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Abstract 

Temperature changes had a direct effect on crops. In the present study an adaptive neuro-fuzzy inference system 

(ANFIS) has been used to model the relationship between maximum and minimum temperature data. Time series 

data of weekly maximum temperature at a location is analyzed to predict the maximum temperature of the next week 

at that location based on the weekly maximum temperatures for a span of previous n week referred to as order of 

the input. Mean weekly maximum and mean weekly minimum temperature data of 10 years 1997 to 2006 (520 

weeks) taken from regional center of Indian Meteorological Department at  Dehradun, India. The objectives of 

this paper are to develop prediction model and validate its ability to provide weekly temperature data. 
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Introduction 

Weather prediction is a complex process and a challenging task for researchers. It includes expertise in multiple 

disciplines. The prediction of atmospheric parameters is essential for various applications. Some of them include 

climate monitoring, drought detection, severe weather prediction, agriculture and production, planning in 

energy industry, aviation industry, communication, pollution dispersal (Pal et al., 2003). Accurate prediction 

of weather parameters is a difficult task due to the dynamic nature of atmosphere. Stochastic weather generators 

have been proposed as one technique for simulating time series consistent with the current climate as well as for 

producing scenarios of climate change. Various techniques like linear regression, auto regression, Multi-Layer 

Perceptron, Radial Basis Function networks are applied to predict atmospheric parameters like temperature, wind 

speed, rainfall, meteorological pollution etc.(Nayak et al,2004; and Nayak et al,200).It was found that the 

non-linear operator equations governing the atmospheric system are the ones who can better understand the 

dynamics of atmosphere. 

 

Materials and Methods 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

Adaptive Neuro Fuzzy Inference System (ANFIS) is a fuzzy mapping algorithm that is based on 

Tagaki-Sugeno-Kang (TSK) fuzzy inference system (Jang et al., 1997 and Loukas, 2001).ANFIS is integration 

of neural networks and fuzzy logic and have the potential to capture the benefits of both these fields in a single 

framework. ANFIS utilizes linguistic information from the fuzzy logic as well learning capability of an ANN for 

automatic fuzzy if-then rule generation and parameter optimization. 

   A conceptual ANFIS consists of five components: inputs and output database, a Fuzzy system generator, a 

Fuzzy Inference System (FIS), and an Adaptive Neural Network. The Sugeno- type Fuzzy Inference System, 

(Takagi and Sugeno, 1985) which is the combination of a FIS and an Adaptive Neural Network, was used in this 

study for rainfall-runoff modeling. The optimization method used is   hybrid learning algorithms. 

For a first-order Sugeno model, a common rule set with two fuzzy if-then rules is as follows:  
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where, x1 and x2 are the crisp inputs to the node  and A1, B
1
, A

2
, B

2 
are fuzzy sets, a

i
, b

i 
and c

i 
(i = 1, 2) are the 

coefficients of the first-order polynomial linear functions. Structure of a two-input first-order Sugeno fuzzy 

model with two rules is shown in Figure 1 It is possible to assign a different weight to each rule based on the 

structure of the system, where, weights w
1 
and w

2 
are assigned to rules 1 and 2 respectively.  

and  f = weighted average                                                                                     

The ANFIS consists of five layers (Jang, 1993), shown in Figure 1. The five layers of model are as follows:  

 Layer1: Each node output in this layer is fuzzified by membership grade of a fuzzy set corresponding to each 

input.  
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Where, x
1 
and x

2 
are the inputs to node i (i = 1, 2 for x

1 
and i = 3, 4 for x

2
) and x1 (or x2) is the input to the i

th
 node 

and Ai (or Bi-2) is a fuzzy label. 

Layer 2: Each node output in this layer represents the firing strength of a rule, which performs fuzzy, AND 

operation. Each node in this layer, labeled Π, is a stable node which multiplies incoming signals and sends the 

product out.  

O2,i = Wi = µAi (x1) µBi (x2)       i = 1, 2                               (2)  

Layer 3: Each node output in this layer is the normalized value of layer 2, i.e., the normalized firing strengths. 

 

             i =1, 2                (3)  

             

Layer 4: Each node output in this layer is the normalized value of each fuzzy rule. The nodes in this layer are 

adaptive. Here iW  is the output of layer 3, and {ai,bi,ci}  are the parameter set. Parameters of this layer are 

referred to as consequence or output parameters. 

        i=1,2                    (4)   

 

Layer 5: The node output in this layer is the overall output of the system, which is the summation of all coming 

signals.  

                                                                                          

            (5) 

 

 

In this way the input vector was fed through the network layer by layer. The two major phases for implementing 

the ANFIS for applications are the structure identification phase and the parameter identification phase. The 

structure identification phase involves finding a suitable number of fuzzy rules and fuzzy sets and a proper 

partition feature space. The parameter identification phase involves the adjustment of the premise and 

consequence parameters of the system.  

Optimizing the values of the adaptive parameters is of vital importance for the performance of the 

adaptive system. Jang et al. (1997) developed a hybrid learning algorithm for ANFIS to approximate the 

precise value of the model parameters. The hybrid algorithm, which is a combination of gradient descent and the 

least-squares method, consists of two alternating phases: (1) in the backward pass, the error signals recursively 

propagated backwards and the premise parameters are updated by gradient descent, and (2) least squares 

method finds a proper set of consequent parameters (Jang et al., 1997). In premise parameters set for a given 

fixed values, the overall output can be expressed as a linear combination of the consequent parameters. 

                     AX = B                                                       (6) 
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Figure 1.ANFIS architecture 

 

Where, X  is an unknown vector whose elements are the consequent parameters. A least squares estimator of X, 

namely X
*
, is chosen to minimize the squared error ‖�� � �‖�. Sequential formulas are employed to compute 

the least squares estimator of X. For given fixed values of premise parameters, the estimated consequent 

parameters are known to be globally optimal. 

 

Study Area and Model Application 

Study area 

Mean weekly maximum and mean weekly minimum temperature data of 10 years from 1997 to 2006 (520 

weeks) taken from regional center of I.M.D. at Dehradun, India. Dehradun lies between 30° 19′ 48″ N latitude 

and 78° 3′ 36″ E longitudes and at an altitude of 733 meter having generally temperate climate. The area receives 

an average annual rainfall of 2073.3 mm and average annual minimum temperature is 13.3 °C and average 

annual maximum temperature is 27.8 °C respectively. 

 

Model Application 

After pre-processing of data set in desired time lag format, the selection of input and output variables for the 

models were done by taking different sets of training data for various input and time lag combinations. 

Combination for one week ahead predicting model with three input, one output was found best. For one week 

ahead prediction model, 400 weeks data were used in training and 117 weeks data in testing period respectively. 

The inputs for model were current week maximum mean weekly temperature Xmax(k), two week before 

maximum mean weekly temperature Xmax(k-2) and two week back mean minimum weekly temperature data 

Xmin(k-2)  and result was current  day  mean weekly minimum temperature  Xmin (k). 
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Figure 2.Observed and predicted weekly temperature during training period 

 
 

 

Figure 3.Observed and predicted weekly temperature during testing period 
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Result and Discussions 

For this three inputs and one output model, four Bell-shaped Gauss types of membership functions were found 

suitable and hybrid learning algorithms method was used for the optimization. To judge the predictive capability 

of the developed methodology, based on ANFIS Model, the performance indicators show that root mean square 

error value is 1.25 for training and 1.76 for testing period, Coefficient of variation is 0.077 for training period 

and 0.109 for testing period and Coefficient of efficiency is 96.12 % for training and 91.63% for testing period. 

 

Conclusions 

The present study discusses the application and usefulness of adaptive neuro fuzzy inference system based 

forecasting approach for forecasting of minimum weekly temperature. The visual observation based on the 

graphical comparison between observed and predicted values and the qualitative performance assessment of the 

model indicates that ANFIS can be used effectively for minimum weekly temperature forecasting.  
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