VoVo%VoVoV0%V0%%Vo%VoVo%VoVo%Vo%Vo%%VoVoVo%%%%%%Vo%Vo%%% 
FUNCTION  TON:   COMPUTES  THE  THRUSTING TIME  FOR  THE  PWPF 
MODULATOR 
function [ont,onnum] =ton(time,xx) 

markton=0; 
thruster=abs(xx); 
onnum=0; 

tton=0; 
ont=0; 
[len,wid]=size(time); 
fork=l:l:(len-l), 

ifthruster(k+l)-thruster(k)>0.0; 
tton=time(k+l); 

onnum=onnum+l; 
%fbrintf(,ton=%f\n\n,,tton); 

markton=l; 
end; 
if thruster(k+1 )-thruster(k)<0.0; 

ttoff=time(k+l); 
ont=ont+(ttoff-tton); 
markton=0; 

end; 
end; 

ont=ont+markton*(time(len)-tton); 

%fprintf('on time=%f\n\n',ont); 
%fprintf('number of firing=%f\n\n',onnum); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

BATCHK: RUNS THE PWPF SLEWING SIMULATIONS AS A BATCH FILE 
%batchk.m 

clear mm nn VKp Vtau mover settl fer onnumb ontime; 

forn=l:l:8; 
eval(['clear vibq' int2str(n)]); %clear vibql,...,vibq8 

end 

for mm=[l: 1:30] 
for nn=[l: 1:30] 

Kp=l+mm; 
VKp(mm)=Kp; 
tau=0.01+0.025*nn; 
Vtau(nn)=:tau; 
rk45(pmodsim',tf,zeros(20,1),[1 e-5,1 e-5,1 e-3]); 

%calculate the maximum overshoot 
mover(mm,nn)=max(states(:, 1 ))-slew/5 7.3; 

%Compute the settling time within 5% relative error 
[len,wid]=size(time); 
theta=states(:,l); 
markl=tf; 
mark2=0; 
forkk=[l:l:len]; 

if abs(theta(kk)-slew/57.3)/(slew/57.3)<0.05 & mark2=0; 
markl=kk; 
mark2=l; 

end 
if mark2=l & abs(theta(kk)-slew/57.3)/(slew/57.3)>=0.05; 

mark2=0; 
markl=tf; 

end 
end 
ifmark2=0 
settl(mm,nn)=tf; 
fprintfC       Settling time is not reached\n\n') 

end 
ifmark2==l 

settl(mm,nn)=time(mark 1); 
%fprintf('       Settling time is %f\n\n', time(markl)) 

end 
%compute the total thruster action - on-time 
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%and number of firings 
thruster=abs(pwpfout(:,3)); 
onnum=0; 
ont=0; 
fork=l:l:(len-l), 
if thruster(k+1 )-thruster(k)>0.0001; 

tton=time(k+l); 
ormum=onnum+1; 
%fprintf(,ton=%f\n\n',tton); 
mark4=l; 

end; 

ifthruster(k+l)-thruster(k)<-0.000001; 
ttoff=time(k+l); 
ont=ont+(ttoff-tton); 

mark4=0; 
end; 

end; 
ont=ont+mark4*(tf-tton); 
ontime(mm,nn)=ont;   %total on time 
onnumb(mm,nn)=onnum; %number of firings 
%fprintf('on time=%f\n\n',ontime); 
%find the final stage error (average of the absolute 
%value of the error during the last 10% simulation 
%time) 
%[len,wid]=size(time); 
%theta=states(:,l); 
mark3=0; 
forkk=[l:l:len]; 
iftime(kk)=tf*0.9; 

mark3=kk; 
end; 

end; 
sum=0; 

forkk=[kk:l:len]; 
sum=sum+(theta(kk)-slew*pi/l 80); 

end; 
%fer=sum/(len-kk+l); 
fer(mm,nn)=sum/(len-kk+1); 
%fprintf('      Final Error is %f\n\n', fer(mm,nn)) 

%calculate the index for each modal vibration 
%the index is simply the average of the abslote value of the 
%each modal displacement 

116 



forn=2:l:9 
eval(['vibq' int2str(n-l) '(mm,nn)=mean(abs(states(:,' int2str(n)')));']); 
end 

%save the data into 'data##' matrix 
%eval(['data' int2str(mm) int2str(nn) -[time states pdout pwpfout command];']); 

end 
fprintf('      mm is %f\n\n', mm) 
end 
%formm=[l:l:3] 

%eval(['dat=datal' int2str(mm)';']); 
%plot(dat(:,l),dat(:,2)) 
hold on 

%end 
figure 
mesh(Vtau,VKp,mover) 
title('Max Overshoot') 
figure 
mesh(Vtau,VKp,settl) 
title('Settling Time') 

figure 
mesh(Vtau,VKp,fer) 
title('Final Stage Error') 

figure 
mesh(Vtau,VKp,ontime) 
title('On Time') 

figure 
mesh(Vtau,VKp,onnumb) 
title('Number of Thrustering') 

figure 
mesh(Vtau,VKp, vibql); 
title('Average Absolute Displacement of Modal 1'); 

figure 
mesh(Vtau,VKp, vibq2); 
title(' Average Absolute Displacement of Modal 2'); 

figure 
mesh(Vtau,VKp, vibq3); 
title(' Average Absolute Displacement of Modal 3'); 
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figure 
mesh(Vtau,VKp, vibq4); 
title('Average Absolute Displacement of Modal 4'); 

figure 
mesh(Vtau,VKp, vibq5); 
title('Average Absolute Displacement of Modal 5'); 

figure 
mesh(Vtau,VKp, vibq6); 
title( Average Absolute Displacement of Modal 6'); 

figure 
mesh(Vtau,VKp, vibq7); 
title( Average Absolute Displacement of Modal 7'); 

figure 
mesh(Vtau,VKp, vibq8); 
title(Average Absolute Displacement of Modal 8'); 

hold 
save 50by50; 
end 

BATCHP.M: RUNS THE MODULATOR PARAMETER VARIATIONS IN BATCH 
FORMAT 

%d=0.45; %on threashold 
clear d h; 
if exist('countkm') =1; 
forn=l:l:countkm; 
eval(['clear b' int2str(n)]); 
eval(['clear B' int2str(n)]); 
eval(['clear Tont' int2str(n)]); 
eval(['clear Tofft' int2str(n)]); 
eval(['clear freq' int2str(n)]); 
eval(['clear MF' int2str(n)]); 
eval(['clear dead' int2str(n)]); 
eval(['clear pwmin' int2str(n)]); 
eval(['clear rmax' int2str(n)]); 
eval(['clear Tone' int2str(n)]); 
eval(['clear onnumb' int2str(n)]); 
eval(['clear MFc' int2str(n)]); 
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eval(['clear Toffc' int2str(n)]); 
eval(['clear Error' int2str(n)]); 

end 
end 

tf=l; 
FLG=0; 
tau=0.13; 

cinput=0.5; 
Um=l; 
r=cinput; 

countd=10; %how many different d you want to run 
dmax=l;   %max on d 
counth=10; 
countkm=10; 
Kmmax=20; 

for j=l: 1 xountkm; 
Km(j)=Kmmax*(j/countkm); 
for n=l: 1 :(countd); 
d(n)=dmax * ((n)/countd); 
fori=l:l:counth; 

fprintfCJ is %f j); 
fprintf('   n is %f ,n); 
h(i)=d(n)*((i)/counth); 
eval([V int2str(j) ,(n,i)=h(i)/(KmO)*Um-h(i));']); 
eval(['B' int2str(j) '(n,i)=(Km(j)*r-d(n))/(Km(j)*Um-h(i));*]); 
eval(['Tont,int2strö'),(n,i)=-tau*log(l+h(i)/(Knl(j)*(r-Um)-d(n)));,]); 
eval([Tofft' int2str(j) '(n,i)=-tau*log(l-h(i)/(Kmö')*r-d(n)+h(i)));']); 

Tontemp=-tau*log(l+h(i)/(Km(j)*(r-Um)-d(n))); 
Tofftemp=-tau*log(l-h(i)/(Kmö)*r-d(n)+h(i))); 

eval(['freq' int2str(j) '(n,i)=l/(Tontemp+Tofftemp);']); 
eval(['MF int2str(j) ,(n,i)=Tontemp/(Tofftemp+Tontemp);']); 
eval(['dead* int2str(j) '(n,i)=d(n)/Kmö');']); 
eval(['rmax' int2strö) Xn,i)=Um+(d(n)-h(i))/(Kmö'));']); 
evalCt'pwmin' int2str(j) '(n,i)=tau*log(l+h(i)/(Kmö)*Um-h(i)));']); 

rk45Cbrigpwpf, tf, 0, [le-5,le-5,le-4,0,0,2]); 

[ontime, onnum]=ton(time,pwpfo(:,3)); 

fprintfC    On Time is %f\n',ontime); 
eval([Tonc' int2str(j) '(n,i)=ontime;']); 
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eval(['onnumb' int2str(j) ,(n,i)=onnum;']); 
eval([Toffc' int2str(j) '(n,i)=tf-ontime;']); 
eval(['MFc' int2str(j) '(n^ntime/tf;']); 
eval(['Error' int2strü) Xn,i)^ean(abstowpfo(:,l)));']); 

end; 
end; 

end; 

figure; 
orient tall; 
forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, b' int2strö') ',MF int2str(j)')']); 
colormap(datamap); 
ifj<=2; 
title('b '); 

end; axis([0 10 10 1]) 

text(0.8,0.85[
,Krn=',int2str(Km(j))],'units^,nor^lalized,); 

ifj>=9; 
xlabel('Eoff); 
ylabel('Eon*); 

end 
end 

figure; 
orient tall; 
forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, B' int2strö) ')']); 
colormap(datamap); 
ifj<=2; 
title('B '); 

end; axis([0 10 10 1]) 

text(0.8,0.8,[•Km=,,int2str(Kmö'))]5
,units^'normalized,); 

ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 

figure; 
orient tall; 
forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, MF int2str(j) ')']); 
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colormap(datamap); 
ifj<=2; 
title('MF   '); 

end; axis([0 10101]) 
text(0.8,0.8,['Km=,,int2st^(Kmö'))],,units^,no^nalized,); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon*); 

end 
end 

figure; 
orient tall; 
for j=l: 1 rcountkm; 
subplot(5,2,j); 

eval(['mesh(h, d, freq' int2str(j) ')']); 
colormap(datamap); 
ifj<=2; 
title('Frequency   '); 

end; 
axis([0 10 10 2500]) 
text(0.8,0.8,[,Km=,,mt2str(Kmö'))],'units,,,normalized'); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 

figure; 
orient tall; 
for j=l: 1 :countkm; 
subplot(5,2j); 

eval(['mesh(h, d, Tone' int2str(j) ',onnumb' int2str(j)')']); 
%colormap(datamap); 
ifj<=2; 
title('Ontime-Simulation'); 

end; 
axis([0 10 10 1]) 
text(0.8,0.8,[,Km=,

5int2str(Kmö))],'units',,normalized'); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 
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figure; 
orient tall; 
for j=l: 1 xountkm; 
subplot(5,2,j); 
eval(['mesh(h, d, onnumb' int2strö) 'Jone' int2str(j) ')*]); 

%colormap(datamap); 
ifj<=2; 
title('OnNumber-Simulation'); 

end; 
%axis([0 10 10 4000]) 

text(0.8,0.8,[,Km=^int2str(Km(j))],'unitsVnormalized'); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 

clear Tontemp Tofftemp; 

%%%%%%%%%Vo%%%%%%%%%%%%%V0%%%%%%o/o%%%%%%o/0o/0o/0o/oo/o 

PLOTP: PLOTS THE OUTPUT FROM BATCHP IN VARIOUS SUBPLOTS 
datamap=hsv; 
datamap=datamap(l 1:64,:); 

figure; 
orient tall; 
forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, b' int2strG) ',MF int2str(j)')']); 
colormap(datamap); 
ifj<=2; 

title(*b *); 
end; axis([0 10 10 1]) 
text(0.8,0.8J[

,Knl=,,int2str(Km(j))],'units';normalized,); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 

figure; 
orient tall; 
for j=l: 1 rcountkm; 
subplot(5,2,j); 

eval(['mesh(h, d, B' int2strö) ')']); 
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colormap(datamap); 
ifj<=2; 

title(*B '); 
end; axis([0 10101]) 

text(0.8,0.8,[,Km=,,int2str(K^l(j))],,units,,,nomlalized,); 
ifj>=9; 
xlabel('Eoff); 
ylabelfEon'); 

end 
end 

figure; 
orient tall; 
forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, MF int2str(j) ')']); 
colormap(datamap); 

ifj<=2; 
title(*MF    '); 

end; axis([0 10101]) 
text(0.8,0.8,['Km=^int2str(Kmö'))],'^lnits,;normalized,); 

ifj>=9; 
xlabel('Eoff); 
ylabel(*Eon*); 

end 
end 

figure; 
orient tall; 
for j=l: 1 xountkm; 
subplot(5,2,j); 
eval(['mesh(h, d, freq' int2str(j) *)']); 

colormap(datamap); 

ifj<=2; 
title(Trequency   '); 

end; 
axis([0 10 10 2500]) 
text(0.8,0.8,['Km=',int2str(Km(j))],,units,,,normalized'); 
ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 
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end 
end 

figure; 
orient tall; 

forj=l:l:countkm; 
subplot(5,2,j); 

eval(['mesh(h, d, Tone' int2strö) ',onnumb' int2strQ)')']); 
%colormap(datamap); 

ifj<=2; 
title('Ontime-Simulation'); 

end; 
axis([0 10 101]) 

text(0.8,0.8,[,Km=,,int2str(Kmö))];units',,normalized,); 

ifj>=9; 
xlabel(*Eoff); 
ylabel('Eon'); 

end 
end 

figure; 
orient tall; 

forj=l:l:countkm; 
subplot(5,2,j); 
eval(['mesh(h, d, onnumb' int2str(j) 'Jone' int2strö)')']); 

%colormap(datamap); 

ifj<=2; 
title('OnNumber-Simulation'); 

end; 

%axis([0 10 10 4000]) 
text(0.850.8,[,Km=',int2str(Kmö))],,units','normalized'); 

ifj>=9; 
xlabel('Eoff); 
ylabel('Eon'); 

end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%Vo%%%%%%%%%%%%% 

FREQ.M: DYNAMIC ANALYSIS FOR PWPF MODULATOR 

%find how input frequency and time constant affect the PWPF 

km=4.5;Um=l ;d=0.45;h=0.15; 
%tau=0.15; 
ifexist(*Y')=l; 
clear Y Pyy f Pxx X fit; 
%clear tton kon ttoff koff ont; 
end; 

countfin=4; 
counttau=l; 
taumax=0.15; 
finmax=20*pi; 
a=5120; 
b=2560; 

for i=l: 1 :countfin 
frn=finmax* (i/countfin); 
Vfm(i)=fin; 

for j==l: 1 xounttau; 
tau=taumax*(j/counttau); 
Vtau(j)=tau; 

rk45(*brigpwpf, (2*pi/fin+0.01),0, [le-5,le-5,le-4,0,0,2]); 

Y=fft(pwpfo(:,3),a); 
Pyy=Y. * conj (Y)/a; 
f=10000*(0:(b-l))/a; 

%figure 
subplot(2,2,i) 
plotC^PyyCli^/green') 
title([Time constant=' num2str(tau)   '    Input Frequency^ num2str(fin/(2*pi))]) 
axis([0 100 0 200]) 

hold on 

X=fft(datain,a); 
Pxx=X.*conj(X)/a; 
fx=10000*(0:(b-l))/a; 
plot(fx,Pxx(l:(b)yred') 
hold 

end; 
end: 
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%%%%Vo%VoVo%Vo%%V0%V0%Vo%VoV0%%VoVoVoVoVo%Vo%%VoVoVoVoVo%%Vo°/o%% 
LINEAR: ASSESS LINEARITY OF THE PWPF MODULATOR 
%study linear opeartion range of a PWPF 

ifexist(*Vinput')=l; 
clear Vinput Vd Tone onnumb MFc averror pwpfo time; 

end 
tf=l; 
Um=l; 
Km=4.5; 
tau=0.13; 
countin=10; 
inputmax=1.2; 
countd=10; 
dmax=0.9; 
fori=l:l:countin; 
input=inputmax*(i/countin); 
Vinput(i)=input; 
forj=l:l:countd; 
d=dmax*(j/countd); 
vdö)=d; 
h=0.5*d; %0.5*d; 
rprintf('i is %f ,i); 
rprintfC   jis%fj); 
rk45('brigpwpf, tf,0, [le-5,le-5,le-4, 0, 0,2]); 
[Tonc(ij),onnumb(ij)]=ton(time,pAvpfo(:,3)); 
MFc(i,j)=Tonc(i,j)/tf; 
rprintfC   MFc is %f\n', MFc(i ,j)); 
averror(ij)=mean(abs(pwpfo(:,l))); 

end; 
end; 
forj=l:l:countd; 
plot(Vinput,MFc(:,j)); 
titleCMF'); 
axis([0 1 0 1]); 
hold on 

end; 
hold 
figure; 
forj=l:l:countd; 
plot(Vinput,onnumb(:,j)); 
title('Thruster Firing Number'); 
axis([0 1.2 0 150]); 
hold on 

end; 
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hold 
figure; 
forj=l:l:countd; 
plot(Vinput,averror(: j)); 
axis([0 1.2 0 1]); 
title('error'); 
hold on 

end; 
hold 

forj=l:l:countd; 
plot(Vinput,MFc(: ,j)); 
titleCMF*); 
axis([0 10 1]); 
hold on 

end; 
hold 

figure; 

forj=l:l:countd; 
plot(Vinput,onnumb (: j )); 
title(Thruster Firing Number'); 
axis([0 1.2 0150]); 
hold on 

end; 
hold 

figure; 

forj=l:l:countd; 
plot(Vinput,averror(:j)); 
axis([0 1.2 0 1]); 
title('error*); 
hold on 

end; 
hold 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0o/0o/0o/oo/oo/oo/o 

LINK.M: ASSESS THE IMPACT OF KM ON MODULATOR LINEARITY 

%study linear opeartion range of a PWPF with the change of Km 

ifexist('Vinput')=l; 
clear Vinput Vd Tone onnumb MFc averror; 

end 

tf=l; 

d=0.45; 
h=0.15; 

Um=l; 

tau=0.13; 

countin=12; 
inputmax=1.2; 

countkm=10; 
kmmax=20; 
for i=l: 1 xountin; 
input=inpurmax* (i/countin); 
Vinput(i)=input; 
forj=l:l:coxintkm; 
km=kmmax*(j/countkm); 
Vkm(j)=km; 
fprintf('i is %f ,i); 
fprintfC   jis%f,j); 
rk45(*brigpwpf, tf,0, [le-5,le-5,le-4,0,0,2]); 
[Tonc(ij),onnumb(i,j)]=ton(time,pwpfo(:,3)); 
MFc(ij)=Tonc(ij)/tf; 
fprintfC   MFc is %f\n', MFc(i,j)); 
averror(i,j)=mean(abs(pwpfo(:, 1))); 

end; 
end; 
for j=l: 1 xountkm; 

ifj—i; 
plot(Vinput,MFc(:,j),'red'); 
axis([01.2 0 1]); 
title('MF'); 
hold on; 

elseifj=countkm; 
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plot(Vinput,MFc(:,j),'green'); 
else 
plot(Vinput,MFc(:,j)); 

end; 
end; 
hold 
figure; 
forj=l:l:countkm; 

ifj—i; 
plot(Vinput,onnumb(:j),'red'); 
axis([0 1.2 0 150]); 
title('Number of Thruster Firing1); 
hold on; 

elseifj=countkm; 
plot(Vinput,onnumb(:,j),'green'); 

else 
plot(Vinput,onnnmb(:,j)); 

end; 
end; 
hold 
figure; 
for j=l: 1 xountkm; 
plot(Vinput,averror(:j)); 
axis([0 1.2 0 1]); 
title('Error'); 
hold on 

end; 
hold 

%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%%%%%%%%%%%%%% 

% PLOTK: PLOT OUTPUT FROM LINK.M 

for j=l: 1 xountkm; 

ifj=l; 
plot(Vinput,MFc(:,j),'red'); 
axis([0 1.2 0 1]); 
title('MF'); 
hold on; 

elseif j=countkm; 
plot(Vinput,MFc(:,j),'green'); 

else 
plot(Vinput,MFc(:,j)); 

end; 
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end; 
%hold 

figure; 

forj=l:l:countkm; 

ifj=l; 
plot(Vinput,onnumb(:,j),'red'); 
axis([0 1.2 0 150]); 
titleCNumber of Thruster Firing'); 
hold on; 

elseif j=countkm; 
plot(Vinput,onnumb(:,j),'green'); 

else 
plot(Vinput,onnumb(:j)); 

end; 
end; 

%hold 

figure; 

forj=l:l:countkm; 
plot(Vinput,averror(:,j)); 
axis([0 1.2 0 1]); 
title('Error'); 
hold on 

end; 
hold 

%%%%%%%%%%%%%%%%%%%%%%%%o/o»/o%o/o%o/o%o/o%%%o/o%o/o%% 

LINTAU.M 

%study linear opeartion range of a PWPF with the change of tau 

ifexist('Vinput')==l; 
clear Vinput Vd Tone onnumb MFc averror; 

end 

tf=l; 

km=4.5; 
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d=0.45; 
h=0.15; 

Um=l; 

%tau=0.13; 

countin=12; 
inputmax=1.2; 

counttau=10; 
taumax=0.5; 

fori=l:l:countin; 
input=inputmax*(i/countin); 
Vinput(i)=input; 

for j=l: 1 xounttau; 
tau=taumax*(j/counttau); 
Vtau(j)=tau; 
fprintf('i is %f ,i); 
fprintfC   jis%f,j); 
rk45Cbrigpwpf, tf,0, [le-5,le-5,le-4,0,0,2]); 
[Tonc(iJj),onnumb(i,j)]=ton(time,pwpfo(:,3)); 
MFc(ij)=Tonc(ij)/tf; 
fprintf('   MFc is %f\n', MFc(ij)); 
averror(i j)=mean(abs(pwpfo(:, 1))); 

end; 
end; 

figure; 
for j=l: 1 icounttau; 

ifj—l; 
plot(Vinput,MFc(:,j),,red'); 
axis([0 1.2 0 1]); 
titleCMF'); 
hold on; 

elseifj=counttau; 
plot(Vinput,MFc(:j),'green'); 

else 
plot(Vinput,MFc(:j),'blue'); 

end; 
end; 
hold 

figure; 
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forj=l:l:counttau; 
ifj=l; 
plot(Vinput,onnumb(:,j),'red'); 
axis([0 1.2 0 150]); 
titleCNumber of Thruster Firing'); 
hold on; 

elseifj=counttau; 
plot(Vinput,onnumb(:,j),'green'); 

else 

plot(Vinput,onnumb(:j),'blue'); 
end; 

end; 

hold 

figure; 
forj=l:l:counttau; 
ifj=l; 

plot(Vinput,averror(:,j),'red'); 
axis([0 1.2 0 1]); 
title('Error'); 
hold on; 

elseifj=counttau; 
plot(Vmput,averror(:,j),'green'); 

else 

plot(Vinput,averror(:,j),,blue,); 
end; 

end; 
hold 

%%%%%%%%%°/o%°/o%°/o%°/0o/0o/0o/0o^^^^ 

PLOTTAU: PLOT OUTPUT FROM LINTAU 

figure; 
forj=l:l:counttau; 
ifj=l; 
plot(Vinput,MFc(:,j),,red'); 
axis([0 1.2 0 1]); 
title('MF'); 
hold on; 

elseifj=counttau; 
plot(Vinput,MFc(:,j),,green,); 

else 
plot(Vinput,MFc(:,j),'blue'); 

132 



end; 
end; 
hold 

figure; 
for j=l: 1 rcounttau; 
ifj=l; 
plot(Vinput,onnumb(:,j),'red'); 
axis([0 1.2 0150]); 
title('Number ofThruster Firing'); 
hold on; 

elseifj=counttau; 
plot(Vinput,onnumb(:j),'green'); 

else 
plot(Vinput,onnnmb(:,j),'blue'); 

end; 
end; 

hold 

figure; 
for j=l: 1 rcounttau; 
ifj=i; 

plot(Vinput,averror(:,j),'red'); 
axis([0 1.2 0 1]); 
title(*Error'); 
hold on; 

elseifj=counttau; 
plot(Vinput,averror(:j),'green'); 

else 
plot(Vinput,averror(:j),'blue'); 

end; 
end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/o%%%%%%o/0o/0o/0o/oo/o 

%PHAS.M 
%function [inphase,outphase,tmid,onnuni,tont] =phas(time,input,thruster) 
function [inphase,outphase,tmid,onnum,tont] =phas(time,input,thruster) 

%clear inphase outphase tmid onnum tont; 
%clear tton kon ttoff koff ont; 
%input=datain; 
%thruster=pwpfo(:,3); 

[len, wid]=size(time); 
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%find the first zero-crossing point for input 
%for sine (zero phase shift), going up here 
kl=l; 
while input(kl)~^=0; 
kl=kl+l; 

end; 

%find the next zero-crossing point for input 
%for sine (zero phase shift), going down here 

k2=kl+2; 

while sign(input(k2))==sign(input(k2+l)) & k2<len; 
k2=k2+l; 

end; 

%for sine input, assume the peak point is a mark of phase 
inphase=(time(kl)+tirne(k2))/2; 

%calculate the ontime,onnumber,the phase 
markton=0; 
onnum=0; 
tton(l)=0; 
ont(l)=0; 
%tont=0; 

fork=kl:l:k2, 

ifabs(thruster(k+l))-abs(thruster(k))>0.0; 
onnum=onnum+1; 

tton(onnum)=time(k+l);   %time start to fire 
kon(onnum)=k+1; 
%ft5rintf(,ton=%f\n\n',tton); 

markton=l; 
end; 

ifabs(thruster(k+l))-abs(thruster(k))<0.0; 
ttoff(onnum)=time(k+l);  %time stop firing 

koff(onnum)=k+l; 
ont(onnum)=(ttoff(onnum)-tton(onnum)); % 
markton=0; 

end; 
end; 

if markton=l & kon(onnum)<k2, 
for k=(k2+l): 1 :ceil(l .5*k2); 

if(abs(thruster(k+l))-abs(thruster(k)))<0.0; 
ttoff(onnum)=time(k+l);  %time stop firing 
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koff(onnum)=k+1; 
ont(onnum)=(ttoff(onnum)-tton(onnum)); % 
markton=0; 

end; 
end; 

end; 

%compute the total on time 
ifonnum>=l; 

tont=sum(ont); 
end 

tont=tont+markton*(time(len)-tton(onnum)); %total on time 

%calculate the output phase —1st method 
tmid=(tton( 1 )+ttoff(onnum))/2; 
%calculate the output phase —2nd method 
tcum=0; 
nn=kon(l); 
while tcum<(tont/2) & nn<koff(onnum); 

nn=nn+l; 
tcum=tcum+thruster(nn)*(time(nn)-time(nn-1)); 

end; 
outphase=time(nn+l); 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%PLOTFREQ.M: PLOTS OUTPUT FROM FREQ.M 

datamap=hsv; 
datamap=datamap(l 1:64,:); 

figure; 
mesh(Vfin,Vtau,shiftl ,tont) 
title('phase shift 1 (cum), Color-tonot') 
xlabel('input frequency'); 
ylabel('Time constant'); 
colormap(datamap); 

figure; 
mesh(Vfin,Vtau,shift2,tont) 
title('phase shift2 (mid), Color-tonot') 
xlabel('input frequency'); 
ylabel('Time constant'); 
colormap(datamap); 
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figure; 
mesh(Vfin,Vtau,tont,onnum) 
title('tont, Color-number of firing') 
xlabel('input frequency'); 
ylabel('Time constant1); 
colormap(datamap); 

figure; 
mesh(Vfin,Vtau,onnum, tont) 
title('number of firing, Color-tonot') 
xlabel('input frequency'); 
ylabel('Time constant'); 
colormap(datamap); 
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D.     INPUT SHAPING CODES 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

SHAPIN.M: COMPUTES INPUT SHAPER PULSE TRAINS 

% shapin.m 

% computes the firing times and pulse amplitudes for the input 
% shaper using the alogorithm detailed in Singer and Seering. 
% Zero vibration derivative constraint is used (ZVD). 

% Requirements: lambda, mods, and zi must be in the workspace via 
% the initialization program "fssmod" or otherwise specified. 

% lambda: the vector of squared natural frequencies for the system 
% mods: the number of flexible modes from the fssmod routine. 
% zi: the damping ratio for each of the flexible modes. If no velocity 
%     feedback used (piezos), assume constant zeta for all modes and 
%    zi is then a scalar. This code assumes constant zeta. 

ifexist('ti')=l; 
clear ti imp vibmods modnum; 

end 

fprintf([There are ',num2str(mods),' modes.%\n']) 
vibs=input('How many modes do you want to cancel?'); 
forj=l:vibs; 
modnum(j)=input(['No.' num2str(j)' mode you want to cancel is?']); 
end 

forj=l:vibs; 
vibmods(j )=sqrt(lambda(modnum(j)+1)); 
end 

fprintf('\n The modes you want to cancel are %f\n',vibmods) 

deltat=(pi/sqrt(l-ziA2))./vibmods' 

%ti=zeros(3,4); 
%imp=zeros(3,4); 

go=input('What is the command initiation time (seconds)?') 
% for each mode, calculate the firing time and pulse amplitude 
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% based on the type of shaper. The delta t's are the same for both 

type=input('Choose ZVD or ZVDD ("D" or "DD")','s'); 
if strcmp(type,'D')~=l & strcmp(type,'DD')~=l 
type=input('Try that again. What type: D or DD?Vs'); 

end 
if strcmp(type,'DD')=l 
% the initial pulse occurs at maneuver time tO=go 

% normalize the pulse amplitudes to unity. If necessary, the shaped 
% command can be amplified such that it makes maximum use of actuator 
% authority or in case of PWPF, is larger than the deadband and remains 
% in the linear range. 

ai=exp(-zi*pi/sqrt(l -ziA2)); % same damping ratio for all modes 
sizer=l +3 *ai+3 *aiA2+aiA3; 
forj=l:l:vibs 

tiG,0=[go go+deltatQ go+2*deltat(j) go+3*deltatö)];     % four impulse sequence 
imp(j,:)=[l/sizer 3*ai/sizer 3*aiA2/sizer aiA3/sizer]; 

end 

else if strcmp(type,'D')=l 

% the initial pulse occurs at maneuver time tO=go 
% normalize the pulse amplitudes to unity. If necessary, the shaped 
% command can be amplified such that it makes maximum use of actuator 
% authority or in case of PWPF, is larger than the deadband and remains 
% in the linear range. 

ai=exp(-zi*pi/sqrt(l-ziA2)); % same damping ratio for all modes 
sizer=l+2*ai+aiA2; 
forj=l:l:vibs 

ti(j,:)=[go go+deltatO') go+2*deltatö) 0]; % three impulse sequence 
imp(j,:)=[l/sizer 2*ai/sizer aiA2/sizer 0]; 

end 

end 

% set the impulse sizes for simulink 
% Ion=[l/sizer ain*ones(l,vibs)]; 
% Ioff=[-l/sizer -ain*ones(l,vibs)]; 

% run simulink code to generate the pulse train and command vectors. The simulink 
% code returns the variables "impin", "command", and tiempo (time) to the workspace 
%rk45('shapesim*,10,[],[le-5,le-5,le-3]); 
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% obtain the convolution of the input shaper and the command. The length of the 
% overall shaped command is the length of the impulse train+length of the command-1. 
% Thus, "impin" must be truncated to length corresponding to the final impulse. 
% cc=0;        % initialize flag 
%for qq=l :length(tiempo); 

%if tiempo(qq)>max(ti) & cc=0 
%cc=qq; %note index corresponding to maximum time value 
%end 

%end 

%impin=impin(l :cc); 

%shpcmd=conv(impin,command); 
%shpcmd=shpcmd(l :length(command)); 
% plot the results 

%orient tall 
%subplot(2,1,1), plot(tiempo,impin,'red') 
%title('Shaper Pulse Train') 
%ylabel('Amplitude') 
%xlabel('Time, s') 
%subplot(2,1,2), plot(command,'blue',shpcmd,'greenl); 
%title('Unshaped and Shaped Input Commands') 
%ylabel('Magnitude') 
%xlabel('Increment') 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%% 

%MCONV.m: CONVOLVES TWO SHAPER IMPULSE TRAINS 

%convolution of one pulse train to another 
% m-# of modes to be cancelled (number of trains) 
% n(i) - # of impulses for mode i (or in each train), i=l,....,m 

% shapin.m must be run first to put imp, ti in the workspace 

if exist('tempp')=l 
clear tempp tempt n impf if It; 
end 

m=vibs; %vibs defined in shapin.m 
for i=l:m; %vibs is also # of modes to be cancelled 
[leng n(i)]=size(ti(i,:)); 

end; 
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tempp(l,:)=imp(l,:); %initialize tempp, tempp is a intermediate variable 
tempt(l,:)=ti(l,:); %initialize tempt,tempt is a intermediate variable 

sumn=l; 
fork=l:l:m-l; 
forj=l:l:prod(n(l:k)) 

tempp(k+l,(ö-l)*n(k)+l):j*n(k)Hmp(k+l,:)*tempp(k,j); 
tempt(k+l5(ö'-l)*n(k)+l):j*n(k))=ti(k+l,:)+tempt(kj); 

end 
end 

impf=tempp(k+l,:); %the last row of tempp is the convolved impulse train 
[tif,It]=sort(tempt(k+l,:)); %sort new time for the convolved pulse train 

%%%VoVoVo%Vo%Vo%%%%%%Vo%%VaVoVoVo%%%Vo%VoVo%%Vo%%Vo%Vo%%%Vo 
%STEPGEN.M: GENERATES SHAPED STEP COMMANDS 
%generate shaped step command to use in simulink models 0 

% generate shaped step command, using vector "tif' and "impf from mconv.m 

ifexist('time')=l; 
clear suml sumt time; 

end 
tif=round(100*tif)/100; 
suml=0.0; 
markl=0; 
[rowl, coll]=size(tif); 
lenk=2000; 

fork=l:l:lenk; 
time(k)=20*(k-l)/lenk; 
forj=l:l:coll; 
iftime(k)-tifG)=0; 
sum 1 =sum 1 +impf(It(j)); 
markl=markl+l 
end; 

end; 
sumt(k)=suml; 

end; 

%fork=l:l:100; 
%time(lenk+k)=(20-time(lenk))*(k-1 )/l 00; 
%sumt(lenk+k)=l; 

%end 
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time=time'; 
sumt=sumt'; 
fprintf(' markl=%f\n',markl) 
if mark 1 ~=length(tif) 

fprintfOSome time points are missing, length of tif = %i\n',length(tif)) 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%SMOOTH5.M:    GENERATE   A   SMOOTHED   OPEN   LOOP   TORQUE 

COMMAND 

%generate a trajectory by a polynomial function 
function [smooth]=smp5(ttt) 
x0=0; 
xf=l; 
t0=0; 

tf=5; 
x=ttt; %-tO; 

ifttt<=tf; 
a=(35*tfA3*t0A4*xf-21*tfA2*t0A5*xf+7*tf*t0A6*xf-t0A7*xf+tfA7*x0- 

7*tfA6*t0*x0+21*tfA5*t0A2*x0-35*tfA4*t0A3*x0)/(tf-t0)A7; 
b=(140*tfA3*tOA3*(xO-xJf))/(tf-tO)A7; 
c=(210*tfA2*tOA2*(tf+tO)*(xO-xf))/(tO-tf)A7; 
d=(140*tf*tO*(tfA2+3*tf*tO+tOA2)*(xO-xf))/(tf-tO)A7; 
e=35*(tfA3+9*tfA2*t0+9*tf*t0A2+t0A3)*(x0-xf)/(t0-tf)A7; 
f=84*(tfA2+3*tf*tO+tOA2)*(xf-xO)/(t0-tf)A7; 
g=70*(tf+tO)*(xO-xf)/(tO-tf)A7; 
h=20*(xf-xO)/(tO-tf)A7; 

sml=a+b*x+c*xA2+d*xA3+e*xA4+f*xA5+g*xA6+h*xA7; 
sm2=b+2*c*x+3*d*xA2+4*e*xA3+5*f*xA4+6*g*xA5+7*h*xA6; 
sm3=2*c+6*d*x+12*e*xA2+20*f*xA3+30*g*xA4+42*h*xA5; 
sm4=6*d+24*e*x+60*PxA2+120*g*xA3+210*h*xA4; 
sm5-24*e+120*f*x+360*g*xA2+840*h*xA3; 

else 

sml=xf; 
end 
smooth=[sml]; %sm2 sm3 sm4 sm5]; 
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E.       ROBUSTNESS ANALYSIS CODE 

VoVoVo%VoVoVoVoVo%VoV0VoVo%%VoVo%%%VoVo%Vo%VoVoVoVo%VoVoVoVoV0Vo°/0%%Vo 
%BATCHS.M 

% BATCH file for command Shaping 
% batchs.m: study the robustness of input shaper and PWPF to 
% modal frequency and damping 

ifexist('Vfactorw')=l 
clear Vfactorz Vfactorw 

end 

if exist('ontime')=l 
clear ontime onnum fer comtime 
forn=2:l:9 

eval(['clear vibq' int2str(n-l) ]); 
end 

end 
tf=20; %total simulation time 
slew=10; %degree 
countz=input('How many damping variations do you want to use?'); 
zrange=input('What damping multiple do you want to use?'); 

countw=input('How many frequency variations do you want to use?'); 
wrange=input(*What frequency multiple do you want to use?'); 

ifwrange==l; 
wuncert=input('What frequency uncertainty do you want to use (wuncert*wn) ?'); 

end 

%countw=2; 
%countz=2; 
%vibs=4; 
tcomtime=0; %total computation time 
ifexist('ti*)=l; 

clear ti imp vibmods modnum; 
end 

fprintf(['There are ',num2str(mods),' modes.%\n']) 
vibs=input('How many modes do you want to cancel?'); 
forjjj=l:vibs; 

modnum(jjj)=input(['No.' num2str(jjj) ' mode you want to cancel is?']); 
end 
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go=input('What is the command initiation time (seconds)?') 

type=input('Choose ZVD or ZVDD ("D" or "DD")7s'); 
if strcmp(type,'D')~=l & strcmp(type,'DD')~=l 

type=input('Try that again. What type: D or DD?','s'); 
end 

for ii=l:l:countz 
factorz=zrange*ii/countz; 
Vfactorz(ii)=factorz; 

fprintfC ii is %f\n',ii); 
forjj=l:l:countw 

tic; 
factorw=wuncert*wrange*jj/countw; 
Vfactorw(jj)=factorw; 
[imp,ti]=shapbf(lambda,zi,modnum,go,type,vibs,factorw,factorz); 
ifvibs>l 

[impf,tif,It]=mconvf(imp,ti,vibs); 
if countz~=l | countw~=l, 

clear imp ti; 
end 

else 
impfHmp; 
tif=ti; 
forkk=l:l:length(ti) 
It(kk)=kk; 

end 
end 

[time,sumt]=stgenf(impf,tif,It); 
if countz~=l | countw~=l, 

clear impf tif It; 
end 
%figure(l); 

%plot(time,sumt); 
%hold on; 

rk45('shp2sim',tf,zeros(l,2*mods+2+2),[le-5,le-5,le-3,0,0,2]); 
clear time sumt; 
[ontime(ii,jj),onnum(ii,jj)3=ton(timel,PWPFO); %calling ton() function 
[len,wid]=size(time 1); 
theta=states(:,l); 

mark3=0; 
forkk=l:l:len; 
if(timel(kk)-tf*0.75)<0.01; 
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mark3=kk; 
end; 

end; 

sum2=0; 
fork=mark3:l:len; 

sum2=sum2+abs(theta(k)-slew*pi/l 80); 
end; 
fprintf('sum2 is %f\n',sum2) 
%fer=sum2/(len-mark3+1); 
fer(ii,jj)=sum2/(len-mark3+1); 
%fprintf('      Final Error is %f\n\n', fer(mm,nn)) 

%calculate the index for each modal vibration 
%the index is simply the average of the abslote value of the 
%each modal displacement 
forn=2:l:9 
eval(['vibq' int2str(n-l) '(ii,jj)=mean(abs(states(:,' int2str(n)')));']); 
end 

%save the data into 'data##' matrix 
%eval([*data' int2str(ii) int2str(jj) '=[timel states pdout pwpfout command];']); 

if countz~=l | countw~=l, 
clear states PWPFO timel 

end 
comtime(ii,jj)=toc 
tcomtime=comtime(iijj)+tcomtime 
end 

end 

if countz~=l | countw~=l, 
figure 
mesh(Vfactorz,Vfactorw,fer); 
title(Tinal Stage Error (Rigid Body)'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibql); 
title('Average Absolute Displacement of Modal 1'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq2); 
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title('Average Absolute Displacement of Modal 2'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq3); 
title('Average Absolute Displacement of Modal 3'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq4); 
title('Average Absolute Displacement of Modal 4'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq5); 
title('Average Absolute Displacement of Modal 5'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibqö); 
title('Average Absolute Displacement of Modal 6'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq7); 
title('Average Absolute Displacement of Modal 7'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

figure 
mesh(Vfactorz,Vfactorw, vibq8); 
title('Average Absolute Displacement of Modal 8'); 
ylabel('Error ratio in damping'); 
xlabel('Error ratio in modal frequency') 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%o/o%%o/o%%%%%o/o%»/o%%%o/o%o/o 

%IMPGENF.M: GENERATES & PLOTS A SHAPER IMPULSE SEQUENCE 

% generate impule sequence based on impf and tif 
% function [times,sumts]=impgenf(impf,tif,It) 

function [times,out]=impgenf(impf,tif,It) 

% generate impulse sequence, using vector "tif and "impf from mconv.m 

%ifexist('time')=l; 
% clear suml sumt time; 
%end 

tif=round(100*tif)/100; 
markl=0; 
[rowl, coll]=size(tif); 
lenk=2000; 

fork=l:l:lenk; 
time(k)=20*(k-l)/lenk; 
out(k)=0; 
forj=l:l:coll; 

iftime(k)-tifo)=0; 
out(k)=impf(Itö)); 
markl=markl+l; 

end; 
end; 

end; 

%fork=l:l:100; 
%time(lenk+k)=(20-time(lenk))*(k-1)/100; 
%sumt(lenk+k)=l; 

%end 

times=time'; 
out=out'; 

fprintfC markl^/ofXn^markl) 
if markl~=length(tif) 

fprintf('Some time points are missing, length of tif = %i\n',length(tif)) 
end 
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%%%%%%%%0/o%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%MCONVF.m: CALLABLE FUNCTION VARIANT OF MCONV 

% function version of mconv 

function [impf,tif,It]=mconvf(imp,ti,vibs) 

%convolution of one pulse train to another 
% m - # of modes to be cancelled (number of trains) (same as vibs) 
% n(i) - # of impulses for mode i (or in each train), i=l,....,m 

% shapin.m must be run first to put imp, ti in the workspace 

"/oifexistOtempp'^l 
%clear tempp tempt n impf if It; 
%end 

m=vibs; 
%[m,widthimp]=size(imp); %to get vibs 
for i=l :m; 

[leng n(i)]=size(ti(i,:)); 
end; 

tempp(l,:)=imp(l,:); %initialize tempp, tempp is a intermediate variable 
tempt(l,:)=ti(l,:); %initialize tempt,tempt is a intermediate variable 

sumn=l; 
fork=l:l:m-l; 
forj=l:l:prod(n(l:k)) 

tempp(k+l,((j-l)*n(k)+l):j*n(k))=imp(k+l,:)*tempp(k,j); 
tempt(k+l,(ö-l)*n(k)+l):j*n(k))=ti(k+l,:)+tempt(k,j); 

end 
end 

impf=tempp(k+l,:); %the last row of tempp is the convolved impulse train 
[tif,It]=sort(tempt(k+l,:)); %sort new time for the convolved pulse train 

%%%%%%%%%%%0/o%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%STEPGENF.m: CALLABLE FUNCTION VARIANT OF STEPGEN.M 

% function version of stepgen.m 

function [times,sumts]=stgenf(impf,tif,It) 

% generate shaped step command 
% generate shaped step command, using vector "tif' and "impf from mconv.m 
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%ifexist('time')=l; 
% clear suml sumt time; 
%end 

tif=round(100*tif)/100; 

suml=0.0; 
markl=0; 

[rowl, coll]=size(tif); 

lenk=2000; 
fork=l:l:lenk; 
time(k)=20*(k-l)/lenk; 
forj=l:l:coll; 

iftime(k)-tif(j)=0; 
sum 1 =suml +impf(It(j)); 
mark l=mark 1+1; 
end; 

end; 
sumt(k)=suml; 

end; 

%fork=l:l:100; 
%time(lenk+k)=(20-time(lenk))*(k-l)/100; 
%sumt(lenk+k)=l; 

%end 

times=time'; 
sumts=sumt'; 

fprintfC mark^/of^markl) 
if mark 1 ~=length(tif) 

fprintf('Some time points are missing, length of tif = %i\n',length(tif)) 
end 
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