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SUMMARY 

A procedure is outlined by which one may design a 

fuselage-type stiffened circular cylindrical shell under a 

given uniform axial compression with minimum weight. The 

precise statement of the problem is as follows: 

Given an internally stiffened circular cylindrical 

shell of specified material, radius, and length, find the 

size, shape and spacings of the stiffeners and thickness of 

the skin such that it can safely carry a given uniform 

axial compression with minimum weight. 

The objective function is the cylinder weight. The 

behavioral equality constraint is the general instability 

load. The behavioral inequality constraints are the panel 

buckling, skin wrinkling, local instability of stringers, 

limitation on the stress level in the skin, stringers, and 

rings, and simultaneous occurrence of failure modes. By a 

proper grouping of the parameters involved, the solution is 

accomplished by separation into two phases: "Phase 1" and 

"Phase 2." "Phase 1" leads to design charts and tables, 

which are then used in "Phase 2" to arrive at a minimum 

weight configuration satisfying all constraints. The 

solution in "Phase 1" is accomplished by using the irregular 

simplex search method of Nelder and Mead in combination with 

the golden section method. 



The cylinder geometries, taken up in the design 

examples, correspond to the moderately and heavily loaded 

shell and a geometry similar to C-141 fuselage immediately 

after the wing box. The design results have shown that the 

minimum weight design configuration is not unique. The 

design approach allows the designer to deviate from the 

minimum weight solution with minimum weight penalty, in 

order to avoid simultaneous occurrence of failure modes and/ 

or unrealistic design variables. For one particular design, 

the moderately loaded shell, the effect of the shapes of the 

stiffening members is assessed by considering a number of 

stiffener shapes. For this case with the geometric constraint 

that no design dimensions are less than .02 in., it has been 

found out that the circular cylindrical shell stiffened by 

tee stringers and rectangular rings is most efficient. The 

design for this case, without minimum gauge restriction, 

has also been done, using rectangular rings and stringers, 

for comparison purposes. The resulting design has shown a 

weight improvement of 45.3 per cent over the best previously 

obtained result which has been reported in the open litera

ture. For all cases, the curves of weight vs. skin thickness 

are relatively flat. Thus, large variations in the skin 

thickness yield design configurations with small differences 

in weight. 
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NOTATIONS 

2 A , A Stringer and ring cross-sectional area, in 

C , C Stringer and ring shape parameter 

D Flexural stiffness of the skin, in-lb 

D ,D ,D Orthotropic flexural and twisting stiffnesses, xx yy xy in.lb 

D ,,D Flexural stiffnesses of stringer and ring, in-lb xxst* yyr & &> 

E,E ,E Young's moduli of elasticity of skin, stringer, 
and ring, psi x' y 

E ,E Orthotropic extensional stiffnesses, lb/in 
xx' yy v y

 ' 

E ,E Extensional stiffnesses of skin, lb/in 
xxp' yyp ' 

E ,,E Extensional stiffnesses of stringer and ring, 
Jxxst* yyr lb/in 

(GJ) Stiffener contributions to torsional stiffness, 
v -'x or y . 9 ,, ' 

7 mz-lb 
G Inplane skin shear stiffness, lb/in 
I , I Stringer and ring moment of inertia about their 
xc' yc * •J i -A 

7 centroidal axes, m 4 

K ,K ,K Buckling load coefficient of axial compression, 
yy pressure, and torsion 

K Panel buckling load coefficient xxp & 

L Total length of the shell, in 

M ,M ,M Moment resultants, in-lb/in xx' yy' xy ' 

N Applied axial compressive load, lb/in 

N ,N ,N Stress resultants, lb/in xx' yy* xy ' 

N Critical axial compressive load, lb/in 
xx cr ju 

N Nondimensional load parameter 



Xll 

R Radius of the shell, in 

T Applied torque, in-lb 

W Weight of the shell, lb 

W Nondimensional weight parameter 
* 

W Composite weight function 

W Nondimensional composite weight function 

Z Curvature parameter, — A _ — - i -

b, , br Flange widths of stringer and ring, in 

c f , c f Flange to web thickness ratios of stringer and 
^ ring 

d . d Stringer and ring depths, in wx' wy & & r > 

e , e Stringer and ring eccentricities, in 

e , e~ Nondimensional stringer and ring eccentricities x y 

h Skin thickness, in 

k ,k Width to depth ratios of stringer and ring 

I , I Stringer and ring spacings, in 

m, n Number of axial and circumferential waves for 
general instability 

m , n Number of axial and circumferential waves for 
^ P panel instability 

q Applied pressure (positive outward), psi 

t , t Thickness of web of stringer and ring, in 
wx' wy & &' 
tr , t. Thickness of flange of stringer and ring, in 
u, v, w Displacement components of reference surface 

points, in 

x, y, z Coordinate system 

ex , ex Nondimensional radii of gyration of stringer and 
^ ring 



Xlll 

Y Shear strain at any point 

Y Shear strain of point on reference surface xy l 

e , e Normal strains at any point 

£ , e Normal strains of point on reference surface xx' yy
 v 

K ,K ,K Changes of curvatures xx* yy* xy & 

A Lagrange multiplier 

A* Nondimensional Lagrange multiplier 

A , X Nondimensional extensional stiffnesses of 
77 stringer and ring 

v Poisson's ratio 

3 
p , p Weight density of stringer and ring, lb/in x y 
p -, Weight density of skin, lb/in 

p , p Nondimensional flexural stiffnesses of stringer 
xx* "yy and ring 

a Yield stress 
o 
a ,,a , Prebuckling stresses of the skin, psi xxsK yysK 
a ., a Prebuckling stresses of stringer and ring, psi xxst* yyr & & & r 

o r ,o Critical stresses of stringer flange and 
xxsf ' xxsw , & & 

cr cr web, psi 
o , Critical local skin buckling stress, psi 

cr 
Superscript "o" indicates membrane state 
Superscript "1" indicates an additional quantity necessary 

to bring the membrane state to the classical 
buckling state 
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GLOSSARY OF ABBREVIATIONS 

AR Angle ring 

AS Angle stringer 

ASRR Angle stringer and rectangular ring 

CR Channel ring 

CS Channel stringer 

CSCR Channel stringer and ring 

CSRR Channel stringer and rectangular ring 

CSTR Channel stringer and tee ring 

GB Gross buckling, N/N 
xxcr 

I ring IR 

Gross buckling, N/N 
xxcr 

I ring 

IS I stringer 

IAR Inverted angle ring 

IAS Inverted angle stringer 

ISIR I stringer and ring 

MG Minimum gauge 

PB 

RR 

Panel buckling, N/N 
xxpcr 

Rectangular ring 

RS Rectangular stringer 

RYT Ring yielding in tension, a /a 
o / o * yyr o 

RSRR Rectangular stringer and ring 

SB Skin buckling, a , , /a v , &* xxsk xxsk 
cr SY Skin yielding, ^xxsk/^0 
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STB 

STFB 

STWB 

STYC 

TR 

TS 

TSCR 

TSRR 
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L K 
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ZSZR 

Stringer buckling, a ./a 
& ,5' xxst xxst 

cr 
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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

As the size of modern aerospace vehicles increases, 

the demand for light weight structures increases. This has 

made the structural engineer, engaging in this area, more 

and more conscious of minimum weight design. A structural 

configuration that is used xvidely in aerospace vehicles is 

the stiffened thin cylindrical shell. Since stiffened thin 

cylindrical shells have been used extensively in the past 

thirty years, a tremendous effort has been exerted in 

designing such a configuration for minimum weight. Gerard 

[1] has presented a comprehensive bibliography on the subject 

of optimal structural design. His work has been extended 

by Niordson and Pedersen [2]. Better understanding, during 

the past decade, of the failure modes of the stiffened thin 

cylindrical shells, for aerospace use, has produced some 

important results in the attempt to achieve minimum weight 

design [3-17], A detailed discussion of these efforts is 

presented in the next section. 

The precise statement of the problem considered in 

this research effort is as follows: Given an internally 

stiffened circular cylindrical shell of specified material, 



2 

radius, and length, find the size, shape, and spacings of 

the stiffeners, and the thickness of the skin, such that the 

resulting design configuration can safely carry a given 

uniform axial compressive load with minimum weight. 

The design objective is minimum weight. The general 

instability load is taken to be as an equality constraint, 

because it represents the principal catastrophic mode of 

failure for present day aircrafts. Panel instability, another 

catastrophic mode of failure, is considered as an inequality 

constraint. This means that the material of the design 

configuration is distributed in such a way that this mode of 

failure is avoided. Other behavioral inequality constraints 

are the wrinkling of the skin, local instability of the 

stringers and limitations on the stress level of the skin, 

stringers, and rings and simultaneous occurrence of failure 

modes. In addition, geometric inequality constraints are 

used, which represent the realistic dimensions for the design 

variables (thickness and spacings of stiffeners, etc.). 

Depending on the size of the fuselage, the level of 

the applied loads, and the section of the fuselage to be 

designed, different primary criterion must be used. For 

example, for some section of the fuselage, the primary 

consideration in the design process is strength, for others 

it is stiffness. Finally, for a large section, usually in 

the middle part, it is general instability. Therefore the 

role of the primary consideration and constraints are 
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interchanged for different sections. The present thesis is 

concerned with the minimum weight design of that part which 

the primary consideration is general instability. 

For this case, the dependence of the general instability 

load on the geometric parameters is obtained from linear, 

smeared theory for eccentrically stiffened thin circular 

cylindrical shells. Since linear theory is used, there is 

no assessment of the effect of geometric imperfections. In 

addition, the effects of prebuckling deformations and edge 

restraints have been ignored. Because of these, the proposed 

solution provides an interim solution within the current 

state-of-the-art and all these effects may be lumped into a 

desired "knockdown factor." The load case chosen, uniform 

axial compression, can represent an upbending design case 

for fuselages when the maximum bending stresses are equal to 

the stresses due to uniform axial compression. Justification 

is given in [18]. 

The solution to this problem is accomplished in two 

stages. First, by a proper grouping of the design variables, 

the number of parameters that optimizes the weight is reduced 

to a minimum. On the basis of this, a mathematical search 

technique is employed and design charts and tables are 

prepared. This first stage is called "Phase 1." Next, 

these charts and tables are employed to arrive at a minimum 

weight configuration satisfying all constraints. This stage 

is called "Phase 2." 
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This procedure, effectively, leads to a minimum weight 

configuration against general instability and satisfies all 

other possible constraints (behavioral and geometric) as well. 

The proposed procedure has many advantages over the 

past attempts. Firstly, the design charts and tables will 

provide the necessary insight and information to the 

designer in order to deviate from the optimum solution when 

other considerations, such as availability and cost of 

construction, become important. Secondly, the designer can 

avoid the simultaneous occurrence of various failure modes 

and thus minimize the possibility of arriving at a configu

ration which is unnecessarily more imperfection sensitive 

(see discussion in the next section). Finally, this procedure 

allows the consideration of many different shapes of 

stiffening members. 

Review of Previous Work 

In the past, there have been two types of attempt at 

the minimum weight design of the thin circular cylindrical 

shell subject to a uniform axial compression. One approach 

is to make a parametric study with regard to the general 

instability mode of failure and investigate the effects of 

various parameters on the cylinder weight, [3-5], [7-10], by 

keeping several parameters fixed. These investigations are 

also based on the premise that minimum weight is accomplished 

if all possible modes of failure occur simultaneously. This 
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conjecture has been disproved by another group of investi

gators, [11-16], who have not imposed this limitation on 

their formulations. In addition, recently, Thompson and 

Lewis [22] have quantitatively verified the suspicion of 

van der Neut [19], Koiter and Kuiken [20], and Graves-Smith 

[21], that a structural element which is designed for 

simultaneous occurrence of all possible modes of failure is 

extremely sensitive to geometric imperfections. Because of 

these two reasons, the resulting designs based on this 

approach are somewhat unreliable in terms of load carrying 

capacity. 

The second approach is based on convenient mathe

matical search techniques applied to the objective function, 

which contains all of the constraints as penalty functions. 

The objective function is expressed in terms of the design 

variables. This approach used in [11-16], is in accord with 

the philosophy of the present time, that is to achieve a 

fully automated design, but the author has serious reserva

tions concerning the desirability and the useful applica

bility of such techniques. First of all, the number of the 

design variables for rectangular cross-sectional stiffeners 

is seven. Admittedly, all of the investigators xvho have 

used mathematical search techniques in the 7-dimensional 

space have reported great difficulties and computational 

failures. Moreover, if one were to deal with T-shaped 

stiffeners, the number of design variables will be 11 and 
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hence, more computational difficulties. Even if these 

difficulties can be overcome, there is still another 

question about the applicability of such techniques because 

Pappas and Amba-Rao [15] have reported that there exist 

several, if not many, nearly equal weight, and yet signifi

cantly different design configurations. This means that the 

minimum weight design may not be unique (it is shown in the 

present research that minimum weight design is not unique 

indeed). This suspicion has been supported by the design 

results of case 7-1 of Jones and Hague [16], where they have 

reported a multitude of designs for nearly equal weight and 

yet significantly different design variables. These different 

designs have been obtained by either using different search 

techniques, or using the same technique with different 

starting point. 

Another research paper along this line which does not 

fall into the above two approaches is by Rehfield [17]. 

His approach is indirect with the assumption of simultaneous 

occurrence of failure modes. The design procedure is an 

iterative one and the minimum weight is located by trial and 

error. 

The above discussions imply that there are many 

combinations of the design variables which satisfy all 

behavioral constraints and lead to the same minimum weight. 

Finally, due to various behavioral constraints built into 

their objective function, their designs cannot purposely 
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avoid the simultaneous occurrence of the various instability 

failure modes. Thus, the resulting design configuration 

may be unnecessarily more imperfection sensitive. 
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CHAPTER II 

MATHEMATICAL FORMULATION OF THE PROBLEM 

Introduction 

The statement of the problem is as follows: given 

an internally stiffened circular cylindrical shell of 

specified material, radius and length, find the size, shape, 

and spacings of the stiffeners and the thickness of the skin 

such that the resulting design configuration can safely 

carry a given uniform axial compression with minimum weight. 

There are three major failure modes for the problem 

posed above. These are, general instability, panel insta

bility and yielding of the material of the stiffened 

cylindrical shell. In the present problem one is concerning 

with large thin circular cylindrical shells for fuselage 

application only. In such an application the loading will 

not cause the yielding of the material to become critical. 

Thus, the remaining two principal catastrophic modes of 

failure are general and panel instabilities. Since the 

stress level in the rings, in this problem, is very low, 

one can always adjust the ring spacing such that the panel 

instability load is higher than the general instability 

load for the same weight. Hence, the objective function 

chosen for "Phase 1" is the weight of the shell with the 
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equality constraint of general instability built into it. 

The other constraints to be satisfied in "Phase 2" are the 

behavioral inequality constraints of panel instability, 

wrinkling of the skin, local instability of the stringers, 

limitation of the stress level in the skin, stringers and 

rings, and simultaneous occurrence of failure modes. In 

addition, the geometric inequality constraints which 

represent the realistic design dimensions of the design 

variables are to be satisfied as well. 

In the next sections, the analysis of thin stiffened 

circular cylindrical shells, the mathematical formulation 

of "Phase 1" and "Phase 2," and the mathematical search 

technique are presented. 

Analysis of Stiffened Circular Cylindrical Shell 

Assumptions 

In this section all the equations needed to analyze 

the stiffened circular cylindrical shell are presented. These 

include the development of the buckling equations (for 

general instability, panel instability, and local instabili

ties) and the stress analysis of the skin and stiffeners. 

The assumptions in this development are: 

1. x, y, z are reference surface coordinates which 

are orthogonal and along the directions of principal 

curvatures. 

2. The shell is thin. 
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3. The deflections are small. 

4. The rotations about the inplane axes are much 

larger than that about the normal axis. 

5. The normals to the reference surface before 

deformation remain normal to the reference surface after 

deformation and they are inextensional. That is y = Y 
. 'xz yz 

e„. = 0-
zz 

6. Stiffeners are along the principal curvatures and 

their effects on flexural and extensional stiffness are 

distributed mathematically over the whole surface of the 

shell (smeared technique). 
7. The connection is monolithic. 

8. The stiffeners do not transmit shear force. The 

shear membrane force is carried entirely by the skin. 

9. Stiffeners are in the uniaxial stress state. 

10. Stiffeners are torsionally weak (open-section 

stiffeners). 

Stress-Strain Relations 

The skin of the stiffened circular cylinder is assumed 

to be in a biaxial state of stress. The x-axis is in the 

longitudinal direction and the y-axis is in the circumfer

ential direction (see Figure 1). With these assumptions the 

stress-strain relations in the skin are 

O* v 1 = ~^~T O
 +^e ) (1) 

xxsk T 2 ^ x y
/ K J 

1 -v J 
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centroid of ring 

irface 

Fig. 1 Shell Geometry 
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N x x + £ N x x d x 

£x 

Nxy4- ^N x ydx 

Nvx4- ^ N y x dy 

£y 

N y y+ ^N y y dy 

3y 

MXy M 

MXy 4- 3Mxy dx 

dx 

M x x
 + ^MXxdx 

^x~~ 

MyyH-^Myydy 

M y X + ^ M y x d y 

cty 

Fig- 2 Sign Convention 
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yysk 
1-V 

v y x̂  

xysk 
E y 

IXTnTJ 

The stiffeners axe assumed to be in a uniaxial state 

of stress so that the stress-strain relations are 

a = E E 
XXSt X X 

(2) 

yyr 
E e 
y y 

for the longitudinal and circumferential stiffeners 

respectively. 

Strain-Displacement Relations 

The reference surface of the shell is taken as the 

midsurface of the skin. The coordinate system is as shown 

in Figure 1 and u, v, and w being the deformations of 

material points on the reference surface. The strain-

displacement relations are 

xx 
ZK 
yy 

(3) 

E = e + ZK 
y yy yy 
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Y = y + 2ZK ' 'xy xy 

K = " W , 
XX *XX 

K - - W , 
yy 'yy 

xy >xy (3) 

e , = u, xx >x 

w 
yy 'y R 

Y - u, + v. 
'xy 'y ' x 

Stress and Moment Resultants 

The stress and moment resultants (per unit length) are 

obtained by the appropriate integrations of the stresses 

over the thickness of the shell and then adding to these the 

corresponding stiffener contributions. According to assump

tion 6, the effects of the flexural and extensional stiffness 

of the stiffeners are assumed to be smeared over the surface 

of the skin. The stress and moment resultants are 
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N 

h 
2 

- / a v 
XX i XXSX 

dz +
 ir i

 a
xxst 

x Ax 

dA, (4) 

N 
yy 

h 
2 x 
(a •, dz + -r— / a dA J yysk £ j" yyr y 
h y 
'2 

h 
2 

N = f a -, dz xy / xysk 

"2 

M 
xx 

h 
2 
/ 
h 

-i 

za , dz + T;— J z a . dA xxsk £ i xxst x 
x Ax 

M 
yy 

h 
2 
/ 
h 

za i dz + 75— / z a dA yysk £ { yyr y 
y A 

y 

M 
xy 

h 
2 

i 
(GJ) 

Z °xysk dz + T xy 

M 
yx 

(GJ) 
z °xysk dz + -T^

 K
yx 
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Substitution of the stress-strain and kinematic 

relations, from equations (1) and (3), into equations (4), 

and performing the indicated integrations yields 

N 
Eh 

xx 1-v 

E A E A 
(e +ve ) + - 4 - ^ e + - £ - ^ e K 2 ^ xx yy-' £ xx £ x xx (5) 

T-'l Ei I\ E) -A. 

N = Eh ( e + v e ) + _XX e + JLT e K 

yy i_^,2 yy x x *v yy K y yy l - v y y 

Eh 
xy TfT+vJ Yxy 

M 
Eh' 

xx 

E A E ? 

(K +VK J + -4-^ eve_ + - ^ (l ,+e;AJK , ! 3, xx yy 
1 2 ( l - v ) £ x xx £ v xc x x ' xx 

M = giL ,̂ ffcc +V..C ) + —Z_X e e + -X ci +e A lie 
yy iTo^y yy xx v y yy v yc y y yy 

M 
(GJ) 

K „ „ + 
xy T2TT+vT xy £ 

Eh 3
 + ^ 

yx TTOTvJ
 Kyx ^ 

y 

Because of assumption 10 
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M - M 
Eh' 

x y yx TIJTT^J'
 Kxy 

A number of new p a r a m e t e r s i s d e f i n e d by 

Fh 
E = E = 

xxp yyp x _ v 2 

JLJ XT 

X X 
J\.J\.^ L. Xr 

E y A y 

y y r % y 

'xy 2XT^vT 

E = F + E 
xx Jxxp x x s t 

i = E + E 
yy yyp yyr 

D „ = D . „ = D 
Eh 

xxp yyp 1 2 ( 1 - V
Z ) 

D :xst 
= 

E I 
X XC 

*x 

i 

E I 
y yc 

yy r V 
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D = (l-v)D xy v J xxp 

D v = D + D xx xxp xxst 

D = D + D 
yy yyp yyr 

With these new parameters equations (5) become 

N = E e + v E e + e E . K (6) 
xx xx xx xxp yy x xxs t xx v J 

V = vEyyp£xx + Eyy£yy + eyEyyr 

N = G v xy xy f xy 

Mxx = ^Dxx+exExxst)Kxx + vDxxpKyy + exExxst£xx 

M = vD K + (D +e2E )K + e E £ yy xxp xx v yy y yyr^ yy y yyr yy 

M = D K xy xy xy 

Prebuckling Stresses 

It is assumed that when the cylinder is loaded there 

a uniform change in length and radius, that is, a membrane 

state exists. Let the superscript "o" denote the membrane 
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state parameters. Under this membrane state u is a linear 

function of x only, and v and w are independent of x and y 

Therefore 

o o 3u 
e = e = -7T-x xx 9x 

0 ° YL 
£y £yy R 

Y° = o 

The membrane state stress resultants become 

N° = E e° + vE e° (7) 
xx xx xx xxp yy ^ J 

N = vE e + E e ,„ yy yyp xx yy yy 

N = o 
xy 

For a circular cylindrical shell under uniform axial 

compression 

N° = -N 
xx 

N° = o 
yy 

Hence, equations (7) yield the prebuckling strains 
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-NE 

£° = _ _ _ X L ( 8 ) 
XX E E v E E 

xx yy xxp yyp 

vNE o 
e 
0 = 'yyp 

yy E E 7~^T % xx yy xxp yyp 

Substitution of equations (8) into equations (1) and 

(2) yields for the skin, stringer, and rings 

XT E - v
2

E 

XX S IC Xi X X p -p, -pi Z y-, -r-j 

xx yy "
 J

xxp yyp 

a , = - £ vE ( TL ZXE ) 
yysk H xxp^E . v 2 £ 

xx yy xxp yyp 

-NE E 
a = JUOL 
xxst E E _ v 2 £ £ 

xx yy xxp yyp 

NvE E 
a = __X_XZ] 

y y r
 E E - v E E 

xx yy xxp yyp 

In terms of A and A which are defined in the next xx yy 

section, the prebuckling stresses are 



o " N ( 1 + A y y " v } 

X X s l c h [ ( l + A x x ) ( l + A y y ) - v 2 ] 
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-vA N 
a , _ _ J X _ 

^ S k h [ ( l + A- x x ) ( l + A y y ) - v 2 ] 

- E x ( l - v ^ ( l + Ay y)N 

xxst ^ 1 7 ^ ^ 

(9) 

xx'
 v

 yy-

E y v( lV)N 

y y T Eh [ 7 l + ^ ^ 

Buckling Equations 

The well-known equilibrium equations of the linear 

thin shell theory are 

N + N + q = o 
x x ,x xy,y 

(10a) 

N + N + qy = o 
xy,x yy,y 

M + M + 2M + (N w. ), + (N w, ), + 
xx yy 'xy xx, v v • "yy,„„ "xy,_ r - xx -x-'x ^yy 'y"y 

N 
(N w, ), + -J2L + (N w, ). - qZ = o *• xy *x

J 'y R K
 xy 'y

J 'x l 
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X V Z 

where q , q , and q are the loads in the x, y, and z 

directions, respectively. 

Investigation of instability of eccentrically 

stiffened cylinders under the action of single load appli

cation have been reported by a number of authors [23]-[27], 

Most of these authors have used orthotropic thin shell 

theory and have reduced the problem to an eigenvalue problem, 

with three differential equations. Using the geometry and 

sign convention shown in Figures 1 and 2, and letting the 

superscript " 1 " refer to the additional quantities necessary 

to bring the membrane state to the adjacent buckled state, 

these three governing equations are 

tExx ^ 1 + Gxy ̂ u l + [(Gxy+VEyyP} W ] v ' = ( 1 ° b D 

^ n -\ 3 . _ -n 3 1...1 [(q-sr E ) TT— + e E . —*-]w Lvn R yyp 3x x xxst ^__3J 
dx' 

2 2 2 

[(G +vE ) T V - ] U + [E -Ar + G -^-jv1 LV xy xx-p
J 3x3yJ L yy . 2 xy 9 2

J 

E 3 
[(q-_XZ) 3 + e E -Vlw1 L^H R ; 3y y yyr ^ T J 
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[(D +e2E J -^r + 2(D +&) +&> ) - 1 , — T L u xx x xxsf 0 4 *• xy 2 xxp 2 yyp^ . 2. 2 
d A d X d y 

+ fD +e2E 1 -2- + - ^ - 2 -£ F -A-iw1 1 — e" — J A .2 ^ R yyr . 2 J W 
yy y yyi" 3y R' 3y' 

+ [£ E-— T 4 - e " 9 1"1 E -Xlu1 + r-ZZ -A - e E
 d Iv1 x xxst 7™IJU L R 3y ey yyr , 3JV 

R xxp 3x x xxst % 3
J
~ L K ay "y yyi . . 

N w, + N w! + 2N w: xx >xx yy 'yy xy 'xy 

Note that equations (10) are the buckling equations 

of the stiffened cylinder subjected to the uniform axial 

compression, torsion, and hydrostatic pressure and that the 

pressure load q remains normal to the deflected midsurface 

during the buckling process. The eigenvalues for the problem 

are 

N [R 

xx 
-*7T ~ N 

2 
(11) 

N. 
yy 

qR 

N 
xy 27TR' 

By a judicious choice of groups of parameters to be 

used in "Phase 1" and "Phase 2", the following nondimensional 
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E . E A (1 -v ) 
X X S t X X^ J 

X X 
xxp 

"EFT" 

yy 

E E A (l-x>
A
) 

yyr y y 
E ..... = EhT yyp y 

X X 

D EI 
X X S t _ X XC 

D D £ 

yy 

D E I 
JUL = JLJSL 

D D % . 

2D TT Re 

2D TT Re 
J£ 

y 

L 2 ( l - v 2 ) 1 / 2 

Rh 

U L' 
"xx 2 

IT D 
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K 
yy 

qR L 

TT2D 

K 
s 

N° L2 

_ xy 
2r> 

IT D 

Since the operators in equations (10) are commutative, 

it is possible to derive a single higher order Donnell-

1 1 Batdorf type of an equation by eliminating u and v . This 

has been done in [25] and in terms o£ the new group of 

parameters the single buckling equation is 

, 1 , ^ " l i - J - Z Z U2-(1 + p )Vnwx + V " [ - ^ ( 1 + A )V v
±
 - C-w) K. V w1] v yy D E L

1_ 2
K
 xx

J c K
irR

J y y p J 

( ^ ^ ( l K ^ - K ^ W 1 , ^ • KyyW1 ,^ • 2 ̂  , ] (12) 

where 

VE - (~)
A
[~\ + ~ 2 - { ( 1 + A x x ) ( 1 + A y y } ~ v } H r ™ 2 

E * 8x4 (l-v)(l + Avv)
 X X y y dx^y xx-

1+A .4 

1 + x
x x *y 
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V
D

 l
T T

J L 

, , 1 + p ~4 0 . 4 . 4 
LN 4 r

 K x x 9 . 2 9 . 8 ~~-r~™ —J
 + — = 2—2" T "~T 

1 + p 9x 1 + p 3x 9y 3y 
yy yy 7 7 

6 (2A + l - v ) L - 6 l r - T- 3 " +
 v " y y V = (±i)w — ± — [ i X -%- + P — - — e X" 

p V 1 + r x xx ^ T 
J v , ^ 

l-v cxAxx I ?7~T 
dX dy 

(2X + l - v ) 
+ _^_____— e x.„. ——r + e..A 

l - v c y yy 3 x 2 8 y T y yy ^ 

v C r ) 2 i 7 + (E)2 i^v(l+v)-(l-Ayy)(2Xxx+i+v) - i j _ j 

<r>
2
(

1 +
V ^

] A 
3y 

(L/ir)« [ E 2 r 3 8 , ^ x x V 1 ^ ) B8 

(1 + X ) 2 X X X 3x 8 1 - V 3x 6 3y 
v XX y ' 

6 

{e2X (1 + X" ) + 2e e X X U^r + i2X (1+X )}—4 T 

x xx^ yyJ x y xx yy (T-vJ y yy x x 3x 3y 

2e2X fl+X -v) , 8 9 . 8 ^ 7 . 6 

+ -^X^Zl—^^l _ * + e2X -J^- + 2v(^)2e X ~K 
2
-

v
 ^ V ^ y ^ 3Y

8 L x x x
a ^ 

~
 2

Cr)
2
<exAXx<

1 +
V

 +
 Vyy

(1+I
xx^

}
 ^ - l

+ 2 v
^

2 

e X ~~4—;r + ( r ) 4 { ( l + X ) (1 + X ) - V 2 } - ^ r ] 
y y y 3 x 2 3 y 4 L X X y y 3x 
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where V is an inverse differential operator such that 

v _ 1 v = vv" 1 = i. 

Instabilities Under Uniform Axial Compression 

General Instability. For uniform axial compression 

the buckling equation (12) becomes 

2 
(1 + p" )Vnw

X + iiL- (1+1 JV^V w1 + (-)2K w* = o (13) "yy' D 1-v2
 v xxJ E c K

v
J x̂x *xx ^

 J 

The classical simply supported boundary conditions 

are 

w1(0,y) * 0 9 w2(L,y) = 0 

v1(0,y) o o , v1(L,y) « 0 

(14) 
Mxx(0,y) = 0 , Mxx(L,y) = 0 

N^x(0,y) = 0 , N^x(L,y) = 0 

The displacement function which satisfies all boundary 

conditions is 

1 llT irnTx . n y 
w = w

™«
 s i n

 ~T~-
 s i n

 D mn L R 

The expression for the buckling load is obtained by 
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substituting into the buckling equation the assumed displace

ment function. The resulting expression for the buckling 

coefficient contains two integer parameters, m and n, 

representing the mode shape. The critical load coefficient 

is then obtained by searching for the mode shape which 

yields the lowest buckling load. 

nL Let 6 - —Wt then the buckling coefficient is 
TTK 

•Sex " 4 [ ( l
 + P X 3 y +

 2mV+(l + p y y ) 6
4

] * 2 \)
1

 2 [ e ^ m
8
 (15) 

m J J m IT (1 -v J 

2 - 2 - 6 0 2 . «• Q 2 T -

y y x xx" yy 
+ ~ - e^X (1-v + X )mu3 +{e^X (1 + X ) + 

2 ( l + v ) - - - - - - —2^- n ± r •,-, 4ft< 
-4 e e X X + e X (1 + X , J }m $ 

1-v x y xx yy y yy xx
J p 

2 - 2 T (1-v+X )m2$6 + e2X B8 - 2ve X m6 + 
JT^

 e y A y y X X Y YY X XX 

2{e X (1 + X ) + e X (1+X ) } m 4 $ 2 - 2ve X m 2 $ 4 + x xx^ yy^ y yy^ xx
J H y yy 

Ul+XxxHl+Xyy)-v2}m4]/[(l + Axx)m
4 • ^ (1+Xxx) (1+X ) -v}mV 

+
 d + V

0 ] 
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For any given stiffened shell geometry the critical 

load coefficient, K , is obtained through minimization of 
cr 

equation (15) with respect to all integer values of m and n, 

except m = 0. 

Let Is = —-w t and also note that for an internally muR 
stiffened shell e and e" are negative numbers; therefore, 

x y & ? ' 

after changing the signs of e" and e~ , equation (15) can be 

rearranged as 

K = Pm2 + - * + S xx 
m 

- S + S (16) 

where 

? 
" 1 ^ 1 O 

P = 1 + p + 2 $ 2 + ( l + p ) 3 4 + A
12z

 * [e
2
X +j^~e

2
X (1-v+X )B Mxx p ^ YY

 M 4 r i _ ^ T x xx 1-v x x x v yy 
TT (1-v ) 

{e2A (1+X ) + lill^l X X e~ e" +e"2X (1+X ) }"3 1 x xx v yy^ 1-v xx yy x y y yy x x ; J H 

2 r ^ . - w-, . - )-v}B"2+(l+X ^ " 4 

yy yy' 
B = l+X + T ^ - { ( l + X )(1+X )-v}"3"+(l+X „ ) I xx 1-v v

 xx
J K

 yy
J y yy 
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Q " -47fV
[ ( 1 + A

xx
) ( 1 +

V"
v 2 ] / B 

IT (1-V J } J 

2 
S = 24Z_j - j _{^-y (1+x ) + e~ X (l+X )}f2 + ve~X 3"4]/B 

4 Q _ 2> L x xx l x xx^ yy^ y yyv x x J J P Y YY 

For the purpose of the first stage of computer program 
2 

analysis of the buckling mode, m is first treated as a 

continuous variable. Minimization of equation (16) with 
2 

respect to m yields 

K v = 2/PII + S (17) 
XX 

m 2 = # 

Panel Instability. The panel instability is the 

instability when all stringers and skin between two adjacent 

rings participate. This is the special case of the general 

instability. Thus, the expression for panel instability can 

be obtained from equation (15) by setting all ring parameters 

to zero. That is 

e = o , A = o 
y ' YY 

p - o , L = I 

YY ' y 
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The resulting expression for panel instability with 

the sign of e changed for inside stiffeners is x 

xxxP • ti
+p x x)m

2
+2e^V-*7T^ " (18) 

2e X (32-vm2)+l-v2+A ]/[(l+A )m2 

X X X V M J XXJ ' L ̂  X X ; 

+ T ^ ^ - ^ x x ^ 2 ^ 
m 

For any given stiffened geometry the critical load 

coefficient for panel buckling is obtained through minimi

zation of equation (18) with respect to all integer values 

of m and n. 

Local Stringer and Skin Buckling 

For closely spaced stiffeners the local skin buckling 

and the stringer buckling are governed by the equation of a 

flat plate. The critical stress of a flat plate with various 

edge conditions is given in Bleich [28] as 

2 
a = K ~ ^ — j - (|)2 (19) 
c 12(l-v ) D 

where a - skin thickness, thickness of stiffener web, or 

thickness of stiffener flange. 
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b = stringer spacing, height of stiffener web, or 

width of stiffener flange. 

K = 4, for four sides simply-supported 

K = (-«—) + 0.425, for three sides simply-supported and 
V 

one unloading side free. 

In the design analysis of the local buckling, it is 

assumed that all edges of stiffeners and skin connecting to 

any part of the cylinder are simply supported. With both 

rings and stringers inside, the possible buckling failure 

modes are the following. 

Skin Wrinkling. The skin wrinkling is considered as 

the buckling of a flat plate of size I by % . The critical 
o r x / y 

stress is 

2 
a = ,JL E ( k) 2 (20) 
X X S K 3(l-v ) *x 

Local Stringer Buckling. When rings are deepest the 

portion of a stringer between any adjacent rings is treated 

as a flat plate of length I . The stringer web is considered 

as four sides simply supported while the flange portion, a 

flat plate with three sides simply supported and the 

unloaded side free. 

In the case when stringers are deepest, the material 

of the stringer web below the ring material is assumed to 

buckle as a flat plate of length I with four sides simply 
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supported while the outstanding portion of the stringer web 

is considered as a flat plate of length L with four sides 

simply supported. The stringer flange, which is above the 

ring material, is also treated as a flat plate of length L 

with three sides simply supported and the unloaded side free. 

For rectangular stringers there is no stringer flange, there

fore the stringer material above the ring material is 

treated as a flat plate of length L with three sides simply 

supported and the unloaded side free. 

During the design process, however, it has been 

discovered that when stringers are deepest, and in the region 

where av > a , either the resulting design configuration will x y 

always have the ring thickness and stringer thickness which 

are too thin to be fabricated or the stringers will buckle. 

Thus, this subcase of the local stringer failure can be 

disregarded in the designing process by concentrating only 

in the region where a > a in favor of practical limitation 
© y x r 

on fabrication. It is worthy to mention at this time that 

since both rings and stringers are inside and the rings are 

in tension therefore there is no possible buckling failure 

of the rings. 

The critical stresses of stringers for several types 

of stiffening members for the configuration when rings are 

deepest, are tabulated in Table 1. 



Table 1. Critical Stresses of Stringers 

c+^. rp Stringer Web, a v „ Stringer Type & * xx s w c r 
Stringer Flange, ®xxs£ 

cr 

RS 

TS 

IAS 

CS,ZS 

IS 

AS 

2 
TT E t 0 d ~ 

x f wx^2 r, wxs2 .9C, ( — ) [(-5—) + .425] „ 
12(l-v ) wx 

TT E t 0 

x / wx-, 2 ^ 

y 

3(l-v 2) 3 w x 

TT E t ,. 0 
x ( wx̂ .2 
27 M } 3(1-\T) wx 

TT E t 0 x r wx >. 2 ^ ^ — j 
3(l-v 2) d w x ~ 2 t £ x 

2 
TT E t 0 

x r wx ^ 2 a 
L 3 TT? J 

2 B 

TT E ̂ - ( i ,t ) [( oo W V + . 4 2 5 ] 
12(l-v ) D£x lwx y 

TT E 

y-(b !*
 )2[( T W X) 2 +- 4 2 53 

12(l-v") ufx wx y 

X ( T ^ ) 2 [ ( 4 ^ ) 2 + .425] 
K 

12(l-v z) D£x y 

2 B 

TT E 
3(l-v 2) dwx""2tfx" 

2 
ir E t ~ d - t r 0 

x r wx s2 r r wx fx^2, 4 o c 1 
•27(d - t , } [ ( ~ } +' 4 2 5 ] 

^ H ^ ) 2 [ C 2 T r ) 2 + '425^ 
12(l-v ) Dfx z y 

12(l-v ) wx Lfx y 

y 

*In the case of the design without geometric constraint one 
/d <1, then a Y X _ w has the form a X x _ w = ^ 2 E X (g-)2 r b %\2 
wx W2E xxsw c r xxswcr 12^) b ^ + ^ 

x , lwx . 2, wx fx &y . 2 
re-,., ~ O M _9+- " J { n + A~ T+. J • 

may have shor t p l a t e , 

Example for I S , 

xxsw 1 0 / . , 2. d - 2 t „ y v £ ' d - 2 t n 

cr 12[ l -v ) wx f x y w* f x •p* 
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Mathematical Formulation 

Phase 1 

Assuming that the eccentricities of the stiffening 

members are small in comparison to the radius of the stiffened 

circular cylindrical shell, such that the common stiffener 

material at the intersection of stringers and rings is 

negligible, then the weight of the stiffened shell is given 

by 

L 2-rrR A L 2TTR A 
W - 27rRLhpsk + p J J -*. dydx + p / / ^ dydx (21) 

o o x y o o y 

In terms of the nondimensional parameters defined in 

the previous section, the weight of the stiffened circular 

cylindrical shell is 

W = ZTTRLhp [ 1 + - J T ( ^ | — Axx + ^ — V ) ] ( 2 2 ) 

S K 1-v xpsk x x ypsk y y 

The classical general instability buckling parameter 

of the thin stiffened circular cylindrical shell subject to 

a uniform axial compression with simply supported boundary 

conditions is given by equation (16). The requirement for 

minimum weight against general instability leads to the 

objective function (composite weight function) 
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sfe 

W = W + x|N - Nl (23) 
.A. A. 

cr 

where W is the weight of the stiffened shell, N the applied 

compressive load N the general instability load obtained 
XX 

cr 
2 —2 from minimization of equation (16) with respect to m and 3 , 

and A a Lagrange multiplier. To incorporate the effect of 

imperfection sensitivity, a "knockdown" factor must be 

included in the design load N. 

Equation (23) can be put into nondimensional form as 

W* = | + x*|K* - N*| W 
Z ' xx ' cr 

where 

ju iV 

—* W __* XXr-r 

W = — 5 _ ^ , K = _ C H (25) 
27TL'3psk(l-v

Z)i/Z XXcr Z 3 

12R3N ,* TTELA V T T T _ I t i i V 11 - . i s _ I l i J j J A 

7rEL 4(l-v I) T 7 T ' 24p VR
3 

SK 

E P V _ Ep, 
W = 1 + 1 Fx ~ pv — 

_ J _ f —*_„ x + — X _ A ) 
T 2 VE p , xx E p i yy

J 

1-v xpsk ypsk 7/ 

Thus, W is a function of the following parameters, 
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W* - FCZ, Xxx, Ayy) pxx> pyy, ex, ey> m
2, B

2) (26) 

It is seen that W* behaves like 1/Z, therefore, it 

can be concluded that there is no minimum W with respect to 

a finite Z. In other words, there is no minimum weight 

against general instability with respect to a finite Z. 

It can be seen from equation (15) that the buckling 
___ ̂  __ _ 

load or K increases with the increase of p . p , e . xx Kxx* yy x
s 

_ c r __* 

and e , therefore there is no minimum W with respect to 

reasonably finite values of these parameters. This implies 

that if a given stiffener material is distributed in such a 

manner that, although its contribution to the extensional 

stiffness is the same, its contribution to the flexural 

stiffness, p, is continuously increasing (within bounds), 

then the critical load for general instability will be 

continuously increasing. Of course, during this process of 

distributing the material the local instability failures will 

dominate the problem. Thus, there are some limiting values 

(upper bounds) on both e~ and p". In addition for fixed 

values of Z, e~, and p" there is a minimizing set of values 

for A and A . Because of this, charts may be generated, 

in which for a specified set of Z, e, and p one can have 

minimum W with the corresponding minimizing values of A and 
JvwA. 

r . 
yy 

At this point it is convenient to introduce four new 
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parameters, a , a , C , and C . The new parameters, a, 
f > x' y' x' y * ' 

denote the ratio of the radius of gyration of the stiffeners 

to that of the skin of unit width. Their expressions for 

various types of stiffening members are given in Table Al of 

Appendix A. The new parameters, C and C , called shape 

parameters, are just numbers characterizing the shapes of 

the stiffeners. For example, C is equal to one for rectangu 

lar stiffeners, greater than one for tee and inverted angle 

stiffeners, and less than one for channel, zee, I, and angle 

stiffeners. Using these new parameters one can eliminate 

the parameters e , e , p . and p in equation (26) through 
r x* y- xx' yy n v J & 

the relations of equations (A2). Hence 

W* = p[*xx>
 A

yy>
 m2> 32,(Z, ax, ay, Cx, Cy)] (27) 

The change of parameters from p , p , e , and e & ^ Kxx* yy x y 

to a . a , C , and C are convenient because the ranges of x' y' x* y 6 

these new parameters are known. For exanrole, using 
dv rectangular rings a = -T-*- . But for the assumption of 

R thin ring theory -r~-~ > 20, therefore 
wy 

R 
< « 

•y 

a~ < 2Oh 

Therefore, it is proposed to generate the design charts and 

tables in the a" -a' space for each type of stiffening 
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members. The precise statement of the mathematical formu

lation in "Phase 1" is as follows. 

In the a -a space, for each type of stiffeners and x y 

for each Z and a given load parameter, H, minimize the 

weight parameter of the stiffened circular cylindrical shell, 

W, with respect to A and A subject to the equality 

constraint of general instability. That is 

___ _« 

Minimize W subject to K = N 
A , A 

xx' yy 

xx 
(28) 

cr 

It has been shown in [29] that, provided A is suffi

ciently large, the solution of the unconstrained minimization 

of equation (24) will approach the solution of the constrained 

minimization of equation (28). The exact solution will be 

obtained when A* approaches infinity. 

This implies that, if one uses the optimum weight 

parameter W, one will find in the ~a -"a space families of r > x y r 

curves of constant optimum W and the corresponding optimizing 

values of X and X which will be employed in "Phase 2" to xx yy f / 

arrive at a minimum weight geometry, satisfying all constraints 

Phase 2 

Assuming that the stresses in the stringers and rings 

are in uniaxial state and the stresses in the skin are in 

biaxial state, then these stress components before buckling 

are given by equation (9) . The possible local buckling 
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failures of the skin and stringers have already been 

discussed. The expressions for the critical stresses of 

stringers of several types of cross-section are given in 

Table 1. 

Considering only the absolute values of these stresses 

during the design process, the stresses of the local 

buckling of the skin and stringers given in Table 1 must be 

greater than the applied stresses given by equations (9) 

accordingly. Furthermore, the applied stresses must be less 

than a certain appropriate stress level, for example, the 

yield stress of the material. Of all ring spacings I , obtained 

from the constraint of stringer buckling, one must select 

the one (there are many) which does not yield panel buckling. 

The details of the steps in the minimum weight design proce

dure of the stiffened circular cylindrical shell for 

stiffeners of rectangular, tee, inverted angle, channel, zee, 

I, and angle cross-sections are outlined in Chapter III. 

The typical design examples are demonstrated in Appendix C. 

Mathematical Search Technique 

Selection Criteria 

Because of the complexity of the objective function 

in the present problem, the derivative-free unconstrained 

minimization method is preferable. Depending on the type of 

the function, some or all criteria to be considered in the 

selection of the method should be the reliability or the 
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success in obtaining an optimal solution to within a certain 

precision, the computer time required, and the number of 

functional evaluations. 

The first criterion, the reliability, must be the 

primary concern in every algorithm. The number of functional 

evaluations might not be a good measure of the effectiveness 

of an algorithm because one can design an algorithm which 

reduces the number of functional evaluations by incorporating 

in the algorithm all sorts of time-consuming tests, matrix 

operations, and so forth. On the other hand, if the time-

consuming subroutine must be called for each functional 

evaluation, this criterion might be fruitful. Thus, the 

ultimate decision in selecting an algorithm should be the 

reliability and the total computer time required to obtain 

an optimal solution within the desired degree of precision 

(including all concerned subprograms). In reality there is 

no clear-cut evidence that indicates which algorithm is the 

best. For the present two-dimensional minimization problem, 

the author has selected the irregular simple or flexible 

polyhedron method of Nelder and Mead [30] because the simplex 

has been designed to adapt itself to the topography of the 

objective function, hence, high reliability. 

Search Technique of Nelder and Mead 

The search technique of Nelder and Mead consists of 

four basic operations: The reflection, expansion, contrac

tion, and reduction of the simplex. The method minimizes a 
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function of n independent variables using (n+1) vertices of 

a simplex in the n-dimensional euclidean space. In the 

present two-dimensional problem a simplex is a triangle. 

The vertex which yields the highest value of the objective 

function is projected through the center of gravity or 

centroid of the remaining vertices. Improved values of the 

objective function are found by successively replacing the 

point with the highest value of the objective function by 

better points until the minimum is found. For further 

details of the method the reader is referred to reference [30] 
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CHAPTER III 

SOLUTION PROCEDURE 

The solution to the present problem is accomplished 

in two stages: Phase 1 and Phase 2. In "Phase 1" the search 

technique of Nelder and Mead is employed and design charts 

and tables are prepared. These charts and tables are then 

used in "Phase 2" to arrive at a minimum weight configuration 

satisfying all constraints. 

Phase 1: Development: of Design Charts and Tables 

In moving a simplex towards the minimum W in X - X 
tor- xx yy 

space for each Z, stiffener shape, and a pair of ("a ,oi ) one 

needs to evaluate "K. at every vertex of the simplex. To 
cr 

accomplish this, the well-known and probably the most 

efficient one dimensional search technique, the gold section, 

is employed [31]. To find Y for each vertex or point in 
.A..A. ^ 

__ _ cr 
the X - X space when m is an integer, the golden section xx yy r & > & 
has to be applied twice. The process is as follows: 

At a point in the X - X space, during the optimum 
xx yy r ' & r 

seeking procedure, all quantities, except m and 3", in 

equation (16) are known. First, one treats m as a continuous 

variable and equation (17) is used in the golden section to 

find ~S for "K . From this, one can compute m according to 
xxcr 

equation (17). This m, in general, will not be an integer. 
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Next, one considers m as two consecutive integers, except 0, 

bounding the non-integer m found previously. For these two 

m's, one uses equation (16) to find "$"' s and thus K" 's. 
xxcr 

The integer m and the corresponding 3, giving the smaller 

K , will be taken as the solution for K at this point. xx„ xx r 

cr cr 

The instructions and computer listings used in "Phase 1" are 

given in Appendix E. There is no convergence problem in 

finding the minimum W with this method. 
Figures 3 through 7 are some results of the design 

- 8 charts for 1ST* - 1.233 x 10 , (corresponding to case 7-1 in 

[16]) using RSRR (rectangular stringers and rings). For the 
- 8 case of N"* = 4.10306 x 10 (corresponding to case 6-1 in 

[16]), the surface of optimum W becomes wavy, thus smooth 

curves as in Figures 3 through 6 cannot be drawn. In this 

case an example of one chart with the value of optimum W 

at each pair of (~a ,<x ) is shown in Figure 7. The solid and 

dashed lines in Figure 7 are the schematic paths showing 

the possible movement towards minimum weight design, without 

geometric and with geometric constraints, respectively. The 

design procedure at each (a ,a ) will be described in 

detail in the next section. 

It should be pointed out that in addition to the 

design charts (Figures 3 through 7), one needs to have at 

hand the tables showing the values of optimum W and their 

corresponding X and X for many pairs of (® ,~a ) . Thus, xx yy x y 

these tables must be considered part of the design charts. 
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Examples of such tables are shown in Appendix B for TSRR 

(tee stringer and rectangular ring) and CSTR (channel 

stringer and tee ring). For more data of this type, with 

different shapes of stiffening members (different C and C ), 
JL y 

one should refer to the supplementary notes to this disser

tation [32] . 

Phase 2: Design Procedure 

In the design of the stiffened circular cylindrical 

shell the following quantities are known. 

1. The applied uniform axial compressive load. 

2. The radius and length of the stiffened shell. 

3. The skin and stiffener materials and their 

associated properties. 

4. The position of the stiffeners (inside). 

The design variables to be determined are the skin 

thickness, the ring and stringer shapes, sizes and spacings. 

In this section the steps in designing the stiffened shells 

for minimum weight using different types of stiffening 

members are outlined. Expressions of stringer buckling for 

various types of stiffener section are given in Table 1 of 

Chapter II. 

Design for RSRR and ASRR 

1. For each Z, locate the minimum weight parameter W 

in the a" -"a space (charts or tables) and the corresponding 
x y 

X's. Since the expression for the stress in the rings is 

based on thin ring theory, -r— must be greater than 20. 
wy 



51 

This implies that a <_ jfrr- One then follows steps 2 through 

7 such that no constraints are violated. If any constraint 

is violated one must increase the weight and repeat the 

procedure. Note that in many cases minimum I is a line 

rather than a point. 

2. Calculate the stresses in the skin, stringers 

and rings by employing equations (9). 

If all stresses are less than or equal to the yield 

stress or certain limiting stress level the next step is 

executed. Otherwise, one must move to the next higher W and 

repeat step 2. Note that since the skin is in a biaxial 

state of stress one should use an appropriate yield criterion. 

3. The stringer and ring heights are computed from 

the definitions of ct and ct . For the definitions of all 
x y 

new parameters, such as d , c- , t , br , etc., see 
r ' wx fx' wx' fx ' 

Appendix A. 

(1+Cr k )ha v fx s x d = T-r* , d = ha . 
w x

 d + 4 c f x k s )
1 / 2 w

y y 

Note that the knowledge of Z implies the knowledge of h. 

For RS (rectangular stringers), k = cf = 0 . 

4. The ratios of the stiffener thickness to the 

stiffener spacing are determined from the definitions of 

X and X xx yy 
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wx 
EA h 

XX 

E d ( 1 - v ) 
X WX ^ J 

t EX h 
JUL = _ _ J Q L _ _ ^ 

V E d (1-v ) 
7
 y wy

v J 

5. The stringer spacing is determined by requiring 

that the stress in the skin be less than the skin buckling 

stress, la , I > I a i j or ' ' xxsk ' ' xxsk •' 

Tl E 

3(1-v ) I a i v J ' xxsk 

6. From the selected l , calculate the stringer web 

thickness, t , from step 4. Then the stringer flange wx 

thickness and width are determined from 

tx - cr t fx fx wx br - k d fx s wx 

7. The ring spacing is determined by requiring that 

the stringer stress be less than the stringer buckling 

stress, |a > a *. or xxst ' ' xxst1 cr 

V
 < 

d - tr 

wx fx 
12(l-v ) f wx" fx,2, , _ 

TT E W X 
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If the quantity under the radical sign is negative, 

then any £ will satisfy this constraint. In this step, o 

must be checked to insure that no panel instability occurs. 

Furthermore, the number of rings must be greater than three 

for the smeared technique employed herein to apply [33]. 

8. Calculate the ring thickness, t , from step 4. 

Observe that the simultaneous occurrence of general 

instability, panel instability, and local instabilities of 

skin and stringer can be avoided by proper choice of j? and 

t.. Note that steps 4 through 8 yield several combinations 

o £ Stfx' tfx' S^y' £x' a n d V f o r t h e s a m e cy l i n d e r weight 

(examples of this are presented in Appendix C). 

9. The weight of the stiffened shell is 

W = 27rRLh psk W 

10. Repeat the above steps for a number of Z values 

(h) and plot W vs. h. At least three values of h are 

needed. From the plot, one can then locate the absolute 

minimum weight with the corresponding value of h, and hence Z 

11. With the value of Z for minimum weight in step 

10, one then generates the required data (design charts and 

tables) and repeats step 1 through 9 to finalize the 

dimensions. This last step is performed only when the exact 

minimum weight configurations is desired. 
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Design of TSTR and TSRR 

Note that for inverted angle stringers (IAS) only the 

design step 7 has to be modified. For rectangular rings 

(RR) one puts c,- = k = 0. 

Step 1 and 2 are the same as those of RSRR except 

- R C l M c ^ ) 1 ' 2 

°V - 20h I+cTTE — 
J fy r 

3. The stringer and ring heights are computed from 

the definitions of a and 
x y 

d _ (1+Cfxks>hax Cl^cfykr)h^ 
wx (IMc^)1'2 ' «* (U4cfy^

2 

4. The ratios of the stiffener thickness to the 

stiffener spacing are determined from the definitions of 

X . and X . xx yy 

t EX h wx „ 'xx 
£x E (1-v2)(1 + c- k )d 

xv J K fx s; wx 
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5. From the constraint of skin wrinkling 

axxsk „ I > laxxsk cr 

one has, 

I < h x 

2 * IT E 

3(l-v ) I a „•> x
-

 J ' xxsk 

6. From the selected £ , calculate the stringer web 
x ° 

thickness, t , from step 4. Then the stringer flange > wx ^ 

thickness and width are determined from 

tj- = c r t , b , = k d fx fx wx fx s wx 

7. From the constraints of stringer flange buckling 

l axxsf > a 
cr 

xx s t 

one h a s , 

I < 
y 

fx 

/ini^?7^^Tr 
V 7T2E tfx X X S t 

- .425 

where 
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(b,r - t ) for TS 
fx "2" fx wx 

d, = b, - t for IAS fx fx wx 

If the quantity under the radical sign is negative, 

then any £ will satisfy this constraint. The selected £ 
y "Y 

must be checked to insure that panel instability must not 

occur. 

For small kg (i.e. df is small), the stringers are 

equivalent to the bulb-head stringers; therefore there will 

be no stringer flange buckling. Thus, one will not have 

the above expression for £ , but £ is determined on the 
y y 

basis of panel instability alone, with the number of rings 

being greater than three. 
8. From the selected £ , calculate t from step 4. 

y wy F 

Next the ring flange thickness and width are determined from 

tj. ~ Cr t . b r = k d 

fy fy wy * fy r wy 

The simultaneous occurrence of general instability, 

panel instability and local instabilities can be avoided 

by proper choice of £ and £ . 
x y 

9. Check the local stringer web buckling. 
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TT E t ~ 

0 ~ L _ _ (-3——) for -r—*- > 1 
xxsw_.. „,., 2̂  vd J d 

wx 

cr 3(1-77 ^wx 

IT E t ~ d 
x x s w

- - . , . - 2, (—) c— ^
 f 0 

12(1-v ) wx y wx 
cr 

2 £v 
-r ^ < 1 

wx 

If |aYVCT. I > |avvei.|, one goes to the next step. Other-
1 AAbW ' ' X A O L ' 

cr 
wise, the weight must be increased and step 2 through 8 are 
repeated. 

10. Ca l cu l a t e the weight of the s t i f f e n e d s h e l l . 

W = 2-rrRLh p , f c W 

The last two steps are the same as those in the design 

of RSRR. 

Design for TS and Other Types of Ring Shape 

To design a stiffened shell using tee-shaped stringer 

(TS) with other types of ring shape only the step 1 through 

4 of the design TSTR are needed to be modified as follows. 

CR or ZR or IR. For channel (CR), or zee (ZR), or 

I rings the thin ring theory in step 1 implies that 

- , J L r
1 + 6 c

fy
k
r, i /2 

ay ~ 2Oh lI+2c/k J f y r 

The changes in step 3 and 4 are 
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, 1 + 2 cf k 1 / 2 
d = CT-T-Z——H—) ha wy 1̂ + 6 cf *j7

 uy 

t Ex, h 
_™Z = JOL _ _ _ 

l
y E (1-v2) (l + 2c. k )d 
7 y

K J K £y r; wy 

Angle-Shaped Ring (AR). Using TS, the corresponding 

modification in TSTR design to angle-shaped rings is in 

step 3 only, namely 

fl + Cj. k )ha 

d = fy r; uy 
wy 777Z Z ̂ i/2 (l+4c£ykr) 

Design for Channel (C), Zee (Z), or I-Shaped Stringers and 

Rings 

The design steps for channel and zee stringers and 

rings are identical but for I-section, only the following 

design step 7 has to be modified. For rectangular ring (RR) 

one puts c- = k = 0. r f y r 

Step 1 and 2 are the same as those of RSRR except 

R r
1 + 6 c

f y
k

r , l / 2 
ay ~ 2Oh llT2c£ kr

 J 

3. The stringer and ring heights are computed from 

the definitions of a and a . 
x y 
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wx 
r

1 + 2 c f x k s , l / 2 , -

wy 
r

1 + 2 c f y k r , l / 2 , -
(ITFcTTr3 hot 

fy r 
<Y 

4. From the definitions of X and x » one has 
xx y y ' 

wx 
Ex h xx 

£x E ( 1 - v 2 ) ( l + 2 c , k )d 
x v J K fx s J wx 

'wy 
EX h 

yy 
y E (1 -v ) ( l + 2 c , k )d 7 y ^ J v f y r J w y 

5 . From t h e c o n s t r a i n t of s k i n w r i n k l i n g , 

CTxxsk I > K x s k l ° n e h a s ' c r 

ix < h IT E 
7 

3 ( l - v ) | a , v ' xxsk 

6. From the selected £ . calculate t from step 4 
x wx 

Then 

t x ^ = C j - t , bj- = k d fx fx wx ' fx s wx 
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7. From the constraint of stringer flange buckling 

axxsf I > laxxst 
C i 

one has, 

l_ < 
17b 

Ix. for CS or ZS 

^ £ ^ ^ ) 2 | a x x s t | - .425 
7T'E ^ f x 

Jv 

V
 < 

b fx / 2 

f12(l-v2) ,bfx -.2, 

T T 2 E Y
 2 t£x x x s t 

for IS 

- .425 

If the quantity under the radical sign is negative, 

then any % will satisfy this constraint. Check the 

selected it for panel instability with the number of rings 

being greater than three. 

8. From the selected I , calculate t from step 4 
y' wy r 

Then 

tr ~ Cr t , bj- = k d 

fy fy wy ' fy r wy 

The simultaneous occurrence of general instability, 

panel instability, and local instabilities can be avoided 
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by proper choice of I and £ . 

9. Check the local stringer web buckling. 

TT2E t 0 I 

° v K W = —j- ( -*—ZJT—) £ o r T~~=Tt— - 1 

c r j ^ i v j WA I A W A I A 

2 
TTE t 0 d - 2 t r £ 

a = * 
xxsw 

U <-* vi. "" i* \* c & 

( _jjx_)
2
(._w£ £x+ X_____) 

Z \ CI " ZX f 36 Q " Zt r c r 1 2 ( l - v " ) wx " u f x y wx ^ u f x 

f o r - r — ^ - — < 1. 
wx fx 

If a > a . , one goes to the next step. 1 xxsw ' ' xxsti » • & v 
cr 

Otherwise, the weight must be increased and step 2 through 8 

are repeated. 

Steps 10 through 12 are the same as the design of TSTR, 

Design for CS, ZS, or IS and Other Types of Ring Shape 

Tee and Angle-Shaped Ring (TR, IAR, AR) . In this 

case, only the design step 1, 3, and 4 in the last design 

(CSCR, ZSZR, CSZR, etc.) are modified as 

D (l+4c, k ) 1 / 2 
__ R ^ fy r; 

a- K ^ " -^TTY 7 fy r 
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(l + cr k )ha 

wy ( i+4cTloT /2 

v
 fy r

; 

L 

wy = 

EA h 
yy 

y E y ( l - v ^ ) ( l + c£ykr)d 
wy 
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CHAPTER IV 

DESIGN RESULTS AND DISCUSSIONS OF THE RESULTS 

The cylinder geometries and load taken as design 

examples are the following. 

Case 1: R =95.5 in. , L = 291 in. 

N = 800 lb/in., N* = 1.233 x 10"8 

v = .33 , aQ = 50,000 psi 

E = Ex = E = 10.5 x 106 psi 

psk = px = py = <101 l b / i n 3 

Case 2: R 9.55 in. , L = 38 in. 

N = 800 lb/in., N* = 4.10306 x 10~8 

v = .33 , a = 50,000 psi 

E = Ev = E = 10.5 x 106 psi x y 

psk = px = py = -101 l b / i n' 3 

Case 3: R = 85 in. , L = 100 in. 

N = 2700 lb/in, N* = 2.036 x 10"6 

v = .33 , o = 45,000 psi 

E = EY = E„ = 10.5 x 10
6 psi x y 

Psk = Px = Py = .101 lb/in
3 

Case 1 and 2 correspond to case 7-1 and 6-1 in 

reference [16] respectively. Case 1 represents a moderately 

loaded shell while Case 2, a heavily loaded shell. To 
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compare the design results with those of Jones and Hague 

the design WMG (without minimum gauge) has been done for 

RSRR (rectangular stringer and ring). The results of the 

design analysis are shown in Figures 8 and 9 and the compari

sons with their results in Table 2. For moderately loaded 

shell where yielding is not a strong factor the plot of W 

vs. h is a straight line as in Figure 8. For case 2, the 

heavily loaded shell, where yielding is critical the curve of 

W vs. h concaves downward. These designs (WMG) give 

unrealistic design dimensions beyond practice but they have 

been illustrated here to show the applicability of the method 

and also for comparison purpose. In such cases it is suggested 

to interchange the role of general instability and skin 

yielding in the formulation of the problem. This means that 

skin yielding is used as an equality constraint to generate 

design charts and general instability is considered as an 

inequality constraint in "Phase 2," 

Case 1 shows a weight improvement of 4 5.31 over that 

of Jones and Hague but there is no improvement for Case 2. 

Note that, from Figure 9, the more exact location of minimû i 

weight for the design WMG is at h = .0124 in. but the design 

has not been done for this skin thickness because the weight 

savings is only slightly different. Also in Figures 8 and 

9, and Table 2 show the results of the design MG (with 

minimum gauge), which correspond to realistic design 

geometries. The corresponding results of Jones and Hague 
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Table 2. Some Design Results and Comparisons 

Case 1. RSRR Case 2. RSRR 

WMG(present) WMG(Re£.16) MG=.02 in. WMG (present) WMG(Ref.l6) MG=.01 in. 

W 373 682.54 755 

h .018000 .03044 .022105 

t rv .000527 .02760 .032620 
wx 
t .000004 .000022 .022720 
d v 2.07000 .3879 .44210 
wx 
d 2.07000 20.0000 2.10000 
wy 

£x .51970 1.3162 .91985 

£ .00800 3.2290 9.38710 

3.707 3.700 4.360 

.011895 .00998 .010980 

.004424 .01244 .014921 

.000235 .00027 .014937 

.23789 .11348 .09882 

.23789 1.00850 .32939 

.32072 .23791 .29114 

.05994 1.65190 1.18750 

GB 1.0000 1.0028 1.0000 

PB .0003 .2173 .9017 

SB .8511 1.0051 .9542 

STB .9427 1.0071 .9292 

SY .7964 .4145 .4269 

STYC .7925 .4146 .4186 

RYT .2487 .1375 .1146 

m 8 27 18 

n 10 6. 9 

m l 1 1 
P 
np over 60 0 62 3 6 

1.0000 1.0042 1.0000 

.0006 .9943 .7339 

.9029 .7486 .9198 

.8879 1.0007 .5159 

.9687 1.0030 1.0130 

.9620 1.0039 .9893 

.2966 .3295 .2430 

7 13 16 

8 7 7 

1 1 1 

272 21 25 
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are not available. Observe also that the present methodology 

avoids the simultaneous occurrence of failure modes while 

procedures based on mathematical search techniques with an 

objective function containing all constraints as penalty 

functions have no control over this point. 

Some design results of Case 1 with MG = .02 in. using 

the combination of rectangular, tee, and channel stiffening 

members are shown in Figures 10 through 13. The design 

results indicate that the location of the minimum weight 

configurations for various shapes of stiffening members 

(different values of C and C ) correspond to approximately 

the same value for h (.022 in.). Furthermore, the curves 

are very flat therefore a relatively large variation of the 

skin thickness will result in designs which differ only by 

a small percentage. This implies that in order to design 

the same case for other shapes of stiffening members one 

needs to generate data at the value of Z corresponding to the 

skin thickness of .022 in. only. 

The effects of stringer and ring shapes of all cross-

sections considered herein are investigated in order to 

obtain the absolute minimum weight configuration of Case 1. 

Consider the minimum weight design of various shapes of 

stiffening members as a three dimensional figure in the 

space of W, C ., C , and if the plane C - 1 (rectangular 

ring) is cut through this figure, one has a two-dimensional 

case shown on Figure 14. That is, using rectangular rings, 



68 

200 

£ 700 | -

x: 
.2* 
"o> 

$ 

£ 500 

300 

: 

• M B L 

C x = 1-213 

Cy= 1 

k = - ^ 9 

: 

• M B L — MG - •02 in. 

C x = 1-213 

Cy= 1 

k = - ^ 9 

m * - W M G 
if — " 

K r - y 

c fx~ c f y = 1 

II l , 1 , - i ,1 1 1 ! ' i . ' 5 
. ™J 

•on •019 •027 •021 -023 -025 

Shell Thickness ,h (in.) 

Fig-10 Case 1, TSRR. Calculations to Determine Minimum Weight 

' Design of Cylindrical Shell. 



69 

m 

5 700 H 

.9? 
'o 

B50B 
0} 

300 

-
^ v " t 'U^ j 

— 
^ Cv/ = 1 

— 
ks = -2 

— 
kr = 0 

cfx= cfy = 1 

""* MG= -02 in-

-

1 -.1 1 . J _.L . 1 I . ! 

•013 020 •026 •022 024 

Shell Thickness,h (in.) 

Fig-HCasel, TSRR- Calculations to Determine Minimum 

Weight Design of Cylindrical Shell-

300 r-

n 
3 700 

G) 

'(D 

5 
« 500 
0} 

300 X I JL 

^x -•• 1 0 9 7 

cy = : 1-037 

ks = •35 

kr = ; • 35 

C fX= C f y = ^ 

M G = -02 in-

! 

•018 020 •028 

J 

•022 -Q24 

Shell Thickness, h (in.) 

Fig.12 Case 1, TSTR- Calculations to Determine Minimum 

Weight Design of Cylindrical Shell-



70 

C x = -787 

C y = 1 

k s = -2228 

k r = 0 

Q Q 1 

fx ~ f y ~ 

MG = -02 in-

L J _ J _ _ J I i 
•018 020 022 m 026 

Shell Thickness, h (in.) 

Fig.13 Case 1, CSRR- Calculations to Determine Minimum 

Weight Design of Cylindrical Shell-

JD 

3 700 
•*—> 

JZ 

g> 
'o 

5 
^ 500 
CO 

300 



71 

the tee or inverted angle stringer (TS or IAS) with 

C ^ 1.09 gives the least weight while the best weight of 

channel, zee, or I stringer (CS, ZS, IS) is at about 

C 2 .86. The angle stringer (AS) shows the best weight at 

its degeneration into a rectangular stringer. Table 3 shows 

the minimum weight design geometry considering the effect of 

stringer shapes using rectangular rings. 

The effect of ring shapes on the cylinder weight is 

investigated by passing the plane with different values for 

C through the minimum weight figure in W, C , C space. 
y x y 
The results shown on Figures 15 and 16 are for C - 1.097 

x 
and .866 only because these two C 's give the best weight 

x 

for each type of stringer (TS and CS) (see Figure 14). The 

results show that the rectangular ring is the most efficient 

in designing a circular cylindrical shell under a uniform 

axial compression. This suggests that the extensional 

stiffness of the ring plays an important role for this load 

case (uniform axial compression) but not its flexural 

stiffness. The resulting design configurations are shown 

in Tables 4 and 5. 

Case 3 is a geometry similar to the C-141 fuselage 

immediately after the wing box. Figures 17, 18, and Table 

6 present the necessary data and results for minimum weight 
design using TSRR with MG = .05 in. The curve of W vs. C 

x 

is very flat. The result indicates that the absolute minimum 

weight using TSRR is at C =1.08. 
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using Most Efficient Stringer (TS or IAS, Cx = 1-C37) 
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Table 3. Case 1. Effect of Stringer Shapes Using RR(C =1) 

MG: = .02 in. *STFB for IAS 

Strin 
Type 

ger TS or IAS RS 

k s .6519 .3500 .2000 0 
C 
X 

1.213 1 .097 1.043 1 

w 755 703 706 755 
h .02210 .02203 .02203 .02210 

^x* 1 £x .02006 .02015 .02100 .03262 
t wy .02722 .02768 .01991 .02272 
d 
wx 

.32683 .44147 .42357 .44210 
br .21306 .15451 .08471 
d 
wy 
£ 
X 

2.54210 1 .65197 2.53302 2.10000 d 
wy 
£ 
X 

.85433 88068 .84115 .91985 
Jl 
V 

8.55882 10, 77778 9.38710 9.38710 
GB 1.0000 1.0000 1.0000 ; 1.0000 
PB .9217 .8969 .9569 .9017 

SB .8963 .9318 .8742 .9542 
STWB .1548 .2506 .2389 « C? £A C? -Cd 

STFB .5073* .2398* .0508* 
STFB .1916 .0600 0 
SY .4648 .4515 .4644 .4629 
STYC .4516 .4440 .4548 .4186 
RYT .1124 .1250 .1233 .1146 
m 20 15 18 18 
n 8 10 9 9 
m 
P 
n 
P 

1 1 1 1 m 
P 
n 
P 

38 33 37 36 

i 



Table 3. (continued) 
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MG = .02 in. *STFB for IS 

Stringer 
Type 

CS, ZS, or IS AS 

k 
s 

.5071 • drat „1 «a* \J .1000 .2518 .1536 

C 
— — 2 L 

.706 

800 

.787 .866 .706 .787 

w 
.706 

800 7 21 714 j 817 787 

h .02203 .02203 .02203 | .02203 .02203 
T t" 
wx * fx 

.02072 .02008 .02070 .02958 .03042 

t 
wy .02390 .02180 .02436 .02729 .02452 

j 

d .. 
wx .36537 .41583 .55317 .42816 • T" £i i? -C7 O 

£x .18528 .09256 .05532 ! .10781 .06604 

d 
wy 

2.64315 2.20263 1.54184 2.31276 2.31276 

£ 
X 

.917 03 .87810 .90051 « J L 1 u U .91985 

£ 
..y 

9.38710 9.38710 11.64000 8.81820 9.09375 

GB I'Toooo"""" TToooo" _ _ _ _ _ ~T7oo"oo"' ~~ "~T"."o6"6b" 
PB .9291 .9302 .8230 .9060 .9411 

SB .9301 .9247 .9188 .9315 .9466 

STWB .1287 .1996 .3360 .8821 .8570 

STFB .0991* 0* 0* 

STFB .3961 .1141 .0369 

SY .4184 .4507 .4314 .4125 .4205 

STYC .4080 .4418 .4258 .4018 .4107 

RYT .1058 .1208 .1243 .1028 .1082 

a 19 18 13 19 19 

n 9 9 11 8 9 

m 
P 

1 1 1 1 1 

n 
P 

37 37 32 39 38 



77 

Table 4. Case 1, Effect of Ring Shapes Using Most Efficient 
Stringer 

(TS or IAS, C =1.097) MG - .02 in. *STFB for IAS 
-A. 

?ypf TR °r IAR CR,ZR,IR AR 

k .3500 .6000 r 
C 1.097 1.193 
y 

.2000 

.798 

.1429 

.798 

W 705 721 

h .02203 .02203 

V ^ f x -02037 -02081 
t w y,t £ y .02105 .02664 

d .47026 .46066 
wx 

bfx -16459 .16123 
d 1.34359 1.14676 
wy 

b £ .47026 .68806 

I .88197 .88197 
X 

I 11.64000 11.64000 
-_Y_ 

727 

.02203 

.02127 

.02050 

.36469 

.12764 

2.10851 

.42170 

.84829 

8.81820 

727 

.02203 

.02127 

.02197 

.36469 

.12764 

2.40972 

.34435 

.84829 

8.81820 

GB 1.0000 1.0000 

PB .8782 .9132 

SB .9073 .9083 

STWB .29 75 .2730 

STFB .2632* .2387* 

STFB .0658 .0597 

SY .4348 .4388 

STYC .4326 .4316 

RYT .1260 .1217 

m 13 13 

n 11 10 

m 1 1 
P 

n 31 31 
P 

1.0000 

B %7 W W O 

.8994 

.1737 

.1390* 

.0348 

.4697 

.4579 

.1346 

19 

1 

38 

1.0000 

.9335 

.8994 

.1737 

.1390* 

.0348 

.4697 

.4579 

.1346 

19 

9 

1 

38 
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Table 5. Case 1. Effect of Ring Shapes Using Most Efficient 
CS, ZS, or IS (C - .866) 

x 

MG = .02 in. *STFB for IS 

S i n g TR or IAR 
Type 

LIKJ ZK | Lis. AR 

k .3500 .6000 
r 

C 1.097 1.193 
Y 

. 2000 

.798 

.1429 

.798 

W 711 716 

h .02203 .02203 

t ,t r .02027 .02012 
wx f x 
t v,t.. .02437 .02411 
wy' fy 

d .55317 .53409 
wx 

b £ x .05532 .05341 

d 1.24762 1.14676 
wy 

b~ .43667 .68806 
fy 

I .90051 .90051 
X 

I 12.12500 10.39286 
.y__ 

719 

.02203 

.02005 

.02526 

.55317 

.05532 

1.31782 

.26356 

.90051 

11.64000 

719 

.02203 

.02005 

.02708 

.55317 

.05532 

1.50607 

.21522 

.90051 

11.64000 

GB 1.0000 1.0000 

PB .9070 .7380 

SB .9389 .9561 

STWB .3541 .3389 

STFB .0097* .0093* 

STFB .0388 .0373 

SY .4351 .4431 

STYC .4292 .4357 

RYT .1246 .1227 

m 13 14 

n 11 11 

m 1 1 
P 

n 32 33 
P 

1.0000 

.8439 

.9440 

.3640 

.0100* 

.0398 

.4375 

.4306 

.1223 

13 

11 

1 

32 

1.0000 

.8439 

.9440 

.3640 

.0100* 

.0398 

.4375 

.4306 

.1223 

13 

11 

1 

32 
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Table 6. Case 3. Minimum Weight Design Using RR 

MG - .05 in. 

Stringer 
Type 

TS RS 

k s .650 .450 .300 0 

C 
x 

1.212 1.135 1.079 1 

W 484 478 473 486 

h .05000 .05000 .05000 .05000 

t t 
WX * f X 

.05018 .05052 .05258 .06050 

t 
wy 
d wx 

.05519 .06235 .05419 .05078 t 
wy 
d wx 

.60874 .51992 .70117 .60000 

bfx .39568 • w «J J J J .21035 

d 
wy 

I 
X 

1.75000 2.25000 1.75000 3.00000 d 
wy 

I 
X 

1.62249 1.53833 1.58397 1.54725 

I 
y 

11.11111 10.00000 12.50000 9.09091 

GB 1.0000 1.0000 1.0000 1.0000 

PB .7270 .8662 .7270 .88 21 

SB .9111 .8898 .8765 .9168 

STWB .1036 .0972 .1531 • O -nJ W .i 

STFB .0949 .0285 .0182 

SY .7448 .8091 .7517 .8240 

STYC .7326 .7896 .7408 .8013 

RYT . 2094 .2085 .2154 .2073 

m 4 5 4 6 

n 9 8 9 7 

m
v 

1 1 1 1 

n 
P 

26 30 25 31 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The important conclusions of the present research are 

1. The solution of the minimum weight design problem 

is not unique. This means that there are several combina

tions o£ the design variables for the same minimum weight. 

2. The present approach allows the designer to 

deviate from the minimum weight solution with minimum 

penalty in weight, in order to avoid interaction among 

failure modes and/or unrealistic design variables. 

3. Among all combinations of the rectangular, tee, 

zee, channel, I, angle, and inverted angle stiffening 

members, the circular cylindrical shell stiffened by tee 

stringers and rectangular rings is most efficient (least 

weight). The minimum weight configuration of Case 1 has tee 

stringers corresponding to C =1.09, that of Case 3, 

C - 1.08. 

4. The generated data can be used to design other 

circular cylindrical shells and loading whose nondimensional 

load parameter, N*, is about the same. If the data are 

stored, eventually all the possible cases of Z and N* will 

be covered, thus, there will be no need to generate additional 
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data but simply use the stored ones in "Phase 2." 

5. The curves of minimum W vs. h have wide flat 

portion. This implies that large variations in skin 

thickness (up to about 10%) yield design configurations with 

small difference in weight. Consequently, no exact Z is 

required for the minimum weight design. 

Recommendations 

In the aerospace application such as an airplane 

fuselage, the critical load case is a combined torsion with 

bending. Up to the present time there has been no reported 

work on the minimum weight design of stiffened cylindrical 

shells under torsion. Furthermore, several fuselage config

urations are not complete circular cylindrical shells but a 

combination of cylindrical panels. Thus, the approach and 

search technique in the present work can be extended to the 

following possible investigations in the future. 

1. Minimum weight design of stiffened cylindrical 

shells under torsion. 

2. Minimum weight design of stiffened cylindrical 

shells under combined torsion and axial compression. 

3. Minimum weight design of stiffened cylindrical 

panels under combined torsion and axial compression. 

In addition, the following comments and recommendations 

are pertinent for the minimum weight design of fuselages. 

The methodology developed herein is applicable to that part 
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o£ the fuselage which is subject to general instability 

failure. As a consequence, the resulting design has an 

overall bending stiffness, (EI)ef£/L, and torsional stiffness, 

(GJ)e££/L. These stiffnesses must be acceptable for the 

dynamic respond of the vehicle. To insure this one must 

perform an aeroelastic investigation and arrive at the 

acceptable stiffness requirements which can be incorporated 

in the design procedure (Phase 2) as additional geometric 

constraints. 

Finally, it is seen from the actual examples consid

ered, especially cases 1 and 3, that the weight contribution 

of the different elements is as follows: skin weight 601, 

stringer weight 301, and ring weight 10%. Note that this 

holds true for the load case under consideration, a uniform 

axial compression. This distribution of weight suggests 

that if further improvement is to be accomplished by 

radically new fuselage configurations, most of the attention 

is warranted in the design of the skin (layered composite 

skin) and stringers (layered composite straps attached on 

the flange of the T-stringers in the stringer direction, x). 

This suggestion does not exclude the possibility that the 

ultimate solution might lie in an all composite configuration 

or even in a sandwich construction configuration. 
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APPENDIX A 

PROPERTIES OF STIFFENER CROSS-SECTIONS 

Rectangular Stiffener 

The radius of gyration of a rectangular cross-section 

is 

. d a 
/IT 

Through nondimensionalization with respect to the radius 

gyration of the skin per unit width one obtains 

- d 
a - K 

The nondimensionalized stiffener flexural stiffness and 

eccentricity parameters are 

E I st st 
— _ c 
p AD 

- =
 T l 2 R e 

e
 T2 

where 
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u — — — — _ » - ~ j - — and. l J. °~ —"T^T — —T~;y 

12(l-vZ) stc i Z i Z 

These two quantities can be expressed as 

p - a
2
X (A1) 

2 /i -y^^ 1/2 

IT 
e = — . V ^ L (1+a) 

Other Types of Stiffeners 

With the assumption that t , t, << d , p" and e" of the 

tee, angle, channel, zee, I, and inverted angle cross-sections 

can be expressed as 

Pw
 B

 a X ( A 2 ) 

yy y yy 

2 n -yj2>y 1 / 2 

<£ ^ XX* 

I . IT ( 1 - V ) - ( 1 + c - j 

& r •% A \ J- / Li 

ey - ^ v _ J ( i + C y a y ) 

The expressions for a and C, for each type of stiffener 

cross-section, are given in Table Al. 



Table Al. Properties of Stiffener Cross-Sections 

Section Area, A a C 

Rectangular td r- 1.0 

d̂  (l+4c£k)
1/2 l+2c£k 

T e e o
L g i r

r t e d
 w

i +
= f « ^ i*cfk ( 1 + 4 C f l o i /2 

d l + 6 c f k 1 / 7 l + 2c,.k 1 / 9 

C h a n n e l , I , or Z d w t w ( l + 2 c £ k ) ( -£) ij^
112 ( jT^ 7 

d ( l + 4 c £ k ) 1 / 2 1 
Angle d t (1 + c Jc) (-S-) —= ^ 77™ , . 1 / 2 

& w w^ f J
 ^ h

J l + c £ k ( l + 4 c £ k ) ' 

oo 
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APPENDIX B 

EXAMPLES OF DESIGN TABLES 

Table Bl. Design Table for TSRR. c, = 1 
f x 

v C C k k N* Z 
x y s r 8 

.33 1.097 1 .35 0 1.233x10 38000 

or a 
x y 

24.0 60.0 1.9 W O .61152 .22780 13 10.160 

25*0 60.0 1.91*633 .66046 • 18282 12 10.321 

26,0 60.0 : 1.8904.0 .61891 .17453 12 10.410 

2?.0 60.0 1.88881 .63906 .15295 11 10.399 
28.0 60.0 1.85360 .61550 .14514 11 ^0.509 

24.0 65.0 I.90379 .62564 .17973 13 10.226 

25.0 65.0 1.90625 .65737 ,15019 12 10.363 

26.0 65«0 1.74052 .45464 .20524 14 10.179 

27.0 65.0 1.81598 .59264 .13448 12 10.580 

28.0 65.0 I.87208 .66365 .11346 11 10.618 

23.0 70.0 s.87705 .59838 .18316 14 10.073 

24.0 70.0 1.78124 .44090 .25526 16 .9.764 

25,0 70.0 1 !.82466 .59716 .13770 13 10.442 

26.0 70.0 l !.85996 • 65222 .11408 12 10.567 

27.0 70.0 I.85719 .66020 .10364 11 10.498 

23*0 75.0 : 1.81165 .55163 .17163 15 1 'J»u 4c3 

24.0 75.0 1 I.83524 .61741 .12687 \3 10.300 

25.0 75.0 1 I.84977 .65017 .10706 12 10.410 

26.0 75.0 1 i.85194 .66368 .09548 12 10.649 

27.0 75.0 1 1.81369 .63437 .09070 11 10.509 

23.0 8o.o 1 I.76194 .41452 .26443 \7 9.259 

23.5 8o.o i 1.74834 .38506 .28179 17 9.142 

2k.0 8o.o 1 1.83963 .64451 .10369 13 10.398 

2^.0 8o.o 1 •85234 .66974 .08978 12 10.512 
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a 
X 

o? 
y 

w A 
XX 

xyy 
m 3 

26.0 80.0 1.80983 .63650 .08513 12 10.608 

27.0 80.0 1.78625 .62135 .07927 n 10.509 

22.0 85.0 1.77913 .44067 .25361 17 9.075 

23.0 85.0 1.7211 if .40362 .23899 17 9.142 

24.0 85.0 1.67116 .37017 .22790 17 9.227 

25.0 85.0 1*74356 •57287 .08972 13 10.433 

19.0 90.0 1.97453 .57544 .29296 18 8.712 

21.0 90.0 1.84246 .44224 .30848 18 8.621 

22.0 90.0 1.75762 .41513 .25998 18 8.864 

23.0 90.0 1.70805 .37498 •25597 18 8.892 

20.0 95.0 i.89785 .46853 •33155 19 8.402 

21.0 95.0 1.82680 .42210 .31466 19 8.447 

22.0 95.0 1.73928 .39508 .26369 18 8.621 

23.0 95.0 1.67527 .36768 .23406 18 8.774 

24.0 95.0 1.65972 .32173 »2b6l5 18 8.606 

20.0 100.0 1.85909 .46078 .30476 19 8.292 

21.0 100.0 ; I.77330 .42375 .26534 19 8.477 

22.0 100.0 1 1.69228 .39966 .21723 18 8.683 

23.0 100.0 1 1.64793 .35965 .21772 18 8.692 

22*. 0 100.0 1 1.60325 .33005 .20751 18 8.732 

19.0 105.0 1 1,86124 .54373 .22372 19 8.542 

20,0 105.0 1 I.83630 .44740 .29783 19 8.129 

21.0 105.0 1 I.74771 .41467 .25162 19 8.351 

22.0 105.0 1 1.70008 .37173 .25211 19 8.337 

23.0 105.0 1 1.64194 .34250 .22953 19 0 • 44 / 

18.0 110.0 1 i.95648 •56285 .28947 20 8.053 

19.0 110.0 1 i.83767 .60903 .13742 18 9.081 

19-5 110.0 1 .87682 .45181 •32952 20 7.881 

20.0 110.0 1 .81658 .43595 .29171 20 8.021 

21.0 110.0 1 .72367 .40661 .23826 19 G 1 u u Q 

&LC-* # \J 110.0 1 .66617 .37016 .22346 19 8.306 

19*5 113.0 1 .85600 .44919 .31359 20 7.835 

18.0 115.0 1 .92815 .55422 • 27286 20 7.952 



a 
x 3 

19.0 115.0 1.86159 .48149 .28627 20 7.831 

20.0 115.0 1.81622 .42099 .30635 20 7.801 

21.0 115-0 I.67899 .41605 .18901 19 8.381 

£*> &L 9 v^ 115.0 1.63063 »37317 .18879 19 8.367 

17.0 120.0 I.98484 .64104 .23654 20 7.984 

19,0 120.0 L84158 .47248 .27746 20 7.744 

19.5 120.0 !.88946 .42043 .37217 21 7.471 

20.0 120.0 1.8078^ .41018 .30969 20 7.620 

21,0 120.0 1.74734 .36990 .29606 20 7.643 

18.0 125.0 1.90706 .52103 .28726 20 7.552 

19.0 125.0 1*88537 .44366 .34529 21 7*389 

20.0 125.0 1.76413 .41178 .26914 20 7.620 

21.0 125.0 I.68650 .37768 .23406 20 7.770 

17.0 130.0 1.95655 .60088 .25151 20 7.573 

18.0 130.0 1.85125 .53581 « £L£L£L 1 *J 20 7.723 

19.0 130.0 1.83809 .44550 .30133 21 7.389 

20.0 130.0 ' 1.79082. .39388 .31082 21 7.350 
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Table B2. Design Table for CSTR. c. = c^ = 1 
& -f-Y 1-V 

v C C k k N Z 
x y s r 

.33 .866 1.193 .10 .60 1.233xl68 38000 

\ 
5C5C 

30.0 50.0 1.90513 .59771 .20885 12 10.281 

3! .0- 50.0 1,90422 .62647 .17928 12 10.538 

32.0 50.0 1.87300 .60972 .16821 11 \Q.k^5 

33.0 50.0 1.85005 .59874 .15874 11 10.508 

34.0 50.0 1.83456 .59573 .14797 11 10.613 

35.0 50.0 1.86596 .64016 .13150 10 10.556 

29.0 55.0 I.88922 .61726 .17532 13 10.409 

30.0 55.0 1.87309 .62199 .15602 12 10.396 

31.0 55.0 1.77837 .51909 .17455 13 10.409 

32.0 55 -.0 1.78987 .55854 .14532 12 10.538 

33.0 55.0 ' 1.87465 .66472 .11469 11 10.743 

34.0 55.0 1.88157 .67878 .10679 10 10.556 

27.0 60.0 1.91563 .6485? .16735 14 10.291 

28.0 60.0 I.84324 .57923 .11ZZZ 14 10.240 

29.0 60.0 1.77795 .51061 .18263 14 10.157 

30.0 60.0 1.85539 .64045 .12178 12 10.511 

31.0 60.0 1.85070 •6482O .10986 1! 10.463 

32,0 60.0 1 1.79153 .59576 .10957 1 1 \ 10.508 

33.0 60.0 1 1.83014 .64359 .09615 11 10.743 

26*0 65.0 ' 1.91325 .45849 .35531 17 9.129 

27.0 65.0 1 1.82380 .44671 .28738 16 9.336 

28«0 65.0 1 1.82820 .38591 .35210 17 9.129 

29.0 65.0 1 1.71858 .40334 .26399 16 9.602 

30,0 65.0 1 1.85173 .6618? .09711 12 1 10.626 

31.0 65.0 1 I.82340 .64219 .09154 11 1 10.508 



*7 &t 

X <V w 
XX 

X 
yy 

m 3 

32.0 65.0 1.81806 .64340 .08557 11 10.613 
25.0 70.0 1.90404 .48264 .32295 17 8.966 

26.0 70.0 1.83872 .45060 .29678 17 9.067 
2?.0 70.0 1.75341 .46137 .21000 16 9*507 
28.0 70.0 1.74030 .38820 .27148 17 9.191 

29.0 70.0 1.68192 .37298 .23468 16 9.336 

30.0 70.0 1.63870 .35766 .21149 16 9.507 

24.0 75.0 1.89106 .52820 .26582 17 8.966 

25.0 75.0 1.86068 .46116 .30579 18 8.829 

26.0 7^.0 U7S873 .43516 .26768 17 8.942 

27.0 75.0 1.74661 .5937S .26652 17 8.942 

28.0 75.0 1.69585 .37584 .24423 17 9.067 

23.0 80.0 1.94542 .53186 .31060 18 8.591 
24.0 80.0 1.87721 .48690 .29479 18 8.632 

25.0 80.0 1.83427 .43893 .30450 18 8.591 

26.0 80.0 1.78095 .40516 .29074 18 8.657 

28.0 80.0 1.68723 .3^3 .2622^ 18 8.763 

30.0 80.0 1.56664 .33B28 .16665 17 9.392 

21.0 85.0 2.08090 .61731 .34589 19 8.297 
22.0 85.0 1.93564 .62527 .20848 18 8.911 
23.0 85.0 1.89143 .52400 .27035 18 8.525 
24.0 85.0 1.86954 .45779 .31706 19 8.367 
25.0 85.0 1.79285 .42739 .27913 18 8.459 
26.0 85.0 1.72305 .40498 .23933 18 8.657 
20.0 90.0 2.10084 .69690 .28406 19 8.297 
21.0 90.0 2.01960 .61343 .293^3 19 8.254 
22.0 90.0 1.97223 .53609 .33027 19 8.115 
23.0 90.0 1.83696 .60767 .13814 17 9.268 r 

24.0 90.0 1.83396 .44723 .29591 19 8.228 

25.0 90.0 1.77124 .41326 .27400 19 8.297 
26.0 90.0 1.71500 .38350 .25364 19 8.410 

20.0 95.0 2.08740 .65612 .31286 19 7.976 
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a 
X 

a 
y 

w Xxx 
X 
yy 

m (B 

21.0 95.0 1.96673 .61255 .24891 19 8.254 

22.0 95.0 1.91690 .53313 .28392 19 8.072 

23.0 95.0 1.89809 .46553 .33475 20 7.923 

24.0 95.0 1.80115 .k3?S7 .27603 19 8.115 

25.0 95.0 1.76723 .39579 .28789 19 8.046 

20.0 100.0 2.07561 .63070 .32777 20 7.776 

21.0 100.0 1.93052 .60346 .22574 19 8.185 

22.0 100.0 1.83895 .60429 .14330 18 8.829 

23.0 100.0 1.88094 .45390 .33111 20 7.731 

24.0 100.0 1.77398 .42828 .26141 19 7.976 

20.0 105.0 2.04716 .61722 .31590 20 7.658 

21.0 105.0 1.88911 .61529 .17699 19 8.340 

22*0 105.0 1.84611 ^777 .23620 20 7.968 

23 .0 105.0 1.87979 .43983 .34416 20 7.540 

24.0 105.0 U75702 .41826 .2%32 20 7.849 

20.0 110.0 2.00802 .61114 .28711 20 7*585 

21.0 110.0 1.95505 .53658 .31446 20 7.466 

22.0 110.0 1.89435 .48179 .31516 20 7.466 

23.0 110.0 1.84196 .k3^B .31469 20 7.466 

24.0 110.0 1.76629 .40308 .27976 20 7^B5 

26.0 110.0 1,66689 .34285 .25141 20 7.658 

28.0 110.0 1.50869 .33266 .12064 ^B 8.632 

18.0 115.0 2.21857 .74910 ^3%77 2 ! 7.BB0 

19.0 115.0 2.10990 .65945 .3Z95S 2\ 7.298 

20.0 115.0 2.00616 .58988 .30671 21 7.357 

2 K 0 115.0 1.91688 .53258 .28445 20 7.421 

22.0 115,0 1.81540 .49426 .23234 20 7.613 

23.0 115.0 1.81174 .43073 .29261 20 7.348 

2^.0 115.0 1.70742 .40832 .22206 20 7.658 

18.0 120.0 2.22365 .72462 .36577 21 7.050 

19.0 120.0 2.05833 .66094 .Z625& Z\ 7.298 
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a 
X V w X 

XX yy 
m 3 

20.0 120.0 1.97197 .58592 .28020 21 7.298 

21.0 120.0 1.89371 .52562 .27113 21 7.328 

22.0 120.0 i.8*7*5 .if 6871 .286*6 21 7.251 
23.0 120.0 1.78326 .42691 .27106 21 7.298 
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APPENDIX C 

DESIGN EXAMPLES 

The following two design examples illustrate the 

design of Casel using different stringers and rings. The 

given quantities are: 

R = 95.5 in., L = 291 in., N = 800 lbs/in. 

JLJ "— JD 

X 
psk = px : 

v - .33, 

E = 10.5 x 10u psi 
y 
p ' = .101 lbs/in3 

y cr - 50,000 psi 
3— 

N* = ™^2R__N_^ = 1.233 x 10 

Design for TSRR 

Cr- = k ~ < 

fy r 
C = 1.097 
x MG (mini mum g au g e) = .02 |n. 

1, k .35 
fx ~ ' "s 

All design steps are listed in Chapter III 

Z = 38 000 

h kJJc|™J-__. » .02203 

a 23, a 75 

From Table Bl, one has 
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X - .55163, X"" = .17163; W = 1.81165 
xx yy 

m =15 ,3 = 10.048 

Calculate the stresses in the skin, stringers, and 

rings using equation (9) 

a , = -22576 p s i 
Y Y Q k" * 

a . = -22199 p s i 
x x s t r 

a -, - -1203 p s i 
yysk

 r 

a = 6252 p s i 
yy r F 

From S t e p s 3 and 4 , 

( l + c . k )ha 
d - _ ™ £ 2 L _ s — * = .44147 i n . 

w x ( l + 4 c , k ) 1 / Z 
v fx s^ 

d - ha 
wy y 

= 1.65197 i n . 

_wx 
£ 

EX h 
xx 
2-

= . 0 2 2 8 8 

x E x ( l - v " ) ( l + c ^ k j d • r K J U 

f X S ^ WX 

t EX h 
JtQL « - — H . 

~ - - TT> /* 1 - . & 

. 0 0 2 5 7 

y E f l - O d 
y wy 

Then 

£ < h 
x 

11 E 

3 ( l - v z ) | a ,1 
*• J I xxsk 

o r £ < .91206 
x 
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:) 

Select the stringer spacing such that one has a 

whole number of stringers and yet stays away from skin 

hue k1in g * Choose 

&+ = .88068 in. x 

Therefore 

t rr = .02015 in 
wx 

t
fx = ° 0 2 0 1 5 in 

br = .15451 in 

*fy " bfy " ° 

From Step 7, one finds that any ring spacing, I , 
y 

will satisfy the constraint 

o\ -r | > \o . j . 
JCJSS.X X A S t 

cr 

Thus, the determination of lr must be based on panel 
y 

InstaBility only. Using the computer program in Appendix E 

one has 

JU * 10.77778 in 

N x l m - 892 lbs/in. 
x x pcf 
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m - 1, n =33 
P ' P 

Thus, 

V • -
0 2 7 6 8 i n

-

Next, calculate the local buckling stresses using 

appropriate equations in Table 1. 

a 
2 

TT E f IK 2 
cr 3(l-v ) x 

j ~ (—4" = 24228 psi. 

axxsw = T~TZ ^ 2 - 8 8 6 0 3 Psi« 
cr 3(l-v ) wx 

axxsf = —
2L

~T" %—rf^~) 2 [ C-%-^) 2 + .425] 
x x scr 12(1-V) Dfx wx ^ y 

~ 370,261 psi. 

Finally, compute the ratios of actual load to failure load, 

which clearly demonstrate the desired separation o£ failure 

modes. 

PB - N/N = .8969 
*cr 
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SB = a Jo \ = .9318 xxsk' xxsk 
c r 

STWB - a ./a - .2505 
x x s t ' x x s w r r 

STFB = a Ja j . - .0600 x x s t ' x x s f ,. c r 

SY = cr v , / o = .4515 
XXSK O 

S T Y G = ^xxst^o = ' 4 4 4 ° 

RYT - o„/on = .1250 
yyr o 

W = 2-FTRLhp kW = 703 .4 l b . 

Other designs, with the same weight, which satisfy all 

constraints (including geometric constraints) are 

(1) I - 10.03448 in 

t • .02579 in. wy 

N x - 1028 lbs/in 
pcr 

m
P

 = 1
>

 n
P -

 3 4 

PB = .7782 
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(2) I = 9.70 in. 

t r - .02493 
wy 

Jtf = 1100 lbs/in 
x x pcr 

m = 1, n = 3 4 
P * P 

PB = .7273 

Design for CSTR 

C = .866 x 

C = 1.193 
y 

MG - .02 in. 

c £ x « 1, ks - .10 

Cr - 1, k = .60 ±y ' r 

All design steps are referred to those in Chapter III 

Z - 38000 
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h . L i l ^ _ 2 _ — . .02203 in 

ax * 28, a = 60 

From Table B2, one has 

X
xx = ' 5 7 9 2 3 

A r = .17222 
yy 

W = 1.84328 

m =14 

6 = 10.240 

Calculate the stresses in the skin, stringers, and rings 

using equation (9). 

Scxsk • " 2 2 1 5 7 Psi 

avvsk = " 1 1 8 4 Psi 

axxst = " 2 1 7 8 6 Psi 



a - 6133 psi 
yyr l 

Steps 3 and 4 give 

A = (__J^SLJ1>|1/2 h _ 53409 in 

fx s 

(1+Cr k )ha 
d = ___2X-J_X, = 1.14676 in. 

W y ( l + 4 c £ y k r ) ^ 2 

Then 

t El h 
wx _ xx _____ 

*x " i ^
3
T a + 2 c £ x k s ) d W x 

= . 0 2 2 3 4 

_J1Z 
EA h 
_XZ_„ . 0 0 2 3 2 

y E ( l - 0 ( l + c- k )d 
/ y V. ^ V £y j.-- ^y 

it < h 
X 

2 
TT^E 

3 ^ )Kxsk 

or 

Av < .92373 



103 

Select the stringer spacing such that one has a 

whole number of stringers and yet stays away from skin 

buckling. Choose 

therefore 

£ = .90051 in 
X 

t - .02012 in. 
WJL 

t f x = .02012 in. 

b f = .05341 in. 

From Step 7, one finds that any ring spacing will 

satisfy the constraint 

.A. JC 3 X _ > a 
cr 

xxs 11 ' 

Therefore £ must be selected on the basis of panel 

instability only. Using the computer program in Appendix E 

one has 

l =10.39286 in., N = 1084 lbs/in. 
y x x P c r 
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ni = 1, n = 33 
P P 

Thus, 

t r = .02411 in. wy 

tr = .02411 in. 
fy 

b r = .68806 in. fy 

Next, calculate the local buckling stresses using 

appropriate equations in Table 1. 

xxsk Y~ ^JT~) ~ 23173 psi 
cr 3(l-v ) x 

TT E t 0 

• = _ * ( — w x ) z = 64287 psi 
xxsw „ - ri ^2-,

 vd , -2tr ̂  y 

cr 3(l-v ) wx fx 

• » _ J L _ (V^r [(-4^) + .425] 
XX SI i o /* i .. ̂  \ D /• . ~ cr 1 2 ( 1 - 0 u£x y 

584,032 psi 

Finally, the ratios o£ actual to failure load are 
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PB = N/N _ = .7380 xxpcr 

SB = o v/o T - .9561 xxsk' xxsk ^ cr 

STWB = a .Jo = .3389 
xxst xxsw 

cr 

STFB = o Jo r = .0373 xxst xxsf 
cr 

SY = a Jo = .4431 xxsk o 

STYC = o .Jo = .4357 xxst o 

RYT = a /a = .1227 yyr o 

W = 2irRLhp , W = 715.7 l b . 
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APPENDIX D 

GUIDELINE FOR DATA GENERATION 

In several design cases the approximate value of the 

skin thickness can be estimated, therefore the interval of Z, 

Z = L2(l-v2)1/2 

"RF 

for which the data must be generated, is greatly reduced. 

But without priori knowledge of the skin thickness the 

following procedure to establish the range of Z values is 

recommended. 

It is well-known that the skin thickness of an 

unstiffened circular cylindrical shell subject to a given 

axial compressive load is given by 

h «/ J5-hu 7 75TE 

Since the weight of the unstiffened geometry is greater than 

that of a stringer- and ring-stiffened geometry, h will 

provide a lower bound for the value of Z. It may also be 

anticipated that the optimum stiffened geometry has a skin 

thickness not less than 15 per cent of h . This may be 
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considered as a lower bound for h or an upper bound for 

the value of Z. Thus, if one defines Z by 

* = L2(l-v2)1/2 
zu "~RH u 

then the range of Z values, in which the optimum configu

ration will lie, is 

Z < Z < 6Z u — • — u 

In the case of uniform axial compression, from 

designing experience, one generally expects the optimum 

configuration to have both rings and stringers with rings 

being deeper than stringers to strengthen the local stringer 

buckling. Furthermore, when stringers are deeper than rings 

and in the region <* > oT , the design dimensions (stringer 
x y 

and ring thickness, ring spacing, etc.) become too small to 

accept. Also from thin ring theory one must have 

approximately 

~ , R 

°V - im -

Hence, the region for which the data must be generated, for 

each Z, is where 
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- - , - R 
a < a and a „ < T?rr» 

x — • y y 20h 

Now the question is: What value of Z in (Z , 6Z ) interval 

should be tried first? The following procedure is recommended 

1. Divide Z into 6 intervals: Z , 2Z ,..., 6Z . 
U* U' U 

2. Obtain data at Z = 4Z and design the stiffened 
u 

shell according to design procedure outlined in Chapter III, 

such that the resulting configuration has the lowest weight 

with all constraints being satisfied. Call this weight W.. 

3. Repeat Step 2 with Z - 5Z and obtain the cylinder 

weight W-. 
4. If W4 < W5, one repeats Step 2 with Z = 3Zu< If 

W4 > W5> o n e r eP e a t s steP 2 w i t n z = 6Z
U-

 If w4 z. ws t h e n 

the minimum weight configuration is between 4Z and 5Z . 

5. Plot W vs. h. If necessary, Step 2 is repeated 

with Z - 2Z . 

In this systematic way one can eventually locate the 

thickness of the skin for minimum weight by generating data 

of not more than four values of Z. 
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APPENDIX E 

COMPUTER PROGRAMS 

Program for the Development of Design Charts and Tables 

The structure of this program consists of a main 

program and five subprograms. The purpose of each program 

is as follows. 

Main Program is the search method of Nelder and Mead. 

SUBROUTINE START sets up an initial simplex from a 

given starting point. 

SUBROUTINE SUMR contains nondimensional composite 

weight function, W*. 

SUBROUTINE KXX is the search method of Golden Section 

FUNCTION F(Z) is the K expression with m as a 
XiC 

continuous variable. 

FUNCTION G(Z) is the Y expression with m as an 
xx 

integer. 

Descriptions of Inputs and Outputs 
• * - . - i n i - * • • • • - ' I , . i l l • 

The symbols of the computer listings, with their 

corresponding representations, necessary to operate the 

Optimization Program are: 

ALP = N* 

ALX = a . 
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ALY = a 

BET = $ 

CX = C 

CY = C 

CFX = c fx 

CFY = c fy 

DIFER = Standard deviation of the W* 

of the simplex to determine 

convergence. 

FCX - k s 

FCY = k 

GZ = K 
xx cr 

II = Number of iterations 

M = m 
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PO = v 

SUM (IN) = W* 

SUML ~ W* for minimum weight 

WP = f 

XI(K0UNT,1) = Xxx 

XI(K0UNT,2) = X 

zzz = z 

To use the program, Lines 34 through 42 in the main 

program must be modified according to the type of stiffening 

member, load parameter, and curvature parameter. The data 

cards, to be read in, are a and ot . Each pair of ~a and a" > » . . x y v
. x y 

is punched on the same card with the Format (2F10.5) of 

Line 51. There can be any number of data cards. The 

complete program listings are shown on the next page. 

Panel Buckling Program 

The computer program for panel buckling analysis 

consists of a main program and two subprograms. 

Main Program is the search method of Golden Section. 



1* C 
2* C 
3* C 
4* C 
5* c 
6* c 
/ * c 
6* c 
9* c 

10* c 
11* c 
12* c 
13* c 
m* c 
15* c 
16* c 
17* c 
18* c 
19* c 
20* c 
21* c 
22* c 
23* c 
2*** c 
25* 
26* 
27* 
28* 
29* 
30* 
w l * i 

32* 
33* 
34* 

MINIMIZATION OF THE WEIGHT OF THE STIFFENED SHELL BY FLEXIBLE 
POLYHEDRON METHOD OF NELDER AND MEAD, 
ALLOWANCE HAS BEEN MADE FOR A 10-DXMENSXONAL PROBLEM. 
NX IS THE NUMBER OF INDEPENDENT VARIABLES, 
STEP IS THE INITIAL STEP SIZE, 
X(I) IS THE ARRAY OF INITIAL GUESSES* 
XCl) = LAMBDA XX BAR, 
XC2) = LAMBDA YY BAR. 
10**X(3) = LAGRANGE MULTIPLIER* 
ZZZ = CURVATURE PARAMETER, 
Z = BETA BAR* ARGUMENT IN THE KXX EXPRESSION. 
M OR AM = NUMBER OF AXIAL WAVES, 
ALP = APPLIED LOAD PARAMETER, 
SUM(IN) = COMPOSITE WEIGHT FUNCTION, 
Gz = KXXCR, 
WP = WEIGHT PARAMETER, 
PO = POISSON RATIO 
CFX = STRINGER THICKNESS RATIO, 
CFY = RING THICKNESS RATIO. 
FCX = KS = STRINGER FLANGE WIDTH RATIO, 
FCY = KR = RING FLANGE WIDTH RATIO. 

FOR PROPER PRINT OUT FORMAT STATEMENT 2002 AND 101 MUST BE 
REVISED ACCORDINGLY. 
DIMENSION XM10»10>»X(10)»SUMC10> 
COMMON/S/XlrNx»STEP»KlrSUMtIN 
COMy»ON/SS/ALX,ALY»CX'CY>PO,XfZZZ 
COMMON/EE/ZtAM»GZ 
COMViON/SR/ALP 
WRITE(6#2005) 

2 Q O 5 FORMAT«/ /10XP'GENERAL INSTABILITY OPTlMlZATION-CSCRt//) 
NX = 2 
STEP = , 1 
PO = 0 .33 



Z2Z = 38000. 
ALP = 1.233E-8 
CFX = 1.0 
CFY s 1.0 
FCX = .1 
FCY = ,2 
Cx = SORT*(ltO+2.0*CFx*FCX)/(1.0*6.0*CFX*FCX)) 
CY ,s SQRT( {1.0+2.0*CFY*FCY)/C1.0+6.0*CFY*FCY) ) 
WRITE (Sail) 

111 'FORMAT (YS&M-NU9 *5X# 'CX1 »5Xr •CY
,-»7X»tZt f 6Xt * CFX* 9HX$* CFY» t **X* fKSf # 5 

lX f«KR*> 
WRITE ( 6 p H 3 l P0#CX>CY,ZZ2,CPXfCFY,FCX,FCYtALP 

113 FORMAT ( 6 X f F 5 , 3 i F 6 . 3 « F 7 . 3 t 3 X * F 8 . 2 # < * F 7 t 4 * , E i 5 . 6 / / J 
WRITE <6#2Q02) 

2002 FORMAT <6X»•ALX•*<*X>•ALY*?3X>•WPf•IQXYtKXXCR*?5X?fX(1)•r6Xt»XC2)•t 
15X» tMt^xt'BETAtfSXr^PSTARf ,tfX#'DlFFER»#5Xf •lit/) 

100 READ (5fll0»END=999) A L X ' A L Y 

110 FORMAT (2F10.5) 
GUESS STARTING VALUES OF X(l) AN» X(2)f 

X(l) =.60 
X(2) = .25 
X(3J = 10. 

ALFA = 1 . 0 
BETA = 0 . 5 
SAMA = 2 . 0 

DIFER = o. 
XNX = NX 
IN = 1 
CALL SUMR 
Kl = NX+1 

K3 = NX+3 
Kif = NX+*4 



m* 
70* 
71* 
72* 
73* 
7<** 
75* 
f fjj 3p 

77* 
70* 
79* 
80* 
Si* 
82* 
83* 
8f* 
85* 
86* 
87* 
88* 
89* 
90* 
91* 
92* 
93* 
9tf* 
95* 
96* 
97* 
96* 
99* 

lUO* 
101* 
102* 
103* 

63 

aa 

&G 

8 

CALL 
00 3 
DO t* 
X(*J) 
IN = 
CALL 3 CONTINUE 

START 

J = ItNX 
= XIiIt J) 
I 
SUMR 

II = 0 
H = IH1 
IF (IULT.61) 
GO TO 888 

GO TO SO 

10 

SELECT LARGEST VALUE OF SUM CD IN SIMPLEX 
SUMH = SUMID 
INDEX = i 
DO 7 1 = 2#K1 
lF(5UMCl)tLE,SUMH) GO TO 7 
SUMM = SUM(I) 
INDEX = i 
CONTINUE 
SELECT MINIMUM VALUE OF SUM(I) I* SIMPLEX 
SUML = SUM(l) 
KOUNT = 1 
DO 8 I = 2»K1 
lF(sUML.LEtSUM(D) GO TO 8 
5UML = SUM(I) 
KOUNT = I 
CONTINUE 
FIND CENTROID OF POINTS WITH I DIFFERENT THAN INDEX 
DO 9 J = 1»NX 
SUM? = 0, 
00 10 I = JUKI 
SUM2 r SUM24-XlCI»J) 
Xl(K?fJ? = lt/XNX*(SUM2-Xl(INDEX'J>) 



M * ••••• C FIND REFLECTION OF HIGH P§fNf TH**OU0H CENTROIQ 
05* "l\l\0'w) ™* ' 1 jTwUr S I * * * v^fiiw} <*pl|B,r ww Ĵ  i % J NDt ]>% 9 $j s 

06* IF(XKK3»J).LT.0. )Xl(K3iJ) = 0. 
07* 9 X(J) = XlCK3*J) 
08* IN = K3 
09* CALL SUMR 
10* IF«SUM(K3>«LT.SUML) So T© il 
11* C SELECT SECOND LARGEST VALUE IN SIMPLEX 
12* IF(INDEX.EQ.I) GO TO 38 
13*". SUMS = SUMQ) 
l*t* SO TO 39 
15* 30 SUMS = SUMC2) 
16* 39 DO 12 I = ltKl 
17* IF((INDEX-D»EQ,0) GO TO %2 
Ja» © ^ IF(SUMCI)tLE.SUMSJ GO TO 12 
19* SUMS = SUM(I) 
20* 12 CONTINUE 
21* IF(sUM(K3>fGTfSUMS) GO TO i3 
22* GO TO 1** 
23* C FORM EXPANSION OF NEW MINIMUM IF REFLECTION HAS PRODUCED ONE MINI. 
a*** 11 00 15 J .= If NX 
25* Xl(K4>J) = (1-GAMA)*X1(K2»J)4-GAMA*X1(K3*J) 

26* lF(xlCK4f J) *LT»0t)XKK^»J) = 0* 
27* 15 X(vl) = XliKUtJ) 

28* IN = m 
29* CALL SUMR 
30* IF(sUM(K**)»LTfSUML) GO TO 16 
31* GO TO 1** 
32* 13 IF<SUM(K3)»GT.SUMH) GO TO i7 
33* DO 18 J = IfNX 
34* 18 XKlNOEXfJ) = Xl(K3fJ) 
35* 17 00 19 J r l»Nx 
36* Xl(K<+fJ) = 8ETA*Xl(lND£X'J) + <n-tseTA>*Xl(K2f J) 
37* IF(XKK4»J),LT,0.)X1(KU» J) = 0, 
38* 19 X(J) = Xl(K<l»J) 



m = m 
****LL 5>U"R 
lFCsUMH#6TtSUM<K«*U SO JO 16 
REDUCE SIMPLEX §Y HALF If REFLECTION HAPPENS To PRODUCE A LARGER 
VALUE THAN.THE MAXIMUM 
00 20 J = um 
00 20 I x ltKl 

2 0 XI (19 J) ss 0 * 5*(X1(I»d)+ XI(K OUNT f V)) 
00 29 I = l»Kl 
DO 30 d sitNX 

30 X C *J I ~ XI'ltd) 
IN = 1 
CALL SUMR 

29 CONTINUE 
GO TO 26 

16 00 21 J = l»Nx 
XKlNDEXt J) = X1(K<**J> 

21 X(J) = X1(INDEX#J? 
IN = INDEX 
CALL SUMR 
SO TO 26 

l4* DO 22 J = IrNX 
XlClNOEXtJ) = Xl(K3fJ) 

22 X(J) = xiCXNDEXiJ) 
IN = INDEX 
CALL SUMR 

26 DO P3 J = It NX 
23 X(J) = XlCK2»J) 

IN 5 K2 
CALL SUMR 
TO TERMINATE THE SEARCH, OfFER MUST BE LESS THAN EPslLON. 
OlFER = 0. 
DO 2^ I = ltKl 

2*4 OlFER =• DIFER+(SUM(I)/SUM(K2)-1.'**2 
DIFER = SQRT(l./(XNXn.Q>*DlFER) 



174** 
175* 
176* 
177* 

178* 
179* 
130* 
131* 
182* 
183* 

XFCDXFER,GE«09Q0001) SO TO m 
888 BET s Z*AM 

M = AM 
W s l.<f(Xl(KOUNT»l)«Xl(K0UM7»2))/(l»«P0*P0) 

x««TE (6,101) AU,ALY.WP.S2,(Xl(KOUNT,J,,J=l,Nx»t«,BET.SUML.DIFER 

101 FORMAT(.lXfF8»lrF7»l»FlQ95tFlO«Or2Flo95rX5rF8c3»x»X»Fi095rEl2.5»Z5) G0 JO 100 . *«-• •-" 
999 CONTINUE 

END-

1* 
2* 
3* 
(4* 

5* 
6* 
7* 
8* 
9* 

10* 
11* 
12* 
13* 
1*4-* 
15* 
16* 
17* 
18* 
19* 
20* 
21* 

SET UP THE INITIAL SIMPLEX FROM ONE STARTING POINT 
SU8ROUTINE START * 
DIMENSION Xl(10tl0)»XCl0)>sUM(l0>iA(l0,l0) 
COMMON/S/XI*NX»STEP»KI»SUM»IN 
COMMON/SS/ALXtALYfCXfCYtPO,XrZZZ 
VN = NX 
STEpl = STEP/(VN*SQRT(2.))*(SQRTCVN+lt)-fVN-lf) 
STEP2 r STEP/(VN*SQRT(2.))*(SQRTCVN4.1,)-1.) 
On 1 i - i.MY *' 00 1 J 
A(1»J) = 
00 2 I = 
DO 2 J = 
A(I,J) s 
L = I-i 
A<I,L> s 
CONTINUE 
DO 3 I : 
DO 3 J = 
XKlf J) 
RETURN 
END 

1»NX 
0, 
2rKl 
1»NX 
STEP2 

STEPl 

lfKl 
lfNX 

= X<J)+A(I*J5 

M 
M 
Ĵ 



1* 
2* 
3* 
« * * 

5* 
6* 
7* 
6* 
9* 
10* 
11* 
12* 
13* 

SUBROUTINE SUMR 
SUMR IS THE WEIGHT EXPRESSION, 
DIMENSION X1C10»10)»XC1Q)»SUMU0> 
COMMON/S/XlfNx»STEPrKl,sUMtIN 
COMMON/SS/ALX»ALY#CXtCY*PO,X,ZZZ 
COMMON/EE/Z»AMtS2 
COMMON/SR/ALP 
00 10 J=1»NX 

10 !F(xCJ)tLT.Of) X(J)=Ot 
CALL KXX 
SUMCIN) = 1VQ^CX(1)+X(2))/(l9-PO*PO)+lO«**X(3)*ABS(GZ/(ZZZ*ZZZ>-
1ALP*ZZZ) 
RETURN 
END 

1* 
2* 
3* 
<+* 
b* 
6* 
7* 
8* 
9* 

10* 
11* 
12* 
13* 
14* 
15* 
16* 
17* 
16* 

C 
C 
C 
C 
c 

SUBROUTINE KXX 
CALCULATE BETA BAR AND M FOR KXX^R FOR EACH MOVEMENT OF X(I) 
UNlQlMENSlONAL SEARCH BY GoLDEN SECTION METHOD USING FIBONACCI 
FRACTIONS* 
FIBONACCI FRACTION = Fl = 0,382 

DIMENSION XlClOO)tX2(100)»x3(100>'Yl(lOO)fY2(100)»DEL(100)fXC10) 
ltM(5>»GG(5)»ZlC5} 
C0MM0N/SS/ALXtALYtCXrCY»PO,X»ZZZ 
C0MN0N/CC/P»Q»R 
COMMON/DD/M*JJ 
COMMON/EE/ZrAMtGZ 
DATAXlCl}#X2(l>fX3«l)»Fl»EpS/,00'4,00»5«OOtO,38l966ollrOf01/ K — 1 
L = 0 

11 IF(F(X2(K))-F(X3(K))) 10»lo»20 
20 X3CK) = X3(K)4-0.2*X3CK) 

IFCX3CK).LT.15,> GO TO ll 
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19* L = L+l 
20* lFfL.LT.10) GO TO 11 
21* Xl(l) 2 0.00001 
dk± X2(l) s 0.8 
23* X3(D s 1,0 
24* IF(L.LT.ll) GO TO 11 
25* C 3ETA BAR CURVE IS TOO FLAT, SET A TRIAL M 
26* AM = lt0 
27* GO TO 8 
28* 10 QEL(K) s X3(K)-X1CK) 
29* 12 YKK) s Xl(K)+Fl*DEL(K) 
30* Y2CK) s x3<K)-Fl*DEL(K> 
31* IF(F(Yl«K))-P:(Y2fK))) 30»3l, »32 
32* 30 DEL(K-H) = Y2(K)-X1(K) 
33* X1CK+1) = XKK) 
34* X3CK+1) s Y2(K) 
35* K = K+l 
36* IF(ABSC«X3(K)-X1(K))/X3(K))( .LT.E^S) GO TO 
37* GO TO 12 
38* 31 DEL(K+1) s Y2CK)-X1(K) 
39* XKK + 1) = YKK) 
40* X3(K+1) = X3(K) 
«*i* K = K + l 
42* IF(ABS((X3CK)-X1CK))/X3CK))( .LT.EPS) GO TO 
43* GO TO 12 
44* 32 OELCK+1) = X3(K)-Y1(K) 
45* XKK + 1) = YKK) 
46* X3(K+1) = X3(K) 
47* K = K + l 
48* IF(ABS((X3(K>-X1(K))/X3(K))( ,LT,EPS) GO TO 
49* GO TO 12 
50* 40 Z = (Xl(K)*X3(K))/2, 
31* FX = F(2) 
52* AM = (G/P)**0f25 
<3J^f«P BE s Z*AM 
54* 8 JJ = 1 
55* IFCAM-1,0) 41*41*42 
56* 41 M(JJ) = 1 
57* GO TO 49 
58* 42 JJ s JJ+1 
59* M(JJ.) = AM 
60* GO TO 49 
61* <*3 J J s JJ4-1 
62* NCJJ) s M(JJ-1)*1 
63* GO TO 49 
64* 49 X K D s OtOl 
65* X2(l) a 4.5 
66* X3C1) = 5. 
67* K = 1 
68* L = 0 
69* 71 IF(GCX2(K))"-G(X3(K))) 72»7a »73 

= . 1 

40 

40 

40 



120 

70* 73 X3(K) = X3 (K )+0 .2 *X3 (K ) 
7 1 * I F ( X 3 ( K ) , L T , 1 5 C ) GO TO 71 
72* L s L + 1 
73* I F C U L T . 2 0 ) GO TO 71 
74 * WRITEC6»101) 
7 5 * 101 FORMAT </5X»»BETA BAR HAS BEEN LOST IN GZ 
76* STOP 
77* 72 OEL(K) = X3 (K ) -X1 (K ) 
78 * 74 Y K K ) = XKK)+F1*DEL(K) 
79* Y2(K) s X3(K) -F1*DEL(K) 
80 * l F ( S < n C K > ) - G ( Y 2 ( K ) ) > 75*76*77 
6 1 * 75 DEMK+1) = Y2CKJ-XKK) 
82 * XKK+1) » X K K ) 
83 * X3(.K+1) = Y2(K) 
84 * K = K+ l 
8 5 * l F ( A B S ( ( X 3 ( K ) - X l ( K ) ) / X 3 ( K ) ) t L T , ,E^S) GO TO 
86* GO TO 74 
8 7 * 76 DEMK+1) = Y2(K)-X1<K) 
8 6 * X K K H ) r Y K K ) 
89 * X3(K+1> = X3CK) 
9Q* K = K+ l 
9 1 * l F ( A B S ( C x 3 C K ) « X l ( K ) ) / X 3 ( K ) ) f L T , •EPS) GO TO 
9 2 * GO TO 74 
9 3 * 77 DEUK + 1) = X3 (K) -Y1 (K) 
94 * X l ( K H ) = Y K K ) 
95* X3(K+1) = X3(K) 
9 6 * K s K+ l 
97 * l F ( A B S ( ( X 3 ( K ) - X K K ) ) / X 3 ( K ) ) t L T , ,EPS) GO TO 
9 8 * GO TO 74 
9 9 * 78 Z l ( J J ) = ( X l ( K ) + X 3 ( K ) ) / 2 , 

100* GG(JJ) s G ( Z K J J ) ) 
1 0 1 * • I F C J J . E Q . l ) GO TO 51 
102* IFCJJ .EQ.3) GO TO 44 
103* GO TO 43 
101*.* i|i+ IF ( ( G G ( J J ) - G G ( J J - 1 ) ) ) 5 K 5 K 5 2 
105* 51 §Z s GG(JJ) 
106* Z = Z1CJJ) 
107* AM = M(JJ) 
108* GO TO 47 
109* 52 «Z = G G ( J J - l ) 
110* Z = Z K J J - i > 

i l l * AM = M ( J J - I ) 

xxz* 47 CONTINUE 
113* RETURN 
i i * f * END 

78 

78 

78 



1* 
2* 
3* 
£ 4 * 
5* 
6* 
7* 
b* 
. 9*... 
XQ* 
IX* 
1.2* 
13* 
14* 
15* 
16* 
17* 
18* 
19* 
20* 
21* 
C^ ̂  

23* 
24* 
25* 
26* 
27* 

F IS THE KXX EXPRESSION TRE-ATEO W AS CONTINUOUS VARIABLE, 

FUNCTION FCZ) 
DIMENSION X(iO) 
COMMON/SS/ALX * ALY# CX*• CY *PO,X *ZZZ 
COMMON/CC/P»Q*R 
RHOx = ALX*ALX*X(X) 
RHOy = ALY*ALY*X(2) 
EX •-= 3.14*3, r ltt*50RTC19~PO*pO> * ( 1 •••0*CX*ALX> / C 2 • 0*ZZZ) 
EY = 3 9 m * 3 # ' l 4 * 5 0 R T ( l « - P O * p O ) * ( l » 0 + C Y * A L Y ) / ( 2 « 0 * Z Z Z ) 
A = l t+RH0X+2.*Z*Z+(l»+RH0Y>*Z** l»' 
B = 1 2 , * z Z Z * Z Z Z / ( 3 . 1 * * * « * * C i . - P 0 * P 0 ) ) 
C = B* (EX*EX*XCl )4 -2>*EX*EX*X( l ) *CX t ^P04X(2 ) ) *Z*Z /U t «P0)4 - (EX*EX 

l * X « l ) * ( X . * X C 2 ) ) 4 . 2 , 0 * ( l * 0 * P o ) - # X ( l > * X ( 2 ) * E X « E Y / C l . - P O ) ' l - E Y * E Y * X ( 2 ) 
2 * ( l , b + X C l > ) ) * Z * * * * 2 . * E Y * E Y « X ( 2 ) * U , » P 0 + X ( X ) ) / C x , - P 0 ) * Z * * 6 * E Y * E Y * 
3 X ( 2 ) * Z * * 8 > 

0 = 2 . 0 * B * C P 0 * E X * X ( l ) - ( E X * x ( l ) * ( X t + x C 2 ) ) + E Y * X C 2 ) * U # * X C l ) ) ) * Z * Z - i -
1P0*EY*X(2>*Z**4> 

E = B * C ( l « 0 + X C i n * ( 1 . 0 + X C 2 ) ) - P O * P O ) 
FF = l t 0*X{ .X )4 .2 ,0 / (X . -PO- ) * ( (X t +X<l ) ) * (X« - l 'XC2) )«PO)*2*Z+CX t +XC2) ) 

1*Z**4 
P = A*C/FF 
Q = E/FF 
R = D/FF 
F = 2.Q*5®RT(P*Q)+R 

RETURN 
END 

K> 



i* FUNCTION G<Z> 

^* c 0 IS THE KXX EXPRESSION TREATED M As INTEGER. 
3* aiMENsiON XUQ)»M(5> 
^ * C0MMON/SS/AtXrALYfCX»CY>PO fXiZZZ 

S* COMMON/DO/MrJJ 
&* RHOx = ALX-*ALX*X(X) 
7* RHOY S ALY*ALY*X(2) 
8* Ex = 3.I^*3ti%*SQRT(it-PO*po)*(1.0-fCX*ALX)/C2*0*ZZZ) 
** ^Y = 3a%*3.1%*S®RTat-.PO*pO)*Cl.04CY*ALY>/C2.0*2ZZl 

*0* A s lf4.RHOX-f2t*Z*Z4(l,+RHOy)*z**^ 
*•** 8 = l2,*ZZZ*ZZ2/{3#i^**if*(it-P0*P0n 
*2* c = B*(EX*CX*X(1)*2«*EX«EX*X(1)*(1.-P0+X(2))*2«Z/<1 -P©**(EX*EX 
*?* J*X<l>*CX,+XC8))+2#o*(1.0+Po)*X(l»*X(2)*EX*EY/(lt-PO)*EY*EY*X(2) 
t r **(1.0+X(1))I*Z**4*2.«EY*EY*X{2)«C1.«PO*XC1))/Cl.-PO)*Z**64.EY*EY« 
i&* 3X(2)*Z**8> 
*** D = 2«0*8*(P0*EX*X(l)-<EX*xCl)«(l.*xC2>)*EY*X(2)«(l.*X(l)))*Z*Z+ 
i7* lP0*EY*X(2)*Z**<t) 
ie* ^ = B*( (1.0+X(1))*Qf 0+XC2) )-PO*PO) 
*9* / F = 1.0+X(l)+2,0/(l,-PO)*((l.+x«l))*(lt+X(2))-PO)«z*Z-Kl.+X(2)) 
20* 1*2**4* 
21* P = A+C/FF 
22* 0 = E/FF 
23* R = D/FF 
21** S = P*M(JJ)*M(JJ)+Q/(M(JJ)*M(JJi >*R 
2b* RETURN 
26* END 

to 
to 
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FUNCTION F(Z) is the K expression with m as a 
xxp 

continuous variable. 

FUNCTION G(Z) is the K expression with m as an 
xxp 

integer. 

Descriptions of Inputs and Outputs 

The symbols of the computer listings, with their 

corresponding representations, necessary to operate the 

program are: 

ALX = a x 

BET - 3 

CX - Cx 

CMW - n 

E « E 

GZ - 1 
xxp cr 

MM = m 

PO - v 
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PCR = N 
xxp cr 

Wl X 
XX 

W2 
y 

W3 R 

W4 

ZZZ 

To use the program the value of v in line 22 o£ the 

main program listings must be changed according to the 

material used in the design. The data card contains seven 

quantities, E, C , R, 01 , X , h, I , punched on one card 

according to the Format of line 24. There can be any number 

of data cards. The computer listings are as follows. 



1 * c 
2 * c 
3 * c 
4 * c 
5* c 
6 * c 
7* c 
• O * • c 
9* c 

10* c 

u* c 

12* c 
1 3 * c 
1*** c 
1 5 * c 
16* c 
17* 
18 * 
1 9 * 
2 0 * 
2 1 * 
2 2 * 
2 3 * 
2*** 
2 5 * 
2 6 * 
2 7 * 
2 8 * 
2 9 * 
3 0 * 
3 1 * 
3 2 * 
3 3 * 
3i** 
3 5 * 

PROGRAM FOR 'CHECK IN6 PANEL INSTABILITY, 
UNIDIMENSIONAL SEARCH BY ©OLDEN SECTION 
Pi = FIBONACCI FRACTION, * 
HZ s CURVATURE PARAMETER, 
CMW s NO, OF CIRCUMFERENTIAL WAVES. 
2 s BETA BAR* ARGUMENT IN THE FUNCTION 
PO c POISSON RATIO, 
M s NO, OF AXIAL WAVWS, 
ALX s ALPHA X BAR, 
PCR s CRITICAL LOAD, 
©Z = PANEL BUCKLING COEFFICIENT, 
Wl = LAMBDA X BAR, 
W2 s LY, 
W3 = RADIUS, 
W<f = SKIN THICKNESS, 
DIMENSION XI(100)»X2(100)tx3(100)rYl(100),Y2(l00>iDEL(100) 
l'M(5)»GG(5)»Zl(5) * 
COMM0N/KXXP/ALXrCXfPOfZZZ»wl,W2fW3,w^ 
COMMON/FFF/P#Q 
COMMON/G©S/M»JJ 
PO = ,33 

** READ(5r2tEND=999) E»CX#W3»ALX#WitWt»W2 
2 FORMAT (F10. ,0»6F10,5) 

££lir!l\S;;X?Cl^^ 
"K4T&. * Of 1UDI 

i 0 5 l ^ L Y O T C / / 9 X M E ' # l * X , f C X , ' 8 x ' f R A D l U S f ^ X ' f A ^ ^ 7 X r t x c l ) ' , 7 X , t H t , 8 X f 
WRlTE(fe»7)E,Cx#W3# ALX»Wl*WifrW2 

7 FORMAT(Fl0.0»6F10,5) 
WRITE (6»3) 

3 FORMAT C l lX ,»KXXPCRt r8X f f Zp» t6X f f M» f i * x ,»BETAf t« iX f»Nt f5X f f NXXCR«) 
ZZZ = W2*^2*SQRT( l t -PO*PO)/ (w3*^ |4' ) 
K - 1 

• L • = 0 
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U IF(F(X2<K>)-F(X3<K))) 10»lo»20 
20 X3IK) s X3(KU0.2*X3(K) 

lF<x3(K)#LTf15.) GO TO U 
L = L+l 
iF(LtLTtiO) GO TO 11 
XlCl) s 0»01 
X2(D s 0»6 
X3U> s 1*0 
IFCL.LT.11) GO TO 11 
BETA BAR CURVE IS TOO FLAT, SET M a 1, 
AM s 1.0 
GO TO 8 

10 DEL(K) a X3(K)-X1CK) 
12 Yl(K) = X1CK)*F1*DELCK) 

Y2(K) = X3(K)-F1*DEL(K) 
IF(F(Y1(K))-PCY2(K)))' 30*31*32 

30 DELCK+l) = Y2CK)«X1(K) 
XKK+1) s X K K ) 
X 3 ( « + l ) = Y2(K) 
K «» 1/A 4 

XF(ABS<<X3(K)-Xi(K' )>/X3<K)) .LTtEPS) GO TO 40 
GO TO 12 

31 OEL<K*I) = Y2(K)-X1(K) 
XlfK+1) s Y1CK) 
X3CK+1) = X3(K) 
K a K*i 
lFCABSCCx3(K)-Xl(K))/X3(K))tLTtEPS) GO TO 40 
GO TO 12 

32 D E U K + l l s X3(K)-Y1CK) 
XKK+1) s Y1CK) 
X3(K+1> a X3«K) 
K s K+l 
tF{ABS((X3fK)-Xl(K))/X3(K))tLT»EPS) GO TO 40 
GO TO 12 

i»0 Z a tXlCK)*X3CK>)/2. 
Fx a F(Z) 
AM S <®/p)**0.25 
BE = 2*AM 

8 Jj s 1 
XF(AM-i.O) 41t41f42 

41 MCJJ.) s 1 
SO TO 49 

42 JJ s JJ+1 
M(JJ) a AM 
GO JO 49 

43 JJ ? JJ+1 
MCJj) s M J J - D + 1 
GO TO 49 

49 X I C D '« Ot01 
X £ ( D a 4 t 5 
X3C1) * 5f 

IFCL.LT.11
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87* 
88* 
39* 
90* 
91* 
92* 
93* 
94* 
95* 
96* 
97* 
98* 
99* 
100* 
101* 
102* 
103* 
104* 
105* 
iU6* 
107* 
iUS* 
109* 
Ho* 
in* 
na* 
113* 
114* 
115* 
116* 
117* 
116* 
119* 
120* 
121* 
122* 
123* 
124* 
125* 
126* 
127* 
128* 
129* 
130* 
131* 
132* 
133* 
134* 
135* 

71 
73 

101 

72 
74 

75 

76 

77 

78 

K = 1 
t s 0 
IFCG(X2(KH-G(X3(K))) 72'7^,73 
X3<K> = X3<K)40.2*X3<K) 
IF(X'3(K).LT.15.) GO TO 71 
L = LM 
IFCL.LT.20) GO TO 71 
WRITEC6t101) 
FORMAT (/SX^BETA BAR HAS BEEN L^ST IN GZO 
GO TO 4 
DELCK) = X3(K)«X1<K) 
Vl(K) = Xl<KUFi*DEL<K) 
Y2CK) = X3(K)-F1*DEL(K) 
IFCG(YKK))-GCY2(K))) 75*7e»77 
DELCK+1) = Y2(K)-X1(K) 
XMK+1) = XKK) 
X3(K-».l) = Y2(K) 
K = K*l 
IF(ABS(<X3(K)-X1(K))/X3(K)).LT.EPS) GO TO 78 
GO TO 74 
OEUK+1) = Y2(K)-X1(K) 
Kl(KH) = YKK) 
X3(K*1) s X3(K) 
K s K"**! 
IF(ABS(<X3CK)«X1(K))/X3(K))#LT.EPS) GO TO 78 
GO TO 74 
0£L(K+1) = X3(K)-Y1(K) 
XKK+1) s Yl(K) 
X3(KU) = X3(K) 
K s K+I 
1F(ABS«(X3CK)*X1(K))/X3(K)),LT.E^S) GO TO 78 
GO TO 74 
21(JJ)s (XI(K)4X3(K)>/2. 
iGCJJl = G(Z1(JJ)) 
1FCJJ»EQ,1) GO TO 51 
IF(JJ,EQ,3) GO TO 44 
GO TO 43 

44 IF ((GGCjJ)-GGCJJ-l) 
51 G2 = GG(jJ) 

Z = Zl(JJ) 
AH = M(JJ) 
GO TO 47 

52 GZ = GG<JJ-1) 
2 =Z1(JJ-1) 
m = M(JJ-I> 

47 CONTINUE 
BET = Z*AM 
NM = AM 
CMW = 3.14*BET*W3/W2 

IFCL.LT.20


lffj* P C R = 3.m*3.1«**E*W«***3*6Z/(W2*W2*X2.*(l,-P0*pO)> 
1 " * WRITE (6*102* GZ»ZZZ»MMfBET»CMW'PCR 
138* 102 FORMAT <5X#2F12«3*l5tF8.3#F7.1»El<t,7) 
139* GO TO <f 
1^0* 999 CONTINUE 
1*1* END 

i* FUNCTION F<Z> 

5* c F ls THE KXXP EXPRESSION TREATED M AS CONTINUOUS VARIABLE 

** C0MM0N/KXXP/ALX»CXtP0.ZZ2tWl,W2fW3,W* 
** COMMON/FFF/PtQ 
S* RHOX = ALX*ALX*W1 
$* E* = 3a^*3a<**SQRT(l,-PO*pO)*(l.0+CX*ALX)/(2.0*ZZZ> 
7* A = i**RH0X+2,*Z*Z*Z**t* 
8* B = 12#*ZZZ*ZZZ/(3tl<***4*(it-P0*P0)) 
,9* c = ltm+2«/<l,-PO)*(lt~Po+Wl)*Z*Z+Z**4 
10* P s A+8*EX*EX*Wl*(lf+Z*Z>*clt4'Z*Z}/c 
11* 0 = B*(1.~PQ*P0*W1)/C 
12* R = 2.*8*EX*W1*(P0-Z*Z)/C 
13* F = 2,*SQRT(P*Q)+R 
Is** RETURN 
is* END 

Ni 
OO 



i* 
2* 

FUNCTION SCZ> 

_ ® Is THE KXXP EXPRESSION TREATED H AS DISCRETE VARIABLE 

*** C0MM0N/8G©/M»JJ 
S* DIMENSION MIS.) 
** ^HOX = ALX*ALX*W1 
A. |X 5^3#i.^*3tl-*»-*$9RTtl»-PO»pO)*(l-«0>CX»ALX>/C2«0*2ZZ> 
° * = I t**-RHOX4'2f *Z*Z+Z**t 
** 8 = l^**222*222/C3fl4**^*Cit.P0*P0J) 

u * P - i:S!JS5*»c£:",r?,Ii1,7Po*wl)*5*z*z**l> 

t: p - A*B«€X*EX**ii*flt4>Z*Z>*(lt*Z*Z)/C 
i2* Q = 8*(le-PO*PO+Wl)/C 
13* p ~ 2#*B*EX*Wl*CP0«»2*2)/C 
J** G = P*M(JJ>*MCJJ)4-0/CM(JJ)]>M(JJ))+R 
15* RETURN 

16* END 

bo 
UD 
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